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Abstract. Fuzzy systems have been proven to be an effective tool for
modeling and control in real applications. Fuzzy control is a well estab-
lished area that is used in a large number of real systems. Fuzzy rule
based systems are defined in terms of rules in which the concepts that
define the rules (both in the antecedent and consequent) can be defined
in terms of fuzzy sets. In applications, rules are fired and then a set of
consequents need to be combined to make a final decision. This final
decision is often computed by means of a defuzzification method. In this
paper we discuss the defuzzification proces and propose the use of a
Choquet integral for this process. In contrast with standard defuzzifica-
tion methods which are based on mean operators (usually discrete), the
Choquet integral permits us to have an output variable with values that
have different importances and with interactions among the values them-
selves. To illustrate the approach, we use a numerical Choquet integral
software for continuous functions that we have recently developed. We
also position the application of the approach to handle the uncertainty
associated to a mission-oriented Cyber-Physical System (CPS).

1 Introduction

Knowledge based systems are used in a large number of real-world applications.
Among them, rule based systems stand out for their interpretability. As the
name indicates, they are defined in terms of sets of rules, with each rule defined
by an antecendent that establishes when the rule applies, and a consequent that
establishes the conclusion when the rule applies. Different types of rules have
been considered. We want to underline the case of rules that permit to represent
some type of uncertainty.

Fuzzy rules [5,10] are the rules to be used when we need to consider vagueness
and fuzziness in the concepts (either in the antecedent or the consequent). Recall
that a concept on the reference set X is imprecise when different elements of X
satisfy the concept (e.g., temperature below zero) and a concept is vague when
there are values in X for which it is doubtful to affirm that they satisfy or not
the concept (e.g., temperature is cold). Vague and imprecise concepts can be
represented by means of fuzzy sets.
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In contrast to standard (crisp) sets where characteristic functions are defined
in terms of the Boolean sets {true, false} or {0, 1} (i.e., an element is either in a
set A or not), fuzzy sets are defined in terms of membership functions that assign
to each element a value in the [0,1] interval. So, for a set A on the reference set
X, a characteristic function for A is typically of the form χA : X → {0, 1} while
a membership function is of the form μA : X → [0, 1]. Then, a value μA(x) of
zero means no membership, a value of one means total membership, and values
in (0, 1) represent partial membership.

Fuzziness distinguishes from probability because while a fuzzy membership of
e.g. 0.7 represents partial truth, probability of 0.7 is a measure of our certainty of
being the fact completely true. To illustrate the difference [3] gives an example of
two bottles A and B where A is marked with membership of 0.91 to be potable
and B with probability 0.91 to be potable. The later means that B will be
potable 91% of the trials, but 9% may be deadly. In contrast, the fuzzy bottle A
will contain perfectly potable water, maybe not completely pure, but not deadly
in any case.

Due to the fact that the rules are defined using fuzzy sets, and fuzzy sets can
be partially satisfied, at a given time, several rules may apply. This is so because
each of the rules may satisfy partially the conditions given in the antecedent. The
degree of satisfaction of a rule (the truth value of the antecedent) is computed
taking into account the fuzzy sets that define the rules, as well as appropriate
operators (e.g., operators to model conjunction and disjunction of the concepts
in the antecedent). Fuzzy systems usually fire all rules with positive degree of
satisfaction. Then, this degree is propagated to the conclusion. This leads to
a set of conclusions that need to be considered together, with each conclusion
having the corresponding degree of satisfaction of the rule.

A variety of fuzzy rule based systems exist in the literature. A detailed dis-
cussion of their differences is beyond the interest of this paper. See, for instance,
references [5,8–10,15,16,21] for a detailed description of some of them. We will
focus on rule based systems in which the terms of both antecedents and con-
sequents are described in terms of fuzzy sets. For simplicity, we will consider
antecedents in which terms are only combined in a conjunctive way, and in
which consequents have only one variable. Observe that this constraint is not
relevant in our work because we focus on how to operate with the conclusions
of the rules. Therefore, rules follow this pattern:

If V1 is T1 and V2 is T2 and . . .and V2 is T2 then VO is TO

We will give a more accurate description of the rules in Sect. 2. Here, Vi

represent variables, Ti terms that are represented by fuzzy sets, VO is the output
variable and TO an output term.

In our study, the output of a rule will be a fuzzy set. This fuzzy set will be
defined in terms of the fuzzy set TO of a rule, and the degree of satisfaction
of the antecedent. The collection of fuzzy sets obtained from all rules need to
be combined (through a data fusion or aggregation process). We obtain in this
way an aggregated fuzzy set. In order to obtain this set, we can proceed in
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different ways. In this work we will use the union of sets, as commonly used in
the literature [5].

The combination of consequents of rules does not lead to an appropriate
output. Most applications in control and modeling need as output a single value
in the appropriate range of the output variable (e.g., the actual value to give to
a controller). Therefore, a fuzzy set as system’s output cannot be used without
further processing. Defuzzification is the name of the process to select a single
value from the aggregated fuzzy set. Different defuzzification strategies have been
defined in the literature. The center of area is probably the most used one, but
other solutions have been proposed.

Most defuzzification procedures can be seen as a two step process (see e.g. [6]).
First, the aggregated fuzzy set is transformed into an appropriate distribution
(e.g., a probability distribution via normalization or a distribution that elimi-
nates inappropriate values). Then, an element is selected from the distribution
(e.g., the expected value of the distribution).

In this paper, we propose the use of a Choquet integral [4] in the defuzzifica-
tion process. This permits us to take into consideration some particularities of
the domain of the output variable. For example, we may consider that different
subdomains of the output variable have different relevance, and that different
subdomains are incompatibles.

In a CPS, physical and software components are tightly connected. Real-
time decisions are often needed, and systems need to adapt dynamically to their
context. Rule-based approaches are appropriate for reactive systems. Changes
in the environment cause changes in the input variables, that are quickly prop-
agated into the output. Fuzzy rule based systems are an effective approach for
implementing reactive systems.

Our model for defuzzification based on the Choquet integral permits us a
dynamic modification of the focus of interest of the output variable. While keep-
ing constant the fuzzy rule based system and the aggregation process, we will
be able to adapt the center of interest of the output variable taking into account
some additional variables of the environment. This will be done by means of a
modification of the parameter of the Choquet integral (i.e., the fuzzy measure).
As it is shown later, we consider an example with a simulated annealing-type
approach where the defuzzification shifts from a less supported value to a more
supported one (more conservative) when time progresses.

The structure of the paper is as follows. In Sect. 2 we give an overview of
fuzzy measures and the Choquet integral. We will use these concepts later to
formally define our approach. In Sect. 3 we describe the type of fuzzy rule based
system we use in this work. In Sect. 4 we formalize our defuzzification method.
In Sect. 5, we position the application of the approach to handle the uncertainty
associated to a mission-oriented CPS. The paper finishes with some conclusions
and lines for future work.
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2 Fuzzy Measures and the Choquet Integral

Let us start reviewing the concept of fuzzy measure, also known as non-additive
measure or monotonic game. Fuzzy measures generalize additive measures and
probabilities replacing the additivity condition by a condition on monotonicity:
monotonicity with respect to set inclusion.

Definition 1. Let (Ω,F) be a measurable space. A set function μ defined on F
is called a fuzzy measure if an only if

– 0 ≤ μ(A) ≤ ∞ for any A ∈ F ;
– μ(∅) = 0;
– μ(Ω) = 1;
– If A1 ⊆ A2 ⊆ F then

μ(A1) ≤ μ(A2)

The boundary condition μ(Ω) = 1 is not always required. In our context, it
will be convenient. It corresponds to the condition that the probability of the
whole reference set Ω is one.

When the set of reference is discrete, the Choquet integral of a function with
respect to a fuzzy measure is defined as follows.

Definition 2. Let X be a reference set, and let μ be a fuzzy measure on X =
{x1, . . . , xn}; then, the Choquet integral of a function f : X → R

+ with respect
to μ is defined by

(C)
∫

fdμ =
n∑

i=1

[f(xs(i)) − f(xs(i−1))]μ(As(i)), (1)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤
f(xs(1)) ≤ · · · ≤ f(xs(n)) ≤ 1, and where f(xs(0)) = 0 and As(i) =
{xs(i), . . . , xs(n)}.

When the reference set is not finite, the Choquet integral of f with respect
to μ is defined with the following expression

(C)
∫

fdμ :=
∫ ∞

0

μf (r)dr, (2)

where μf (r) = μ({x|f(x) ≥ r}).
This definition generalizes the Lebesgue integral, and it reduces to the

Lebesgue integral when μ is additive.

3 Fuzzy Rule Based Systems

We will consider fuzzy rules following the structure below. For the sake of sim-
plicity, we consider that all rules have n input variables and a single output.
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As we have indicated in the introduction, we only allow for conjunction to com-
bine the variables and their terms in the antecedent.

R: If V1 is tR1a and V2 is tR2b and · · · Vn is tRnz then Y is tRyo

Here, Vi represents an input variable and Xi its domain, tRie is a term for
the ith input variable, Y represents an output variable and tRyo is a term for
output variable. More specifically, for each variable Xi, we have a set of terms
ni terms denoted by ti1, . . . , tini

. Similarly, we have a set of no terms for the
output variable Y . These terms are ty1, . . . , tyno

. Naturally, tR1a ∈ {t11, . . . , t1n1},
tR2b ∈ {t21, . . . , t2n2}, etc.

Each tij is described in terms of a fuzzy set defined on the domain of variable
Vi. We denote this fuzzy set by μij . Naturally, μij : Xi → [0, 1].

Let us consider the rule below for controling the temperature of a device.
We have two input variables ε and Δε representing, respectively, the error (with
the objective temperature) and error difference (change in the error in two con-
secutive time instants), and an output variable that controls the device. We
have three terms, one for each variable. They are, positive, positive, and
small-negative. Each term will be defined by a fuzzy set. Fuzzy sets will be
defined in the range of the variable (this means that the term positive for
variable ε may be different than the term positive for variable Δε).

Rule1: if ε is positive and Δε is positive
then control-variable is small-negative

Fuzzy inference for fuzzy rule based systems for this type of rules usually
follows four steps. We give these fours steps formally below. We begin with an
informal description based on the previous rule.

Step 1. Rules are fired when we have actual values for each of the input
variables. E.g., we have that the error ε is 3 degrees (ε = 3) and that the error
has decreased 0.2 degrees (Δε = −0.2). Then, the degree of satisfaction for each
variable is defined as the membership degree of the actual value of the variable
using the appropriate membership function. In our case με,positive(3).

In our rules, the only operator in the antecedent is and. Because of that, the
membership degrees obtained for each variable in the antecedent are combined
using an operator that models the conjunction. In fuzzy logic, t-norms play this
role. The minimum min(a, b) and the product aḃ are examples of t-norms. This
combination corresponds to the degree of satisfaction of the antecedent.

Step 2. The degree of satisfaction of the antecedent is propagated to the
consequent. This is done clipping the membership function associated to the
output variable using the degree of satisfaction of the antecedent. The process
implies that when the antecendent is completely satisfied (i.e., degree equal to
one), the output is just the fuzzy term. In contrast, when the antecedent is not
at all satisfied (i.e., degree equal to zero), the output is just the empty set (i.e.,
all membership values are zero).

Step 3. All rules of our knowledge base (say KB) are fired applying the
approach just described. We obtain in this way a collection of fuzzy sets (say μR

for each rule R in KB). All these fuzzy sets are combined. It is usual to use the
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union of all fuzzy sets for this purpose. We obtain in this way an aggregated fuzzy
set. From a mathematical point of view, this approach is to consider fuzzy rules
in a disjunctive way. That is, either we apply R1 or R2 or . . . or Rt. Under this
interpretation, we take the union of the outputs (the output of R1 or the output
of R2 . . . ). For crisp and disjoint rules, this would result into a single output.
In the case of fuzzy rules, this step results into a fuzzy set that contains pieces
of information of several rules. See e.g. Figure 1 that shows a typical output of
Step 3. It corresponds to the union of two clipped fuzzy sets (one with maximum
value at y = 2 and the other with maximum value at y = 3). Then, in Step 4
we obtain a kind of average of the outputs (average weighted by the degree of
satisfaction of the rule).

In a previous work [18] we showed that the process of combination can be
expressed in terms of a Sugeno integral [14]. Understanding the fusion of con-
sequents in this way, we generalize the usual approach introducing a model in
which rules do not need to be independent. A similar idea is present in [2,11]
where the Choquet integral is used to combine outcomes from rules, also to
permit non independent rules.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aggregated membership

Fig. 1. Example of aggregated fuzzy set obtained in Step 3.

Step 4. A value is obtained from the aggregated set. This step is called defuzzi-
fication. The center of area is one of this defuzzification processes. This method
is the one given in Step 4 below.

We give now a more formal definition of this process.

Step 1. Degree of satisfaction of the antecedent of each rule R

αR = T (μR
1a(x1), μR

2b(x2), . . . , μR
n (xnz))

for a t-norm T .
Step 2. Application of all rules R and computation of their consequents

μR(x) = min(αR, μR
yo).
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Step 3. Application of a set of rules and computation of the corresponding
consequent. In terms of the membership function, it is the following:

μ̃ = ∪R∈KBμR.

If we consider memberships at given y in the space of the output Y , this is

μ̃(y) = ∪R∈KBμR(y)

for all y ∈ Y . We often use a t-conorm (e.g., the maximum) to compute the
union.

Step 4. Defuzzification

y∗ =

∑
y μ̃(y) · y∑

z μ̃(z)
or y∗ =

∫
yμ̃(y)dy∫
μ̃(z)dz

. (3)

4 Defuzzification Based on the Choquet Integral

Equation 3 is one of the existing approaches to select a value from the aggregated
fuzzy set. This approach is known as center of area or gravity defuzzification.
Driankov et al. [5] describe five other methods: center of sums, center of largest
area, first of maxima, middle of maxima, and height defuzzification.

As briefly explained in the introduction, following [6], most defuzzification
procedures can be seen from a two step process perspective. The first step trans-
forms the fuzzy set μ̃ into an appropriate distribution, and the second step is
about selecting an element from the distribution. In the center of area, the trans-
formation is about building the following probability distribution from the fuzzy
set μ̃: p(y) = μ̃(y)/

∑
z μ̃(z), or p(y) = μ̃(y)/

∫
μ̃dz in the continuous case. Selec-

tion is defined as the expected value of the distribution p. First of maxima sets
to zero all memberships that are not maximal and then selects the first y with
a maximal membership (i.e., let α = supz μ̃(z) then μ̃′(y) = α if and only if
μ̃(y) = α and select miny{y|μ̃′(y) = α}). Middle of maxima follows the same
approach but selects 0.5(miny{y|μ̃′(y) = α} + maxy{y|μ̃′(y) = α}).

Mathematically, the two step process for the center of area corresponds to
(i) building the probability distribution and then (ii) computing the expectation
of this distribution. We use the definition of the expectation as the Lebesgue
integral of the function f(y) = y with respect to the probability distribution.
That is, considering a continuous membership function μ̃:

y∗ =
∫

ydp

where p(y) = μ̃(y)/
∫

μ̃(z)dz.
Our contribution is to use in this process the Choquet integral of the function

f(y) = y with respect to a measure ν built from the fuzzy set μ̃. That is, our
proposal is to defuzzify using

y∗ = (C)
∫

dν (4)
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where ν is built from μ̃. Therefore, we need to consider ways to construct fuzzy
measures ν defined for all the sets [x,∞] (note that the values of ν([x,∞]) are the
only ones actually considered in the integration process). We give some examples
below. In the examples we use p(y) = μ̃(y)/

∫
μ̃(y)dz as above.

Example 1. If we define ν([x,∞]) =
∫ ∞

x
p(x)dx then the Choquet integral

corresponds to the Lebesgue integral, and the defuzzification is the center of
area.

Example 2. If we define ν([x,∞]) = Q(
∫ ∞

x
p(x)dx) for a distortion function

Q (i.e., a function Q(x) such that Q(0) = 0, Q(1) = 1 and monotonic with
respect to x), we result into the continuous WOWA operator for defuzzification
(see [17] for details). Note that measures of this form correspond to distorted
probabilities. I.e., ν = QoP .
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Fig. 2. Function 1 − e−k used to define the distortion function Qk, and the resulting
defuzzified values.

Let us consider the continuous piece-wise linear functions Q(a,b)(x) defined
as 0 for x < a, 1 for x > b, and linear between a and b. This is to model that
the values that accumulate probabilities in (a, b) (as in quantile functions) are
the most relevant in the defuzzification process. Let us consider a system where
we can consider risky alternatives (with less suport) at the initial times, but
more conservative alternatives (with more support) at later times. To model
this situation, we consider tk = ek (a popular cooling schedule – the exponential
one – in simulated annealing). We then consider the intervals (ak, bk) defined as
(max(0, 1−ek −0.1),min(1, 1−ek +0.1)) to build the corresponding distortions
Qk. The function 1−ek as well as the outcome of the defuzzification with respect
to time k is given in Fig. 2 (left and right, respectively).

We can see in Fig. 2 (right) how the defuzzified value tend to the minimum
when time increases.
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Example 3. For a given fuzzy measure ν′, we define the measure ν by set μ̃:

ν([x,∞]) =
(C)

∫
[x,∞]

pdν′

K
, (5)

where p(y) is defined as before p(y) = μ̃(y)/
∫

μ̃(z)dz, and with normalizing
factor K = (C)

∫
[−∞,+∞]

pdν′. Note that in this equation, we can use equiv-
alently either μ̃ or p because we have the normalizing factor K. For ν′ = λ
(i.e., ν′ is the Lebesgue measure), this definition results into the measure
above ν([x,∞]) =

∫ ∞
x

p(x)dx. For fuzzy measures ν′, this results into a fuzzy
measure ν.

To illustrate this example, we have considered two cases: measures ν′
1 and

ν′
2 which result using Expression 5 into two measures ν1 and ν2. They are the

following ones:

– ν′
1([a, b]) = (l1/5) + (l2/5)2 + 0.2(l1/5)(l2/5)4

– ν′
2([a, b]) = (l1/5) +

√
l2/5 + 0.2(l1/5)

√√
l2/5

where l1 = λ([a, b] ∩ [0, 3]) and l2 = λ([a, b] ∩ [3, 6]) (here λ is the Lebesgue
measure).

The first measure gives more relevance for elements x < 3 than the second
measure that have more relevance for elements x > 3. Compare the measure of
ν1([2, 3]) = 0.6373673 and ν1([3, 4]) = 0.08365445 vs. ν2([2, 3]) = 0.2400694 and
ν2([3, 4]) = 0.6262801. This implies that the defuzzification using ν1 is smaller
than the defuzzification using ν2. Experiments show that this is true, as in the
first case we obtain a defuzzified value of 2.306174 while in the second case it is
2.576696.

Example 3 shows that defuzzification using a Choquet integral provides addi-
tional flexibility, and that we can model situations in which different regions of
the domain have different relevance. We can exploit non-additivity of the measure
to reduce or increase the relevance of conservative or risky values. In addition,
we can also consider measures in line with Example 2 where the measure is time-
dependent, and, thus permits us to shift the focus of the system over time even
when its inputs do not change.

The outcomes of these examples have been computed considering the mem-
bership functions as continuous functions and computing the Choquet integrals
numerically. The numerical Choquet integral has been computed using the soft-
ware in R we provided in [20]. In Example 3, we need to compute the Choquet
integral of f(x) = x with respect to ν in the interval [0,6]. ν is the Choquet
integral of μ̃ with respect to ν. The integration of f requires the computation of
ν([a, 5]) for several values of a (i.e., several numerical Choquet integrals). This
makes the process costly. E.g., the defuzzification of the fuzzy set using ν2 takes
43 s in a Laptop (Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz).
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5 Applying the Approach to Cyber-Physical Systems

We present in this section the application of the defuzzification approach pre-
sented in this paper, to handle the uncertainty associated to a mission-oriented
CPS1. We assume a CPS in which entities integrate computation, communi-
cation and physical processes [7]. Examples include robotics and autonomous
vehicles. Our CPS scenario assumes the existence of a decentralized process
that computes corrective control actions based on our defuzzification approach.
Mathematically, the CPS is modeled as a spatially distributed system whose
control loops are closed by a wireless communication network. The communi-
cation network connects the different components of the CPS, assumed to be a
series of mobile agents that exchange messages to complete a mission-oriented
problem. The scenario follows previous work presented in [1,12] (cf. http://j.
mp/scavesim for further details and some related media), in order to address
classical theoretical problems studied in the CPS literature, such as stabiliza-
tion of mobile systems and control-theoretic techniques addressing uncertainty.
A quick summary of the scenario is presented next.

5.1 Trajectory Search Scenario

A series of mobile agents (e.g., unmanned aerial vehicles) must accomplish a mis-
sion. The mission relies on a trajectory search scenario. The agents must cross
different segments of, e.g., city blueprints, by physically identifying an unknown
number of intermediary trajectory points in each segment. Identifying and visit-
ing all the trajectory points, as well as reaching the final destination, it is crucial
to label the mission as accomplished. The agents collect and deliver informa-
tion at each trajectory point, such as taking pictures and exchanging messages
between them, in order to discover the way to reaching the following trajec-
tory point. The mission is considered as accomplished when all the intermediate
points specified in the trajectory are successfully visited by all the agents. The
mission fails when at least one of the agents fails at identifying or visiting one
of the points in the trajectory.

A trajectory is represented as an unknown number of intermediate points.
At every trajectory point, the agents must collectively determine the next step
by solving a search problem [1]. We define the trajectory search problem as a
collective solution in which a bounded number of agents follow a trajectory from
s (starting point) to t (terminal point), as depicted in Fig. 3.

The agents must discover the trajectory points instructed by a decentralized
CPS process. The process is to collect the information from all the agents, and
apply the defuzzification approach presented in this paper in the reasoning pro-
cess. Together, the agents travel from a trajectory point to any other. With the
trajectory points identified to vertices, they form a complete graph. We assume

1 The term CPS, coined in 2006 by H. Gill at the National Science Foundation [13],
refers to next generation embedded ICT systems, which include monitoring and
control technologies in charge of physical components for pervasive applications.
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s vi

i+1 tvi

Fig. 3. Group of mobile agents traveling from s (initial point of a trajectory) to t
(terminal point of the trajectory). Segments (vi, vi+1) represent the connection of two
trajectory points (vi and vi+1). They cooperate to navigate from s to t.

that the agents are unaware of the terrain and locations of the trajectory points.
However, their CPS process has the capability to correlate data collectively col-
lected by the overall system and take decisions. The agents communicate and
exchange information between them. The mission of the agents is assumed to be
accomplished if all the agents successfully find all the trajectory points within
the segments that start in s and end in t. See [22] for further details.

6 Concluding Remarks

In this paper we have proposed the use of Choquet integrals in the defuzzifi-
cation of fuzzy rule based systems. We have shown with some examples that
our definition permits to take into account the relevance of different regions.
We have also considered using the proposed approach for the accomplishment of
critical missions under uncertain conditions of a mission-oriented CPS. We have
presented a CPS scenario in which a series of mobile agents are instructed to
solve a trajectory search problem. The agents must discover and physically visit
a series of unknown trajectory points. To successfully accomplish the mission, all
the agents must collectively share information at each trajectory point, such as
taking pictures or exchanging messages between them, in order to discover the
following steps towards the following step of the trajectory. The mission is said
to have been accomplished when all the intermediate segments specified in the
trajectory are successfully visited by all the agents. The mission fails when one
of the agents fails at identifying or visiting one of the trajectory points. Future
work includes embedding the approach in a fuzzy system, and develop more
efficient solutions to compute the defuzzified values using the Choquet integral.
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