FROBENIUS-SCHUR INDICATORS OF CHARACTERS IN BLOCKS WITH CYCLIC DEFECT

JOHN C. MURRAY

ABSTRACT. Let p be an odd prime and let B be a p -block of a finite group which has cyclic defect groups. We show that all exceptional characters in B have the same Frobenius-Schur indicators. Moreover the common indicator can be computed, using the canonical character of B. We also investigate the Frobenius-Schur indicators of the non-exceptional characters in B.

For a finite group which has cyclic Sylow p-subgroups, we show that the number of irreducible characters with Frobenius-Schur indicator −1 is greater than or equal to the number of conjugacy classes of weakly real *p*-elements in G.

1. Introduction and preliminary results

The Frobenius-Schur (F-S) indicator of an ordinary character χ of a finite group G is

$$
\epsilon(\chi) := \frac{1}{|G|} \sum_{g \in G} \chi(g^2).
$$

If χ is irreducible then $\epsilon(\chi) = 0, \pm 1$. Moreover $\epsilon(\chi) \neq 0$ if and only if χ is real-valued.

R. Brauer showed how to partition the irreducible characters of G into p-blocks, for each prime p. Each p-block has an associated defect group, which is a p-subgroup of G , unique up to G-conjugacy, which determines much of the structure of the block. If the defect group is trivial, the block contains a unique irreducible character. In the next most complicated case, E. Dade [\[D\]](#page-16-0) determined the structure of a block which has a cyclic defect group and defined the Brauer tree of the block.

Recall that a p-block is said to be real if it contains the complex conjugates of its characters. We wish to determine the F-S indicators of the irreducible characters in a real p-block which has a cyclic defect group. In $[M2,$ Theorem 1.6 we dealt with the case $p = 2$; there are six possible indicator patterns, and the *extended* defect group of the block determines which occurs. In this paper we consider the case $p \neq 2$.

R. Gow showed [\[G,](#page-16-2) 5.1] that a real p-block has a real irreducible character, if $p = 2$. This is false for $p \neq 2$, as was first noticed by H. Blau in the early 1980's, in response to a question posed by Gow. His example was for $p = 5$ and $G = 6.S₆$ (Atlas notation). G. Navarro has recently found a solvable example with $p = 3$ and $G = SmallGroup(144,131)$ (GAP notation). We give examples for blocks with cyclic defect below.

Date: January 21, 2019.

²⁰⁰⁰ Mathematics Subject Classification. 20C20.

Now let B be a real p-block which has a cyclic defect group D . The inertial index of B is a certain divisor e of $p-1$. Dade showed that B has e irreducible Brauer characters and $e + \frac{|D|-1}{e}$ $\frac{|-1|}{e}$ ordinary irreducible characters. The latter he divided into $\frac{|D|-1}{e}$ exceptional characters and e non-exceptional characters.

Suppose that $\frac{|D|-1}{e} = 1$ (which can only occur when $|D| = p$). Then the choice of exceptional character is arbitrary, and the convention in $[F]$ is to regard B as having no exceptional characters. However, we will see that in this event B has real irreducible characters, all of which have the same F-S indicators. So our convention is to assume that B has a real exceptional character.

The Brauer tree of B is a planar graph which describes the decomposition matrix of B. There is one exceptional vertex, representating all the exceptional characters, and one vertex for each of the non-exceptional characters. Two vertices are connected by an edge if their characters share a modular constituent.

J. Green [\[Gr\]](#page-16-4) showed that all real objects in the Brauer tree lie on a line segment, now called the real-stem of B. The exceptional vertex belongs to the real-stem (see Lemma [6](#page-6-0) below). So it divides the real non-exceptional vertices into two, possibly empty, subsets. We find it convenient to refer to the corresponding real non-exceptional characters as being on the left or the right of the exceptional vertex. Here is our main theorem:

Theorem 1. Let p be an odd prime and let B be a real p-block which has a cyclic defect group. Then

- (i) All exceptional characters in B have the same F-S indicators.
- (ii) On each side of the exceptional vertex, the real non-exceptional characters have the same F-S indicators.
- (iii) If B has a real exceptional character then all real irreducible characters in B have the same F-S indicators.
- (iv) Suppose that B has no real exceptional characters, and that there are an odd number of non-exceptional vertices on each side of the exceptional vertex. Then the real non-exceptional characters have $F-S$ indicator $+1$ on one side of the exceptional vertex and -1 on the the other side.

Note that (i) is not a consequence of Galois conjugacy, as there are at least two Galois conjugacy classes of exceptional characters, when $|D| > p$.

In Proposition [15](#page-13-0) we show that the F-S indicators of the exceptional characters in B agree with those of the Brauer corresponding block in the normalizer of a defect group. In Theorem [16](#page-14-0) we compute this common indicator using the 'canonical character' of B.

Next recall that an element of G is said to be weakly real if it is conjugate to its inverse in G , but it is not inverted by any involution in G . Here is an application of Theorem [1](#page-1-0) whose statement does not refer to blocks or to modular representation theory:

Theorem 2. Let p be an odd prime and let G be a finite group which has cyclic Sylow p-subgroups. Then the number of irreducible characters of G with F-S indicator -1 is greater than or equal to the number of conjugacy classes of weakly real p-elements in G.

We use the notation and results of [\[NT\]](#page-16-5) for group representation theory, and use [\[D\]](#page-16-0) and [\[F,](#page-16-3) VII] for notation specific to blocks with cyclic defect. When referring to the character tables of a finite simple group we use the conventions of the $ATLAS$ [\[A\]](#page-16-6). For other character tables, we use the notation of the computer algebra system GAP [\[GAP\]](#page-16-7).

2. Examples

We begin with a number of examples which illustrate the possible patterns of F-S indicators in a block which has a cyclic defect group. Throughout G is a finite group and B is a real p-block of G which has a cyclic defect group D. Also N_0 is the normalizer in G of the unique order p subgroup of D and B_0 is the Brauer correspondent of B in N_0 .

Example 1: There are many blocks with cyclic defect group whose irreducible characters all have the same F-S indicators. For blocks with all indicators $+1$, choose $n \geq 2$, a prime p with $n/2 \le p \le n$ and any p-block of the symmetric group S_n . There are numerous blocks with all indicators -1 among the faithful p-blocks of the double cover $2.A_n$ of an alternating group, with $n/2 \leq p \leq n$ e.g. the four faithful irreducible characters of 2. A_5 have F-S indicator -1 and constitute a 5-block with a cyclic defect group.

Example 2: If e is odd then B has a real non-exceptional character. Now it follows from $[D, Part 2 of Theorem 1 \& Corollary 1.9] that B has a Galois conjugacy class$ consisting of $\frac{p-1}{e}$ exceptional characters. So B has a real exceptional character if $\frac{p-1}{e}$ is odd. Thus B always has a real irreducible character if $p \equiv 3 \pmod{4}$.

When e is even and $p \equiv 1 \pmod{4}$, B may have no real irreducible characters. For example SmallGroup(80, 29) = $\langle a, b \mid a^{20}, a^{10} = b^4, a^b = a^7 \rangle$ has such a block, for $p = 5$. It consists of the four irreducible characters lying over the non-trivial irreducible character of $\langle a^{10} \rangle$. Here is its character table. The first two rows indicate the 2 and 5 parts of the class centralizers. The third row labels the classes by their element orders:

Note that $SmallGroup(80, 29)$ has Sylow 2-subgroups isomorphic to $SmallGroup(16, 6) =$ $\langle s, t | s^8, t^2, s^t = s^5 \rangle$. This 2-group is sometimes denoted $M_4(2)$.

Example 3: B may have a real non-exceptional character but no real exceptional characters. For example SmallGroup(60, 7) = $\langle a, b \mid a^{15}, b^4, a^b = a^2 \rangle$ has such a block, for $p = 5$. It consists of the four irreducible characters lying over a non-trivial irreducible

character of $\langle a^5 \rangle$. This is also an example of part (iv) of Theorem [1;](#page-1-0) the non-exceptional characters X.5 and X.6 have F-S indicators -1 and $+1$, respectively. Here is the table of character values, with $\alpha = (1 + \sqrt{-15})/2$:

Example 4: There is no apparent relationship between the F-S indicators of the nonexceptional characters in B and in B_0 . For example, let B be the 5-block 2. A_8 with Irr(B) = { $\chi_{15}, \chi_{19}, \chi_{21}, \chi_{22}$ }. Then the two non-exceptional characters χ_{15} and χ_{19} have F-S indicator +1 and -1, respectively. However B_0 is a real block which has no real irreducible characters.

The character table of B can be found on p22 of The Atlas. Now N_0 is isomorphic to SmallGroup(120, 7) = $\langle a, b | a^{15}, b^8, a^b = a^2 \rangle$. Here is the table of character values of its 5-block B_0 . Again $\alpha = (1 + \sqrt{-15})/2$. In order to save space, we have omitted 4 columns of zero values for the four classes of elements of order 8:

We note that B has 2 irreducible modules and 2 weights, in conformity with Alperin's weight conjecture [\[Al\]](#page-16-8). However the irreducible modules are self-dual and the weights are duals of each other. This shows that there is no obvious 'real' version of the weight conjecture for *p*-blocks, when $p \neq 2$.

Consider the inclusion of groups $N_0 < PSL_2(11) < M_{11}$, where $N_0 \cong 11:5$. The principal 11-blocks each have 5 non-exceptional characters. It is somewhat surprising that the number of real non-exceptional characters in these blocks is 1, 5 and 3, respectively.

Example 5: Finally B may have a real exceptional character but no real non-exceptional characters. For example let B be the 5-block containing the four faithful irreducible characters of SmallGroup(20, 1) = $\langle a, b \mid a^5, b^4, a^b = a^{-1} \rangle$. The two exceptional characters have F-S indicators −1, but neither of the two non-exceptional characters is real. Here is the character table of B, with $\beta = (-1 + \sqrt{5})/2$ and $*\beta = (-1 - \sqrt{5})/2$:

3. Miscellaneous results

We need general results from representation theory, some of which are not so wellknown. So in this section p is a prime and B is a p-block of a finite group G .

Let χ be an irreducible character in B, let x be a p-element of G and let y be a p-regular element of $C_G(x)$. Then

$$
\chi(xy)=\sum_{\varphi}d^{(x)}_{\chi,\varphi}\varphi(y),
$$

where φ ranges over the irreducible Brauer characters in blocks of $C_G(x)$ which Brauer induce to B, and each $d_{\chi,\varphi}^{(x)}$ is an algebraic integer, called a generalized decomposition number; if $x = 1$, φ is an irreducible Brauer character in B and $d_{\chi,\varphi}^{(x)}$ is simplified to $d_{\chi,\varphi}$. It is an integer called an ordinary decomposition number of B.

Brauer [\[B,](#page-16-9) Theorem (4A)] used his Second Main Theorem to prove the following remarkable 'local-to-global' formula for F-S indicators:

(1)
$$
\sum_{\chi} \epsilon(\chi) d_{\chi,\varphi}^{(x)} = \sum_{\psi} \epsilon(\psi) d_{\psi,\varphi}^{(x)},
$$

where χ ranges over the irreducible characters in B and ψ ranges over the irreducible characters in blocks of $C_G(x)$ which Brauer induce to B. We have previously used this formula to determine the F-S indicators of the irreducible characters in 2-blocks with a cyclic, Klein-four or dihedral defect group.

Our next result relies on Clifford theory. However it was inspired by (and can be proved using) the notion of a weakly real 2-block, as introduced in $[M1]$. Suppose that N is a normal subgroup of G and $\phi \in \text{Irr}(N)$, with stabilizer G_{ϕ} in G. If $G_{\phi} \subseteq H \subseteq G$, the Clifford correspondence is a bijection $\mathrm{Irr}(G \mid \phi) \leftrightarrow \mathrm{Irr}(H \mid \phi)$ such that $\chi \leftrightarrow \psi$ if and only if $\langle \chi \downarrow_H, \phi \rangle \neq 0$ or $\chi = \psi \uparrow^G$. The stabilizer of $\{\phi, \overline{\phi}\}$ in G is called the extended stabilizer of ϕ , here denoted by G^*_{ϕ} . So $|G^*_{\phi} : G_{\phi}| \leq 2$, with equality if and only if $\phi \neq \overline{\phi}$ but ϕ

is G-conjugate to $\overline{\phi}$. If $G^*_{\phi} \subseteq H$ it is easy to see that χ is real if and only if ψ is real. Moreover in this case $\epsilon(\chi) = \epsilon(\psi)$.

We need one other idea. Suppose that T is a degree 2 extension of G. Then the Gow *indicator* [\[G,](#page-16-2) 2.1] of a character χ of G with respect to T is defined to be

$$
\epsilon_{T/G}(\chi) := \frac{1}{|G|} \sum_{t \in T \backslash G} \chi(t^2).
$$

Clearly $\epsilon(\chi \uparrow^T) = \epsilon(\chi) + \epsilon_{T/G}(\chi)$. Just like the F-S indicator, $\epsilon_{T/G}(\chi) = 0, \pm 1$, for each $\chi \in \text{Irr}(G)$. Moreover $\epsilon_{T/G}(\chi) \neq 0$ if and only if χ is T-conjugate to $\overline{\chi}$.

Lemma 3. Let N be a normal odd order subgroup of G and let $\phi \in \text{Irr}(N)$. Suppose that G^*_{ϕ} does not split over G_{ϕ} . Then there exists $\chi \in \text{Irr}(G \mid \phi)$ such that $\epsilon(\chi) = -1$.

Proof. We first show that there exists $\psi \in \text{Irr}(G \mid \phi)$ such that $\epsilon(\psi) = +1$. For let S be a Sylow 2-subgroup of G. As $\phi \uparrow^G$ vanishes on the 2-singular elements of G, we have $(\phi \uparrow^G) \downarrow_S = \frac{\phi(1)|G|}{|N||S|}$ $\frac{\phi(1)|G|}{|N||S|}\rho_S$, where ρ_S is the regular character of S. Now $\frac{\phi(1)|G|}{|N||S|}$ is an odd integer. So $\langle (\phi \uparrow^G) \downarrow_S, 1_S \rangle$ is odd. Moreover $\phi \uparrow^G$ is a real character of G. So $\langle (\phi \uparrow^G), \psi \rangle = \langle (\phi \uparrow^G), \overline{\chi} \rangle$, for each $\psi \in \text{Irr}(G)$. Pairing each irreducible character of G with its complex conjugate, we see that there exists a real-valued $\psi \in \text{Irr}(G \mid \phi)$ such that $\langle \psi \downarrow_S, 1_S \rangle$ is odd. Then $\epsilon(\psi) = \epsilon(1_S) = +1.$

Following the discussion before the lemma, we may assume that $G = G^*_{\phi}$. So $|G: G_{\phi}|$ = 2. Next suppose that $g \in G$ and $\phi \uparrow^{G_\phi}(g^2) \neq 0$. Write $g = xy = yx$, where x is a 2-element and y is a 2-regular element. Then $g^2 = x^2y^2$. As $\phi \uparrow^{G_\phi}$ vanishes off N, we have $x^2 = 1$ and $y^2 \in N$. So $x \in G_\phi$, as G_ϕ contains all involutions in G. Moreover $y \in N$, as y has odd order. Thus $g \in G_{\phi}$, whence

$$
\epsilon_{G/G_{\phi}}(\phi \uparrow^{G_{\phi}}) = \frac{1}{|G_{\phi}|} \sum_{g \in G \setminus G_{\phi}} \phi \uparrow^{G_{\phi}}(g^2) = 0.
$$

Now $\text{Irr}(G_{\phi} | \phi)$ contains no real characters, as $\phi \neq \overline{\phi}$. So $\epsilon(\phi \uparrow^{G}) = \epsilon_{G/G_{\phi}}(\phi \uparrow^{G_{\phi}})$ + $\epsilon(\phi \uparrow^{G_{\phi}}) = 0$. Equivalently

$$
\sum_{\chi \in \operatorname{Irr}(G)} \langle \phi \uparrow^G, \chi \rangle \epsilon(\chi) = 0.
$$

Together with the fact that $\langle \phi \uparrow^G, \psi \rangle \epsilon(\psi) > 0$, this implies that $\langle \phi \uparrow^G, \chi \rangle \epsilon(\chi) < 0$, for some $\chi \in \text{Irr}(G)$. Thus $\chi \in \text{Irr}(G \mid \phi)$ and $\epsilon(\chi) = -1$, which completes the proof.

It is well-known that each G-invariant irreducible character of a normal subgroup of G extends to G, when the quotient group is cyclic.

Lemma 4. Suppose that N is a normal subgroup of G such that G/N is cyclic and of even order. Let $\varphi \in \text{Irr}(N)$ be real and G-invariant. Then φ has a real extension to G if and only if φ has a real extension to T, where $N \subset T \subseteq G$ and T/N has order 2.

Proof. The 'only if' part is obvious. So assume that φ has a real extension to T. Then both extensions of φ to T are real. Let ω be a generator of the abelian group Irr(G/N) and let χ be any extension of φ to G. Then $\omega^i \chi$, $i \geq 0$ give all extensions of φ to G. Here $\omega^i = \omega^j$ if and only if $i \equiv j \pmod{\left|G/N\right|}$.

As $\overline{\chi}$ lies over φ , we have $\overline{\chi} = \omega^i \chi$, for some $i \geq 0$. Now $\chi \downarrow_T$ is an extension of φ to T and $\overline{\chi}\downarrow_T = (\omega^i\downarrow_T)(\chi\downarrow_T)$. As $\chi\downarrow_T$ is real, it follows that $\omega^i\downarrow_T$ is trivial. So $T \subseteq \text{ker}(\omega^i)$, whence $i \equiv 2j \pmod{|G/N|}$, for some $j \ge 0$. Now $\omega^j \chi = \omega^{i-j} \chi = \omega^j \chi$. So $\omega^j \chi$ is a real extension of φ to G.

Notice that in this context φ has a real extension to T if and only if $\epsilon(\varphi) = \epsilon_{T/N}(\varphi)$. When G/N has even order, but is not cyclic, and φ is a real irreducible character of N which extends to G, it is not clear whether there is a sensible sufficient criteria for φ to have a real extension to G .

Finally we need the following consequence of the first orthogonality relation:

Lemma 5. Let $W \subseteq X \subseteq Y$ be finite abelian groups. Then for $\lambda \in \text{Irr}(Y)$ we have

$$
\sum_{x \in X \setminus W} \lambda(x) = \begin{cases} |X| - |W|, & \text{if } X \subseteq \ker(\lambda). \\ -|W|, & \text{if } W \subseteq \ker(\lambda) \text{ but } X \not\subseteq \ker(\lambda). \\ 0, & \text{if } W \not\subseteq \ker(\lambda). \end{cases}
$$

4. The Brauer tree and its real-stem

From now on G is a finite group, p is an odd prime and B is a real p-block of G which has a cyclic defect group. To avoid trivialities we assume that the defect group is non-trivial.

Dade asserts $[D,$ Theorem 1, Part 2 that each decomposition number in B is either 0 or 1. The Brauer tree of B is a planar graph with edges labelled by the irreducible Brauer character in B and with vertices labelled by the irreducible characters in B (the exceptional characters in B label a single 'exceptional' vertex). The edge labelled by an irreducible Brauer character θ meets the vertex labelled by an irreducible character χ if and only if the decomposition number $d_{\chi,\theta}$ is not 0.

When B is real, complex conjugation acts on the Brauer tree of B , and in particular fixes the exceptional vertex. However, as we have seen in Examples 2,3 and 4 above, B may have no real exceptional characters. So we restate $[F, VII, 9.2]$ in the following more precise fashion:

Lemma 6. The subgraph of the Brauer tree of B consisting of the exceptional vertex and those vertices and edges which correspond to real characters and Brauer characters is a straight line segment.

Feit calls this line segment the real-stem of B. An easy consequence is:

Corollary 7. The number of real non-exceptional characters in B equals the number of real irreducible Brauer characters in B.

Proof. Suppose that B has r real irreducible Brauer characters. Then the real-stem of the Brauer tree has r edges and $r + 1$ vertices. One of these is the exceptional vertex. So B has r real non-exceptional characters. \square

Let θ be a real irreducible p-Brauer character of a finite group G. As p is odd, the G-representation space of θ affords a non-degenerate G-invariant bilinear form which is either symmetric or skew-symmetric. Given the symmetry groups of such forms, we refer to θ as being of orthogonal or symplectic type. Thompson and Willems [\[W,](#page-16-11) 2.8] proved that there is a real irreducible character χ of G such that $d_{\chi,\theta}$ is odd. Moreover θ has orthogonal type if $\epsilon(\chi) = +1$ or symplectic type if $\epsilon(\chi) = -1$. This implies that $\epsilon(\psi) = \epsilon(\chi)$, for all real irreducible characters ψ such that $d_{\psi,\theta}$ is odd.

Proof of part (ii) of Theorem [1.](#page-1-0) Let X and Y be real non-exceptional characters which lie on the same side of the exceptional vertex in the real-stem of B. Then by Lemma [6](#page-6-0) there is a sequence $X = X_0, X_1, \ldots, X_n = Y$ of real non-exceptional characters and a sequence $\theta_1, \ldots, \theta_n$ of real irreducible Brauer characters such that $d_{X_{i-1}, \theta_i} = 1 = d_{X_i, \theta_i}$, for $i = 1, \ldots, n$. The Thompson-Willems result implies that $\epsilon(X_{i-1}) = \epsilon(X_i)$, for $i = 1, \ldots, n$. So $\epsilon(X) = \epsilon(Y)$. This gives part (ii) of Theorem [1.](#page-1-0)

A similar argument gives the following weak form of parts (i) and (iii) of Theorem [1:](#page-1-0)

Lemma 8. If B has a real exceptional character and a real non-exceptional character, then all real irreducible characters in B have the same F-S indicators.

Notice that if B is the principal p-block of a group with a cyclic Sylow p-subgroup, and B has an irreducible character with F-S indicator -1 (e.g. the principal 7-block of $U(3, 3)$) then the lemma implies that B has no real exceptional characters.

5. The exceptional characters

We outline some results from [\[D\]](#page-16-0) using the language of subpairs. See [\[NT,](#page-16-5) Chapter 5.9] for a full description of the theory. We then prove results about the local blocks in B , in Proposition [10,](#page-8-0) and the exceptional characters in B, in Proposition [11.](#page-9-0) This allows us to prove parts (i), (iii) and (iv) of Theorem [1.](#page-1-0)

Recall that B is a p-block with a non-trivial cyclic defect group D. Write $|D| = p^a$, where $a > 0$, and let $1 \subset D_{a-1} \subset D_{a-2} \subset \cdots \subset D_1 \subset D_0 = D$ be the complete list of subgroups of D. So $[D : D_i] = p^i$, for $i = 0, ..., a-1$. Set $C_i = C_G(D_i)$ and $N_i = N_G(D_i)$. So $C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{a-1}$, and $N_0 \subseteq N_1 \subseteq \ldots \subseteq N_{a-1}$.

As p is odd, Aut (D_i) is a cyclic group of order $p^{a-i-1}(p-1)$. So N_i/C_i is a cyclic group whose order divides $p^{a-i-1}(p-1)$. Moroever the centralizer of D_i in $\text{Aut}(D)$ has order p^i . So $C_i \cap N_0/C_0$ is a cyclic p-group. We note that the unique involution in Aut(D) inverts every element of D.

Fix a Sylow B-subpair (D, b_0) . So b_0 is a p-block of C_0 such that $b_0^G = B$ and the pair (D, b_0) is uniquely determined up to G-conjugacy. Set $b_i := b_0^{C_i}$, for $i = 1, ..., a-1$. Then by [\[NT,](#page-16-5) 5.9.3] the lattice of B-subpairs contained in (D, b_0) is

(2)
$$
(1, B) \subset (D_{a-1}, b_{a-1}) \subset \cdots \subset (D_1, b_1) \subset (D, b_0).
$$

Set $E := N(D, b_0)$, the stabilizer of b_0 in N_0 . Then $e := |E : C_0|$ is called the inertial index of B. Now p ℓ , by Brauer's extended first main theorem. So e | (p - 1). Let $x \in E$. Then $D_i^x = D_i$. As (D_i, b_i) , $(D_i, b_i^x) \subseteq (D, b_0)$, it follows from [\(2\)](#page-8-1) that $b_i^x = b_i$. So $EC_i \subseteq N(D_i, b_i)$. Conversely let $n \in N(D_i, b_i)$. As (D, b_0) and $(D, b_0)^n$ are Sylow b_i -subpairs (in the group C_i), there is $c \in C_i$ such that $nc_i \in E$. This shows that $N(D_i, b_i) \subseteq EC_i$. This recovers Dade's observation that $N(D_i, b_i) = EC_i$.

Now $E \cap C_i/C_0$ is a subgroup of $C_i \cap N_0/C_0$ and a quotient of the group E/C_0 . As $C_i \cap N_0/C_0$ is a p-group and E/C_0 has p'-order, we deduce that $E \cap C_i = C_0$. It follows from this $EC_i/C_i \cong E/C_0$, and in particular $|EC_i: C_i| = e$.

By [\[D,](#page-16-0) Theorem 1, Part 1] B has e irreducible Brauer characters, listed as χ_1, \ldots, χ_e . Each b_i has inertial index 1. So b_i has a unique irreducible Brauer character, denoted φ_i .

From the above discussion there are $|N_i : EC_i| = \frac{|N_i: C_i|}{e}$ e^{iC_i} distinct blocks of C_i which induce to B, namely b_i^{τ} as τ ranges over N_i/EC_i . Also there are $\frac{p^{a-i}-p^{a-i-1}}{|N_i:C_i|}$ $\frac{(-p^{\alpha+i-1})}{|N_i:C_i|}$ conjugacy classes of G which contain a generator of D_i . So B has $\frac{p^{a-i}-p^{a-i-1}}{e}$ $e^{\frac{p^{a}}{e}}$ subsections (x, b) , with $D_i = \langle x \rangle$. A consequence of Brauer's second main theorem [\[NT,](#page-16-5) 5.4.13(ii)] is that the number of irreducible characters in a block equals the number of columns in the block.

Lemma 9. A complete set of columns of B is

$$
(1, \chi_1), \ldots, (1, \chi_e), \qquad (x_i^{\sigma_i}, \varphi_i^{n_i}), \quad i = 0, \ldots, a-1.
$$

Here x_i is a fixed generator of D_i , σ_i ranges over a set of representatives for the cosets of the image of N_i/C_i in $Aut(D_{a-i})$ and n_i ranges over a set of representatives for the cosets of EC_i in N_i. In particular $k(B) = e + \frac{p^a-1}{e}$ $\frac{-1}{e}$.

Let Λ be a set of representatives for the $\frac{p^a-1}{q}$ $\frac{e^{-1}}{e}$ orbits of E on Irr $(D)^{\times}$. Then

(3)
$$
\operatorname{Irr}(B) = \{X_1, \ldots, X_e\} \bigcup \{X_\lambda \mid \lambda \in \Lambda\}.
$$

Also set $X_0 := \sum_{\lambda \in \Lambda} X_{\lambda}$. Dade refers to the X_{λ} as the exceptional characters of B.

Notice that as $\ell(b_i) = 1$, b_i is real if and only if φ_i is real. The next two propositions are relatively elementary.

Proposition 10. All the blocks $b_0, b_1, \ldots, b_{a-1}$ are real or none of them are real.

Proof. We have $(b_i^o)^G = B^o = B$. So (D, b_0) and (D, b_o^o) are Sylow *B*-subpairs, and there is $n \in \mathbb{N}_0$ such that $b_0^o = b_0^n$.

Suppose that b_j is real, for some $j = 0, \ldots, a-1$. As $(D_j, b_j^n), (D_j, b_j^o) \subset (D_0, b_0^o)$, it follows from [\(2\)](#page-8-1) that $b_j^n = b_j = b_j$. So $n \in N(D_j, b_j) = EC_j$. Write $n = ec$, where $e \in E$ and $c \in C_j$. Then $c = e^{-1}n \in C_j \cap N_0$ and $b_0^c = b_0^n = b_0^o$. So $c^2 \in C_j \cap E = C_0$. But $C_j \cap N_0/C_0$ has odd order, as it is a p-group. So $c \in C_0$, which shows that $n \in E$. As $b_0^n = b_0$, it follows that b_0 is real.

Now let $i = 0, ..., a - 1$. Then $(D_i, b_i), (D_i, b_i^o) \subset (D_0, b_0) = (D_0, b_0^o)$. So $b_i = b_i^o$, for $i = 0, \ldots, a - 1$, using [\(2\)](#page-8-1). This shows that all b_0, \ldots, b_{a-1} are real.

We showed in [\[M3,](#page-16-12) 1.1] that the number of real irreducible characters in a block equals the number of real columns in the block. Here (x, φ) is real if $x^g = x^{-1}$ and $\varphi^g = \overline{\varphi}$, for some $q \in G$.

Let $i = 0, \ldots, a - 1$. As b_i has inertial index 1, it has |D| irreducible characters. Modifying [\[D,](#page-16-0) p26] we use the notation

(4)
$$
\operatorname{Irr}(b_i) = \{X'_{i,\lambda} \mid \lambda \in \operatorname{Irr}(D)\}.
$$

Here $X'_{i,1}$ is the unique non-exceptional character in b_i , and all characters $X'_{i,\lambda}$ with $\lambda \neq 1$ are exceptional. Suppose that b_i is real. The columns of b_i are (d, φ_i) , for $d \in D$. As C_i acts trivially on the columns, the only real column is $(1, \varphi_i)$. So $X'_{i,1}$ is the only real irreducible character in b_i .

We will refine the next result in part (i) of Theorem [1:](#page-1-0)

Proposition 11. All exceptional characters in B are real or none are real.

Proof. It follows from Corollary [7](#page-6-1) and Lemma [9](#page-8-2) that the number of real exceptional characters in B equals the number of real columns (x, φ) with $x \in D^{\times}$ and $\varphi \in {\rm {IBr}}(C_G(x))$.

Suppose that B has a real exceptional character, and let (x, φ) be a real column of B, with $x \in D^{\times}$. Then $\langle x \rangle = D_i$, for some $i = 0, \ldots, a-1$. As N_i/C_i is abelian, the columns $(x', \varphi_i^{n_i})$ are real, for all generators x' of D_i and all $n_i \in N_i$. In particular (x_i, φ_i) is a real column. Choose $n \in N_i$ such that $x_i^n = x_i^{-1}$ φ_i^{-1} and $\varphi_i^n = \overline{\varphi}_i$. We may suppose that $n^2 \in C_i$.

Suppose first that b_i is real. As $\varphi_i = \overline{\varphi}_i$, n fixes φ_i and inverts D_i . So nC_i is an involution in EC_i/C_i . As $EC_i/C_i \cong E/C_0$, we may assume without loss that nC_0 is an involution in E/C_0 . Now all the blocks b_0, \ldots, b_{a-1} are real. Hence all $\varphi_0, \ldots, \varphi_{a-1}$ are real. As *n* inverts D_j and fixes φ_j , all columns (x_j, φ_j) are real. Thus all columns (x, φ) , with $x \in D^{\times}$, are real. So all exceptional characters in B are real in this case.

Conversely, suppose that b_i is not real. As n_i is the unique involution in N_i/C_i , but $n \notin EC_i$, it follows that $|EC_i : C_i| = e$ is odd. Now (D, b_0) and (D, b_0) are Sylow Bsubpairs, but $b_0 \neq b_0^o$. So there is $m \in N_0 \setminus E$ such that $b_0^m = b_0^o$. As $m^2 \in E$ and $|E : C_0|$ is odd, we may choose m so that $m^2 \in C_0$. Then mC_0 is the unique involution in N_0/C_0 . In particular m inverts every element of D. Let $j = 0, \ldots, a - 1$. Then (D_j, b_j^m) and j (D_j, b_j^o) are B-subpairs contained in (D, b_0^o) . So $b_j^m = b_j^o$ and thus $(d_j, \varphi_j)^m = (d_j^{-1})$ $_j^{-1}, \overline{\varphi}_j$). It follows that all exceptional characters in B are real in this case also.

Examination of the proof shows that:

Corollary 12. All exceptional characters in B are real if and only if b_0 is real and e is even, or b_0 is not real and e is odd.

We need some additional notation. Set $\Lambda_u := {\lambda \in \Lambda \mid \ker(\lambda) = D_u}$, for $u = 1, \ldots, a$. So $|\Lambda_u| = \frac{p^u - p^{u-1}}{e}$ $\frac{p^u}{e}$. Now choose $\lambda \in \Lambda_u$ and set

$$
\epsilon_u := \epsilon(X_\lambda).
$$

Note that X_{λ} and X_{μ} are Galois conjugates, for all $\lambda, \mu \in \Lambda_u$ (this follows from [\[D,](#page-16-0) part 2 of Theorem 1 and Corollary 1.9]). So ϵ_u does not depend on λ .

Recall our notation [\(4\)](#page-9-1) for the irreducible characters $X'_{i,\lambda}$ in b_i . As already noted, $X'_{i,1}$ is the only possible real irreducible character in b_i . We set

$$
\nu_i := \epsilon(X'_{i,1}), \text{ for } i = 0, ..., a-1.
$$

Now let $i = 0, \ldots, a-1$ and choose $x \in D_i - D_{i+1}$ and $\rho \in N_i$. According to [\[D,](#page-16-0) Theorem 1, Part 3 there are signs $\varepsilon'_0, \varepsilon_0, \varepsilon_1, \dots, \varepsilon_e$ and γ_i such that

$$
d_{X_{\lambda},\varphi_i^{\rho}}^{(x)} = \varepsilon_0 \gamma_i \sum_{\tau \in EC_i/C_i} \lambda({}^{\rho \tau} x), \qquad d_{X_j,\varphi_i^{\rho}}^{(x)} = \varepsilon_j \gamma_i, \quad \text{for } j = 1,\ldots,e
$$

$$
d_{X'_{i,\lambda},\varphi_i^{\rho}}^{(x)} = \varepsilon'_0 \gamma_i \lambda({}^{\rho} x), \qquad d_{X'_{i,1},\varphi_i^{\rho}}^{(x)} = 1
$$

Here EC_i/C_i is a set of representatives for the cosets of C_i in EC_i . Note that Feit uses the notation $\delta_0 = -\varepsilon_0$ and $\delta_j = \varepsilon_j$, for $j = 1, \ldots, e$. Now let $i = 0, \ldots, a-1$ and $x \in D_i - D_{i+1}$. Then it follows from [\[D,](#page-16-0) Corollary 1.9] that $X_j(x) = |N_i : EC_i|\varphi_i(1)\delta_j\gamma_i$. So $\delta_j\gamma_i$ is the sign of the integer $X_i(x)$.

There is a nice relationship between the signs $\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_e$ and the Brauer tree of B. Suppose that j and k are adjacent vertices in the Brauer tree. Then $X_i + X_k$ is a principal indecomposable character of G. So it vanishes on D^{\times} , and hence $\delta_j + \delta_k = 0$ (see [\[F,](#page-16-3) V11, Section 9. So suppose that there are d_i edges between the vertex j and the exceptional vertex 0 in the Brauer tree. Then $\delta_j = (-1)^{d_j} \delta_0$. So $\varepsilon_j = (-1)^{d_j-1} \varepsilon_0$, for $j = 1, \ldots, e$.

We now prove part (i) of our main theorem. But note that this proof does not depend on Propositions [10](#page-8-0) and [11:](#page-9-0)

Proof of part (i) of Theorem [1.](#page-1-0) Applying [\(1\)](#page-4-0), with $\rho \in N_i$ and $x \in D_i - D_{i+1}$, we get

$$
\sum_{j=1}^{e} \epsilon(X_j) \varepsilon_j \gamma_i + \sum_{\lambda \in \Lambda} \epsilon(X_{\lambda}) \varepsilon_0 \gamma_i \sum_{\tau \in EC_i/C_i} \lambda(\ell^{\tau} x) = \nu_i.
$$

Now set $\sigma := \varepsilon_0 \sum_{j=1}^e \epsilon(X_j) \varepsilon_j$. So σ is independent of i, ρ and x. Then the above equality transforms to

$$
\sum_{u=1}^{a} \epsilon_u \sum_{\lambda \in \Lambda_u} \sum_{\tau \in EC_i} \lambda(\ell^{\tau} x) = \varepsilon_0 \gamma_i \nu_i - \sigma,
$$

where the right hand side is independent of ρ and x. Let ρ range over a set of representatives for the $\frac{|N_i:C_i|}{e}$ cosets of EC_i in N_i and let x range over a set of representatives for the $p^{a-i}-p^{a-i-1}$ $\frac{N_i-p^{a-i-1}}{|N_i:C_i|}$ orbits of N_i on the generators of D_i . Then $\rho^{\tau}x$ will range over all generators of D_i . Summing the resulting equalities gives

$$
\sum_{u=1}^{a} \epsilon_u \sum_{\lambda \in \Lambda_u} \sum_{x \in D_i - D_{i+1}} \lambda(x) = \left(\frac{p^{a-i} - p^{a-i-1}}{e}\right) \left(\varepsilon_0 \gamma_i \nu_i - \sigma\right).
$$

We use $|\Lambda_u| = \frac{p^u - p^{u-1}}{e}$ $\frac{p^a}{e}$ and Lemma [5](#page-6-2) to transform this equality to

$$
(p^{a-i} - p^{a-i-1}) \sum_{u=1}^i \frac{p^u - p^{u-1}}{e} \epsilon_u - p^{a-i-1} \frac{p^{i+1} - p^i}{e} \epsilon_{i+1} = \frac{p^{a-i} - p^{a-i-1}}{e} (\epsilon_0 \gamma_i \nu_i - \sigma).
$$

After cancelling the factor $\frac{p^{a-i-1}(p-1)}{e}$ $\frac{P(p-1)}{e}$, we get

(5)
$$
\sum_{u=1}^{i} (p^u - p^{u-1})\epsilon_u - p^i \epsilon_{i+1} = \epsilon_0 \gamma_i \nu_i - \sigma.
$$

Here $\sum_{u=1}^{0} (p^u - p^{u-1}) \epsilon_u$ is taken to be 0, when $i = 0$. We write down the equalities [\(5\)](#page-11-0) for $i = 0, 1, 2, \ldots$ in turn:

$$
-\epsilon_1 = \varepsilon_0 \gamma_0 \nu_0 - \sigma
$$

\n
$$
(p-1)\epsilon_1 - p\epsilon_2 = \varepsilon_0 \gamma_1 \nu_1 - \sigma
$$

\n
$$
(p-1)\epsilon_1 + (p^2 - p)\epsilon_2 - p^2 \epsilon_3 = \varepsilon_0 \gamma_2 \nu_2 - \sigma
$$

\n(6)
\n
$$
(p-1)\epsilon_1 + (p^2 - p)\epsilon_2 + (p^3 - p^2)\epsilon_3 - p^3 \epsilon_4 = \varepsilon_0 \gamma_3 \nu_3 - \sigma
$$

\n
$$
\vdots
$$

$$
(p-1)\epsilon_1 + (p^2 - p)\epsilon_2 + \dots + (p^{a-1} - p^{a-2})\epsilon_{a-1} - p^{a-1}\epsilon_a = \epsilon_0 \gamma_{a-1} \nu_{a-1} - \sigma
$$

Subtract the first equality from the second to get

$$
p(\epsilon_1 - \epsilon_2) = \varepsilon_0(\gamma_1 \nu_1 - \gamma_0 \nu_0).
$$

The left hand side equals $-p$, 0 or p and the right hand equals -2 , 0 or 2. As p is odd, the common value is 0. So $\epsilon_2 = \epsilon_1$ and $\gamma_1 \nu_1 = \gamma_0 \nu_0$. Substitute these values back into all equations in [\(6\)](#page-11-1). Now subtract the first from the third equality to get

$$
p^2(\epsilon_1 - \epsilon_3) = \varepsilon_0(\gamma_2 \nu_2 - \gamma_0 \nu_0).
$$

Once again both sides are 0. So $\gamma_2 \nu_2 = \gamma_0 \nu_0$ and $\epsilon_3 = \epsilon_1$. Proceeding in this way, we get

$$
\epsilon_1 = \epsilon_2 = \cdots = \epsilon_a, \quad \gamma_0 \nu_0 = \gamma_1 \nu_1 = \cdots = \gamma_{a-1} \nu_{a-1}.
$$

 \Box

Following the above proof, and the discussion before the proof, we obtain:

Corollary 13. Suppose that b_0 is real and let $D = \langle x \rangle$. Then for each $i = 0, \ldots, a - 1$ and $j = 0, \ldots, e$, the integer $X_j(x^{p^i})X_j(x)$ has sign $\epsilon(X'_{i,1})\epsilon(X'_{0,1})$.

There is no apparent relationship between the F-S indicators ν_0, \ldots, ν_{a-1} :

Example: The 2-nilpotent group $G = \langle a, b, c \mid a^4, a^2 = b^2, a^b = a^{-1}, c^9, a^c = b, b^c = ab \rangle$ has isomorphism type 3. SL(2, 3). Set $D = \langle c \rangle$. Then D is cyclic of order 9, with C_0 = $D \times \langle a^2 \rangle$ and $C_1 = G$. Let θ be the non-trivial irreducible character of C_0/D , and let b_0 be the 3-block of C_0 which contains θ . Then $\theta = X'_{0,1}$ is the unique non-exceptional character

in b_0 . So $\nu_0 = \epsilon(X'_{0,1}) = +1$. Set $b_1 = b_0^G$. Then b_1 also has a unique non-exceptional character $X'_{1,1}$. But now $\nu_1 = \epsilon(X'_{1,1}) = -1$, as $X'_{1,1}$ restricts to the non-linear irreducible character of $\langle a, b \rangle \cong Q_8$.

This example arises from the fact that the Glauberman correspondence [\[NT,](#page-16-5) 5.12] does not preserve the F-S indicators of characters.

proof of part *(iii)* of Theorem [1.](#page-1-0) This is an immediate consequence of Lemma [8](#page-7-0) and part (i) of Theorem [1.](#page-1-0)

Consider the real-stem of B as a horizontal line segment with s vertices and $s-1$ edges, where $s \geq 1$. We label the vertices using an interval $[-\ell, \ldots, -2, -1, 0, 1, 2, \ldots, r]$ so that 0 labels the exceptional vertex. Thus $s = r + \ell + 1$, and there are ℓ real non-exceptional characters on the left of the exceptional vertex, and r on the right (the choice of left and right is unimportant).

As above, X_0 is the sum of the exceptional characters in B. Now we relabel the nonexceptional characters in B so that X_i is the real non-exceptional character corresponding to vertex i, for $i = -\ell, \ldots, r$ and $i \neq 0$. In view of parts (i) and (ii) of Theorem [1](#page-1-0) there are signs ϵ_{\pm} such that

$$
\epsilon(X_i) = \begin{cases} \epsilon_{-}, & \text{for } i = -\ell, \dots, -1. \\ \epsilon_0, & \text{for } i = 0. \\ \epsilon_{+}, & \text{for } i = 1, \dots, r. \end{cases}
$$

Next let σ be a generator of D. It follows from [\[D,](#page-16-0) Corollary 1.9] that $X_0(\sigma)$ = $-\varepsilon_0\gamma_0|N_0: E[\varphi_0(1)]$. So $X_i(\sigma) = (-1)^i X_0(\sigma)$, as $X_i + X_{i+1}$ is a projective character of G, for $i = -\ell, \ldots, r - 1$ (see [\[F,](#page-16-3) VII,2.19(ii)]).

Recall from Section [\(5\)](#page-7-1) that there are $|N_0: E|$ blocks of C_0 which induce to B; these are the blocks b_0^{τ} , where τ ranges over N_0/E . We note also that $X'_{0,1}({}^{\tau}\sigma) = \varphi_0(1)$. Now [\[B,](#page-16-9) Theorem(4B)] is an immediate consequence of [\[B,](#page-16-9) Theorem(4A)]. In our context, this states that

$$
\sum_{i=-\ell}^{r} \epsilon(X_i) X_i(\sigma) = |N_0 : E | \epsilon(X'_{0,1}) X'_{0,1}(\sigma).
$$

In view of the previous paragraph this simplifies to

(7)
$$
\sum_{i=1}^{\ell} (-1)^{i} \epsilon_{-} + \epsilon_{0} + \sum_{i=1}^{r} (-1)^{i} \epsilon_{+} = -\varepsilon_{0} \gamma_{0} \nu_{0}.
$$

We consider a number of cases.

Suppose first that $\epsilon_0 \neq 0$. Then $\epsilon_-\ = \epsilon_0 = \epsilon_+$, by part (iii) of Theorem [1.](#page-1-0) So [\(7\)](#page-12-0) becomes

(8)
$$
-\varepsilon_0 \gamma_0 \nu_0 \epsilon_0 = \begin{cases} (-1)^{\ell}, & \text{if } s \text{ is odd.} \\ 0, & \text{if } s \text{ is even.} \end{cases}
$$

In particular b_0 is not real if s is even. As e is odd when s is even, this already follows from Corollary [12.](#page-9-2)

Suppose then that $\epsilon_0 = 0$. Now [\(7\)](#page-12-0) evaluates as

(9)
$$
-\varepsilon_0\gamma_0\nu_0 = \begin{cases} \epsilon_-, & \text{if } \ell \text{ is odd and } r \text{ is even.} \\ \epsilon_- + \epsilon_+, & \text{if } \ell \text{ and } r \text{ are both odd.} \\ \epsilon_+, & \text{if } \ell \text{ is even and } r \text{ is odd.} \\ 0, & \text{if } \ell \text{ and } r \text{ are both even.} \end{cases}
$$

proof of part (iv) of Theorem [1.](#page-1-0) The hypothesis is that $\epsilon_0 = 0$, at least one of ϵ_-, ϵ_+ is not zero and $\ell \equiv r \equiv 1 \pmod{2}$. Now B has e non-exceptional characters, of which $\ell + r$ are real-valued. So $e \equiv \ell + r$ is even. Then b_0 is not real, according to Corollary [12.](#page-9-2) This in turn implies that $\nu_0 = 0$. So $\epsilon_- + \epsilon_+ = 0$, according to [\(9\)](#page-13-1). We conclude that $\epsilon_-\epsilon_+ = -1$, which gives the conclusion of (iv).

6. PASSING FROM B to its canonical character

Let $i = 0, \ldots, a - 1$. Then N_i contains the normalizer N_0 of D in G. So by Brauer's first main theorem there is a unique p-block B_i of N_i such that $B_i^G = B$. As $(B_i^o)^G =$ $B^o = B$, the uniqueness forces $B_i^o = B_i$. Now B_i has defect group D and inertial index $e = |EC_i : C_i|$. So $\ell(B_{a-1}) = e$ and $k(B_{a-1}) = e + \frac{p^a - 1}{e}$ $\frac{-1}{e}$. We first consider the block B_{a-1} of the largest subgroup N_{a-1} . Following [\[D,](#page-16-0) Section 7], write

$$
IBr(B_{a-1}) = {\tilde{\chi}_1, \ldots, \tilde{\chi}_e}, \quad \operatorname{Irr}(B_{a-1}) = {\tilde{X}_1, \ldots, \tilde{X}_e} \bigcup {\tilde{\chi}_\lambda \mid \lambda \in \Lambda},
$$

and set $\tilde{X}_0 = \sum \tilde{X}_{\lambda}$.

Proposition 14. The exceptional characters in B and B_{a-1} have the same F-S indicators.

Proof. Suppose first that $|\Lambda| \geq 2$. According [\[D,](#page-16-0) (7.2)] there is a sign d such that

 $(\tilde{X}_{\lambda} - \tilde{X}_{\mu})^G = d(X_{\lambda} - X_{\mu}), \text{ for all } \lambda, \mu \in \Lambda.$

It follows that $\langle \tilde{X}_{\lambda}, X_{\lambda} \rangle$ or $\langle \tilde{X}_{\mu}, X_{\lambda} \rangle$ is odd. So in view of part (i) of Theorem [1,](#page-1-0) the conclusion holds in this case.

From now on we suppose that Λ = 1. Then E has a single orbit on $\text{Irr}(D)^\times$, which forces $|D| = p$ and $e = p - 1$. As \tilde{X}_0 is the unique exceptional character in B_{a-1} , it is real valued. Then it follows from part (iii) of Theorem [1](#page-1-0) that all real irreducible characters in B_{a-1} have the same F-S indicators.

Now by [\[D,](#page-16-0) (7.3), (7.8), first two paragraphs of p40], there is a sign ε'_0 such that

$$
(\tilde{X}_0 - \sum_{i=1}^{p-1} \tilde{X}_i)^G = \varepsilon'_0 \sum_{i=0}^{p-1} \varepsilon_i X_i.
$$

Here $\varepsilon_0, \ldots, \varepsilon_{p-1}$ are as introduced earlier and X_0 can be chosen to be real, as p is odd. Taking inner-products of characters, and reading modulo 2, we see that $\langle \tilde{X}_i^G, X_0 \rangle$ is odd, for some real \tilde{X}_i . So $\epsilon(\tilde{X}_i) = \epsilon(X_0)$. Then by the previous paragraph $\epsilon(\tilde{X}_0) = \epsilon(X_0)$. \Box

Proposition 15. All exceptional characters in B_0, \ldots, B_{a-1} and B have the same F-S indicators.

Proof. We prove this by induction on |D|. The base case $|D| = p$ holds, by Proposition [14.](#page-13-2) Suppose that $|D| > p$. We assume that the conclusion holds for all p-blocks with a cyclic defect group of order strictly less than $|D|$.

We use the bar notation for subgroups and objects associated with the quotient group N_{a-1}/D_{a-1} . Let $i = 0, \ldots, a-1$. Then N_i is the normalizer of D_i in N_{a-1} . As C_i centralizes D_{a-1} , Theorem 5.8.11 of [\[NT\]](#page-16-5) shows that b_i dominates a unique block b_i of C_i . Moreover b_i has cyclic defect group D. Now b_i has the unique irreducible Brauer character φ_i , and we can and do identify φ_i with the unique irreducible Brauer character in b_i . Then the inertia group of b_i in N_i is the inertia group of φ_i in N_i , which is EC_i .

According to [\[D,](#page-16-0) Section 4], there is a unique p-block of N_i , denoted here by B_i , which lies over b_i . Moreover B_i has cyclic defect group D. As inflation and induction of characters commute, this block is dominated by B_i . Now B_i and B_i have the same inertial index as $|EC_i: C_i| = |EC_i: C_i|$. So by inflation $IBr(B_i) = IBr(B_i)$. In particular B_i is the unique block of N_i that is dominated by B_i . Also by inflation $\text{Irr}(B_i) \subseteq \text{Irr}(B_i)$.

As $|\overline{D}| < |D|$, all exceptional characters in $\overline{B}_0, \ldots, \overline{B}_{a-1}$ have the same F-S indicators, by our inductive hypothesis. But the inclusion $\text{Irr}(\overline{B_i}) \subseteq \text{Irr}(B_i)$ identifies the exceptional characters in B_i with exceptional characters in B_i . It now follows from part (i) of Theorem [1](#page-1-0) that all exceptional characters in B_0, \ldots, B_{a-1} have the same F-S indicators. \Box

Recall that b_0 has a unique irreducible Brauer character φ_0 . This is the canonical character of B , in the sense of [\[NT,](#page-16-5) 5.8.3]. For the next theorem, we simplify the notation of [\(4\)](#page-9-1) for the irreducible characters in b_0 by writing χ_{λ} in place of $X'_{0,\lambda}$, for all $\lambda \in \text{Irr}(D)$. Then according to W. Reynolds [\[NT,](#page-16-5) 5.8.14], for $c \in C_0$ we have

(10)
$$
\chi_{\lambda}(c) = \begin{cases} \lambda(c_p)\varphi_0(c'_p), & \text{if } c_p \in D. \\ 0, & \text{if } c_p \notin D. \end{cases}
$$

Then Irr(b_0) = { χ_{λ} | $\lambda \in \text{Irr}(D)$ }. Notice that χ_1 is the unique irreducible character in b_0 whose kernel contains D.

Theorem 16. Suppose that B has a real exceptional character. Then N_0/C_0 has a unique subgroup T/C_0 of order 2, and all exceptional characters in B have F-S indicator equal to the Gow indicator $\epsilon_{T/C_0}(\chi_1)$.

Proof. Recall that B has a real exceptional character if b_0 is real and e is even, or if b_0 is not real and e is odd. In both these cases $|N_0 : C_0|$ is even. As N_0/C_0 is also cyclic, it has a unique subgroup T/C_0 of order 2.

In view of Proposition [15,](#page-13-0) we may assume that $G = N_0$. So $B = B_0$, D and C_0 are normal subgroups of G and E is the stabilizer of b_0 in G. Then Λ is a set of representatives for the orbits of N_0 on $\text{Irr}(D)^\times$. Set E^* as the stabilizer of $\{b_0, b_0^o\}$ in G. Clifford correspondence defines a bijection between the irreducible characters of E^* which lie over b_0 and the irreducible characters in B. This bijection preserves reality, and hence F-S indicators. So from now on we assume that $G = E^*$.

As χ_1 is invariant in E and E/C_0 is cyclic, χ_1 has e extensions to E, which we denote by η_1, \ldots, η_e . Then $X_i := \eta_i^G$, for $i = 1, \ldots, e$, give the e non-exceptional characters in B. Moreover $X_{\lambda} := \chi_{\lambda}^G$, for all $\lambda \in \Lambda$, give the exceptional characters in B.

Following Corollary [12,](#page-9-2) there are three cases we must consider:

Case 1: b_0 is real, e is even and B has real non-exceptional characters. Then according to part (iii) of Theorem [1](#page-1-0) all real irreducible characters in B have the same F-S indicators. We choose notation so that X_1 is real. As $X_1\downarrow_T$ is a real extension of χ_1 to T, it follows that $\epsilon(X_1) = \epsilon(X_1 \downarrow_T) = \epsilon_{T/C_0}(X_1)$. This concludes Case 1.

Case 2: b_0 is real, e is even but B has no real non-exceptional characters. As χ_1 does not extend to a real character of E , it does not extend to a real character of T , according to Lemma [4.](#page-5-0) So $\epsilon_{T/C_0}(\chi_1) = -\epsilon(\chi_1)$, by the definition of the Gow indicator.

Now consider the notation used in the proof of part (i) of Theorem [1.](#page-1-0) Here $C_i = C_0$ and $\varphi_i = \varphi_0$ and $X'_{i,1} = \chi_1$, for $i = 0, \ldots, a-1$. If $\lambda \in \Lambda$ then $(X_{\lambda})\downarrow_{C_0} = \sum_{\tau \in G/C_0} \chi_{\lambda^{\tau}}$. So $d_{X_{\lambda},\varphi_i}^{(x)} = \sum_{\tau \in G/C_0} \lambda(\tau x)$, for all $x \in D^{\times}$. This means that $\varepsilon_0 \gamma_i = 1$, for $i = 0, \ldots, a-1$. Now in [\(6\)](#page-11-1), the term σ is 0, as none of X_1, \ldots, X_e are real. So the first equation in (6) simplifies here to $-\epsilon(X_\lambda) = \epsilon(X_1)$, for all $\lambda \in \Lambda_1$. So $\epsilon(X_\lambda) = \epsilon_{T/C_0}(X_1)$, for all $\lambda \in \Lambda$, by the previous paragraph and Proposition [15.](#page-13-0)

Case 3: The final case is that b_0 is not real and e is odd. As B has an odd number e of non-exceptional characters, at least one of them must be real valued. So we assume that X_1 is real. Then, just as in Case 1, all real irreducible characters in B have the same F-S indicators.

As $|E: C_0|$ is odd and $|G: E| = 2$, we have $G/C_0 = E/C_0 \times T/C_0$. Now T/C_0 conjugates Irr(b₀) into Irr(b^o₀). So χ_1 is T-conjugate to $\overline{\chi}_1$. In particular $\chi_1 \uparrow^T$ is irreducible and real valued. Now $X_1 = (\eta_1) \uparrow^G$ and $(\eta_1) \downarrow_{C_0} = \chi_1$. So $(X_1) \downarrow_T = (\chi_1) \uparrow^T$, by Mackey's theorem.

Now from above $\epsilon(X_{\lambda}) = \epsilon(X_1)$, for all $\lambda \in \Lambda$. Also $\epsilon(X_1) = \epsilon((X_1)\downarrow_T)$, as both are real valued. Finally $\epsilon((X_1)\downarrow_T) = \epsilon_{T/C_0}(\chi_1)$, by the definition. This completes Case 3. \Box

Finally, we prove the application to ordinary characters as stated in the Introduction:

Proof of Theorem [2.](#page-1-1) Let x be a weakly real p-element of G of maximal order and set $Q := \langle x \rangle$ and $N := N_G(Q)$. Let λ be a faithful linear character of Q. Then $N_\lambda = C_N(x)$ and $N^*_{\lambda} = C^*_{N}(x)$. So N^*_{λ} does not split over N_{λ} . By Lemma [3](#page-5-1) there exists $\chi \in \text{Irr}(N | \lambda)$ such that $\epsilon(\chi) = -1$.

Let \tilde{B} be the p-block of N which contains χ and let D be a defect group of \tilde{B} . Then $Q \subseteq D$ and $N_G(D) \subseteq N$. In particular $B := \tilde{B}^G$ is defined and B has defect group D. So $Q = D_i$, $N = N_i$ and $\tilde{B} = B_i$ for some $i \geq 0$, in cyclic defect group notation.

Notice that λ is non-trivial. So $D \not\subseteq \text{ker}(\chi)$. This means that χ is an exceptional character in B_i . So all exceptional characters in B_i , and hence also in B, are symplectic. The number of exceptional characters in B is $\frac{|D|-1}{e}$, where e is the inertial index of B. The number of weakly real p-conjugacy classes of G is equal to the number of N-orbits on Q^{\times} , which equals $\frac{|D_i|-1}{|N_i:C_i|}$. As $|D_i| \leq |D|$ and $e \leq |N_i:C_i|$, we conclude that the

number of symplectic irreducible characters of G is not less than the number of weakly real *p*-conjugacy classes of G. \Box

7. Acknowledgement

H. Blau and D. Craven alerted us to examples of real p-blocks which do not have a real irreducible character. We thank G. Navarro for permission to include his example. We had a number of interesting discussions with R. Gow on F-S indicators.

REFERENCES

- [Al] J. L. Alperin Weights for Finite Groups, Proc. Symp. Pure Math. 47 (1987) 369–379.
- [A] J. H. Conway, R. T. Curtis et al. ATLAS of finite groups: maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985.
- [B] R. Brauer, Some applications of the theory of blocks of characters of finite groups III, J. Algebra 3 (1966) 225–255.
- [F] W. Feit, The representation theory of finite groups, North-Holland Math. Library 25, 1982.
- [D] E. C. Dade, Blocks with cyclic defect groups, Ann. Math. 84 (1966) 20–48.
- [GAP] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.8; 2017, (https://www.gap-system.org).
- [G] R. Gow, Real valued and 2-rational group characters, J. Algebra 61 (1979) 388–413.
- $|Gr|$ J. A. Green, Walking around the Brauer Tree, J. Austral. Math. Soc. 17 (1974) 197–213.
- [M1] J. Murray, Strongly real 2-blocks and the Frobenius-Schur indicator, Osaka J. Math. 43 (1) (2006) 201–213.
- [M2] J. Murray, Components of the involution module in blocks with a cyclic or Klein-four defect group J. Group Theory 11 (1) (2008) 43–62.
- [M3] J. Murray, Real subpairs and Frobenius-Schur indicators of characters in 2-blocks, J. Algebra 322 (2) (2009) 489–513.
- [NT] H. Nagao, Y. Tsushima, Representations of finite groups, Academic Press, 1987.
- [W] W. Willems, Duality and forms in representation theory, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., 95, Birkhuser, Basel, 1991, 509–520.

Department of Mathematics and Statistics, National University of Ireland Maynooth, IRELAND

E-mail address: John.Murray@maths.nuim.ie