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Abstract

Well established in criminological scholarship is the way that crime is neither spatially nor tem-

porally uniformly distributed. Rather crime is distributed in a manner that means it is both

particular places and particular times that are subject to the majority of crime events.

Furthermore, we know that crime varies over the course of a day and week, with periods of

time the same place can function as a crime generator, a crime attractor or as a crime detractor.

What is less evident is the way in which some places ‘flip’ from a largely crime free space to one

that provides the necessary preconditions for crime to occur. In this paper we focus on com-

mercial precincts as the context, given their functional importance in our daily lives; providing

places of employment, recreation and a locus for social encounters. By spatially integrating crime

incident data and census information and employing circular, clustering and spline regression

techniques we examine the intensity, tempo and timing of crime in these locales and generate

a temporal typology for 2286 commercial precincts across Queensland, Australia.
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Introduction

Our urban world is comprised of a mosaic of places. Each place has its own intrinsic daily
rhythm shaped by population flows (Felson and Boivin, 2015). Population dynamics at
places are governed by its form and function along with its location and connection to
other features of the urban environment (Lefebvre, 1991). Some places are subject to high
population flows throughout the day as individuals enter and exit to fulfil daily routine
activities. Other areas, especially those that are largely residential, experience far less daily
population flow and may be left largely unpopulated during work/school hours. Daily
population flows influence opportunities for crime by facilitating and/or impeding the co-
presence or indeed absence of offenders, targets and guardians (Cohen and Felson, 1979;
Sutherland and Cressey, 1978).

In the last 30 years we have established a relatively robust understanding of the spatial
patterns of crime and place-based risk. According to routine activity theory (RAT) and
associated theories, time and space are ‘partners in crime’ so to speak. That is, RAT pur-
ports that criminogenic situations arise when a motivated offender and suitable target come
together in time and space in the absence of effective guardianship (Cohen and Felson,
1979). This scholarship has identified places and facilities that tend to experience higher
levels of crime, such places are referred to as ‘hotspots’, ‘generators’, ‘attractors’ and ‘risky
facilities’ (Brantingham and Brantingham, 1993; Weisburd et al., 2004). Notable risky facil-
ities include bars (Bernasco and Block, 2011; Groff and Lockwood, 2014; Peterson et al.,
2000; Roncek and Maier, 1991), schools (Roncek, 2000), greenspaces (Kimpton et al., 2017),
commercial areas (Browning et al., 2010; LaGrange, 1999; Taylor et al., 1995) and
transit stations (Block and Block, 2000; Block and Davis, 1996; Hart and Miethe, 2015;
Irvin-Erickson and La Vigne, 2015).

A smaller body of research reports the temporal rhythms of crime. Historically, time
series methods have been applied to explore longitudinal crime trends at larger spatial units.
Results demonstrate that annual crime trends exhibit seasonal fluctuations coinciding with
regular activities associated with cooler and warmer months of the year (Andresen and
Malleson, 2013; Field, 1992; Hipp et al., 2004; McDowall et al., 2012; Uittenbogaard
and Ceccato, 2012). Crime events also peak on particular days of the week
(Andresen and Malleson, 2015; Haberman et al., 2017; Tompson and Bowers, 2015;
Townsley, 2008). Scholars suggest there is a tendency for crime to occur on days and at
times when obligatory activities (e.g. school, employment) are limited and individuals have a
greater amount of discretionary time (Quick et al., 2017; Tompson and Bowers, 2015). As
yet, these assertions have not been tested empirically.

Certainly, we know that legitimate activities at places follow daily temporal patterns,
largely reflecting official opening and closing times. Recent work has sought to delve into the
nuances of crime temporality at facilities by exploring the distribution of events across
segments of the day (Bernasco et al., 2017; Ceccato and Uittenbogaard, 2014; Herrmann,
2015; also see Andresen and Malleson, 2015; Ceccato, 2005; Grubesic and Mack, 2008). For
example, Ceccato and Uittenbogaard (2014) identify temporal patterns of crime in
Stockholm underground stations noting events peak during the late afternoon and evening
‘rush hour’ when people are travelling home from work or performing unstructured activ-
ities (Ceccato and Uittenbogaard, 2014). Yet, even within groups of risky facilities there is a
great deal of variation in the timing of legitimate activities that determine population flows
and, we suggest, also in the temporality of crime opportunities. For example, while some
underground stations will experience very high levels of crime in the evening others will not.
Indeed, Eck et al. (2007) propose that crime in a specific geographic area will be highly
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concentrated within a small number of risky facilities while most will experience little or

even no crime (Eck et al., 2007).
The aim of this paper is to extend recent studies of temporal variations in crime at places

by focusing on one particular group of risky facilities, commercial precincts, and developing

a new method capable of delineating a typology based on daily and weekly crime dynamics.

We expect this will be dependent on the mix of facilities in the precinct: the legitimate

activities the facilities support and their hours of operation as well as broader environmental

features of the area and user characteristics. We focus on commercial precincts because they

are common across the study site (providing an adequate n for analysis) and exhibit het-

erogeneity in characteristics expected to influence population flows and the temporal distri-

bution of crime (e.g. size, operating hours, legitimate activities hosted at the site and

accessibility) (Brantingham and Brantingham, 1998; Ratcliffe, 2004).
To achieve our aim we draw on 12 months of disaggregate crime incident data and census

information to identify 2286 commercial precincts in Queensland, Australia before exam-

ining the intensity, tempo and timing of drug, property, nuisance and violent crime across

these locations. We employ an innovative combination of clustering and circular regression

techniques to distinguish different typologies of commercial precincts based on their tem-

poral crime dynamics for specific offence categories.
There are a number of benefits associated with establishing a temporal typography for

risky facilities: this approach attends to heterogeneity within groups of risky facilities,

acknowledges Pareto’s Law of concentration (aka 80–20 rule; Eck et al., 2007; Weisburd

et al., 2004) and avoids examining facilities at the individual level, an approach that can

limit the generalisability and the practical utility of findings. We contend that the typology

has utility in its ability to reveal temporal commonalties that can be used to inform the

design and deployment of place-based crime prevention. Assessing risk and developing

prevention protocols for individual facilities is both time and resource intensive.

Developing a typology to identify common patterns and assign individual facilities to a

particular sub-group reduces this burden.

Background literature

Scholarly interest in spatial and temporal patterns of crime is not new. Over the last decades

criminology has developed a vast theoretical and empirical literature addressing the uneven

distribution of crime across place (Bernasco and Block, 2011; Browning et al., 2010;

Bruinsma and Johnson, 2018; Kinney et al., 2008; Stucky and Ottensmann, 2009). First

introduced in the context of rapid social changes stemming from the Second World War,

RAT aimed to explain changes in crime at the national level (Cohen and Felson, 1979).

RAT explains the uneven distribution of crime events as a function of the intersection

between daily routines and the social and physical environment (Cohen and Felson,

1979). When considered at the aggregate level, the way in which individuals move through

space while carrying out their daily schedule has implications for crime. Specifically, RAT

proposes that opportunities for crime arise when overlapping activity spaces bring potential

offenders and targets together in the absence of effective guardianship (Cohen and Felson,

1979). Particular social and physical environments facilitate or indeed impede the coales-

cence of these elements. The regularity of daily routines and familiarity with places and

situations at the meso (neighbourhood) and micro (individual facility) levels are therefore

linked to the propensity for potential offenders to recognise and act on crime opportunities

(Brantingham and Brantingham, 1993, 1995).
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Risky facilities

Risky facilities, also referred to as crime generators and crime attracters, are places that have
a heightened propensity for crime (Eck et al., 2007). Heightened risk at these places is related
to their functional purpose which may generate busyness (Wilcox et al., 2004) and/or attract
would be offenders by providing easy access to targets (Bernasco and Block, 2011;
Brantingham and Brantingham, 1993, 1995; McCord and Ratcliffe, 2009; Taylor et al.,
1995; Wuschke and Kinney, 2018). Facilities associated with higher risk of crime include
a range of commercial entities such as bars (Bernasco and Block, 2011; Groff and
Lockwood, 2014; Peterson et al., 2000; Roncek and Maier, 1991), retail outlets, payday
lenders and restaurants (Bernasco et al., 2017; Gordon and Brill, 1996; Kubrin and Hipp,
2016; Smith et al., 2000; Steenbeek et al., 2012).

As common activity nodes, commercial precincts form part of the legitimate awareness
space of many people (Wuschke and Kinney, 2018). Common nodes that facilitate the
convergence of individual activity spaces are associated with heightened crime risk.
However, not all commercial precincts generate equal opportunities for crime, meaning
crime risk varies within this group of facilities. Eck et al. (2007) demonstrate the relevance
of the 80–20 rule when considering risky facilities of a similar type. The 80–20 rule, also
referred to as Pareto’s Law or the J-curve, purports the tendency for the majority of crime to
occur at a small proportion of facilities. This pattern of concentration is also evident in the
distribution of victimisation and offending among victims and offenders, respectively
(Eck et al., 2007; Herrmann, 2015; Wuschke and Kinney, 2018).

Taking the concept of crime concentration a step further, intra-facility temporal variance
in opportunities for crime also exist. Even at spatial crime hotspots, it is unlikely that
opportunities for crime are equal across all days of the week and times of the day
(Andresen and Malleson, 2015; Haberman et al., 2017; Tompson and Bowers, 2015).
Temporal concentrations of crime events at places coincide with place-based regularities
in human behaviour that influence co-presence. Largely, these regularities are governed by
biological necessities (e.g. sleep, eating), social norms, the legitimate functions of a facility
and whether hosted activities are obligatory or discretionary (Bernasco et al., 2017;
H€agerstraand, 1970; Quick et al., 2017; Ratcliffe, 2006; Tompson and Bowers, 2015).
Temporal patterns of crime at individual facilities will also vary depending on the type of
crime considered (Andresen and Malleson, 2013). For example, theft at commercial pre-
cincts would likely cluster during business opening hours, especially in the case of retail
outlets. In practical terms, potential offenders have much easier access to targets when a
store is open compared to when a store is closed, locked and security systems are engaged.
However, opportunities for violence or interpersonal crimes may be greater when businesses
are closed and there are fewer legitimate users accessing the area to act as guardians. Thus,
some facilities are part of a crime hotspot during business hours but comprise a cold spot
during other times of the day. While these facilities are part of a spatio-temporal ‘hotspot’
they are not ‘hot dots’; hot dots are micro-locations that experience a stable pattern of
concentrated crime over time (Ignatans and Pease, 2018; Pease et al., 2018). Interest in
identifying people and places that comprise the ‘vital few’ hot dots consistently contributing
to hotspots over time is emerging in the policing field as a way to maximise the precision of
targeted crime interventions (Ignatans and Pease, 2018).

While empirical evidence elucidating the spatiality of crime has grown steadily over the
last decades, it is only very recently that scholars have turned their attention to examining
the temporal nuances of crime and offending at particular locations. The majority of this
work has established support for the routine activities explanation for spatial–temporal
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variations in crime, reporting that patterns of crime coincide with behavioural regularities
and reflect patterns of legitimate use. Andresen and Malleson (2013, 2015) employ a spatial
point pattern test to assess seasonal and daily patterns of crime in Canadian neighbour-
hoods. They demonstrated that the spatial patterns of crime across census tracts and dis-
semination areas varied by day of the week. Examining temporal trends in robbery at a
smaller spatial unit – the street block – Haberman et al. (2017) also found daily fluctuations
in spatial patterns of offences across the city of Philadelphia. While some street segments
experienced consistently high levels of robbery, others exhibited peaks in robbery at partic-
ular times of the day and days of the week resulting in temporal shifts in spatial patterns of
robbery at the larger spatial scale.

Focusing on temporal crime patterns at a particular group of facilities, Ceccato and
Uittenbogaard (2014) examined temporal patterns of crime in Stockholm’s underground
transit system at three temporal units: season of the year, day of the week and hour of the
day. Counter to their expectations that crime would peak during summer, crime events were
highest during the winter months. This may be related to greater crowd density on stations
when individuals are seeking protection from the weather in cooler months. There was also
evidence that crime was higher on weekends than weekdays and, in particular, between the
hours of 4 pm and midnight when stations are experiencing peak periods of legitimate use.
Quick et al. (2017) report similar findings. They examined seasonal variations in the rela-
tionship between land use and property crime across six groups of risky facilities. Property
offences at parks consistently peaked during summer/spring while offences at transit sta-
tions and eating and drinking establishments were highest in winter and autumn. There was
no evidence of seasonality in property offences at commercial areas, schools or in the central
business district. They suggest differences in the influence of season on property crime across
facilities are associated with consistent versus changing (‘seasonal’) target availability.
Similarly, Haberman and Ratcliffe (2015) identified a moderating influence of time of the
day on the relationship between risky facilities and crime. Robbery was associated with
parks only during the daytime when parks are used for legitimate activities. Likewise, the
relationship between pawn shops and increased crime risk was only apparent during the
afternoon when the shops were open for legitimate business.

Recently, Bernasco et al. (2017) applied the RAT framework to examine variations in
street robbery across days of the week and hours of the day at risky facilities across
Chicago. They found limited support for the assertion that crime at places exhibits significant
temporal variability. Other studies have also failed to find evidence that place-based crime risk
changes over the course of the day (Breetzke and Cohn, 2013; Hart andMiethe, 2015). So why
the conflicting findings? While previous studies represent a significant contribution to the
literature, missing from their research is a consideration of heterogeneity in crime risk within a
group of risky facilities of similar type. The ubiquitous 80–20 rule must be considered when
examining temporal patterns of crime at risky facilities of similar types. Analyses of crime
across all schools, retail outlets or bars within a meso-level geographic unit (e.g. neighbour-
hood or census block) would fail to highlight temporal signatures of the minority of places
that host the majority of the crime. As it is not possible, or useful, to devise time signatures for
individual blocks or facilities, instead we propose that for a particular group of facilities we
can impart a classification system based on the temporal distribution of risk across a 24 hour
period to inform the allocation of regulatory resources and place management strategies.

To effectively regulate co-presence in shared spaces requires an understanding of the
temporal patterns of crime opportunities. Current practices in urban planning, design
and place regulation assume invariance in temporal patterns of crime across facilities
of a particular type within a larger geographic unit, typically looking at aggregate counts
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of crime for a month or year. Underdeveloped is our understanding of variations in tem-

poral crime patterns across groups of facilities of similar type. Focusing on the most trou-

blesome places and times will have greater impacts on crime across the community than

distributing prevention and response efforts to all places and times. Understanding place–

time crime dynamics can inform both formal security responses and informal place man-

agement strategies.

Case study context, data and methods

The State of Queensland forms the study context (Figure 1). Using the smallest geographic

unit of the 2016 census, the mesh block1 (ABS, 2016), a total of 2286 commercial precincts

were identified across Queensland. These precincts range in size from 1600 to

9,142,500 square metres and represent a broad spectrum of commercial developments

from a small strip of shops to large regional shopping centres. Crime incident data were

procured from the Queensland Police Service for a 12-month period (1 January to 31

December 2016) in order to temporally align with the 2016 census data. Four crime types

form the focus of investigation: drug crimes, property theft, property damage and

public nuisance.2

Of the 291,713 total crime incidents in Queensland (for our four crime types) during 2016,

18.96% (55,317) were located in commercial precincts (representing just over 1% of the

State’s land cover), of which there were 5781 drug crimes, 29,587 property thefts, 3870

incidents involving property damage and 16,079 recorded public nuisances (Figure 2).
Cluster analysis on our crime data is performed using partitioning around medoids

(PAM), the most common form of k-medoid clustering. PAM is employed to partition a

Figure 1. Commercial precincts across Queensland, Australia.
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set of objects into k number of clusters through searching for what Rousseeuw and

Kaufman (1990) term representative objects. Subsequent to identifying the set of represen-

tative objects that describe a given data set, clusters are formed through assigning each

object to their closest representative object. One particularly useful feature of PAM is its

ability to robustly capture cluster centres, which is especially important in situations where

objects poorly align to clusters (Van der Laan et al., 2003).
We perform an isometric log ratio (ILR) transform to allow for the fact that precincts can

vary in size, and so rather than working directly with counts, proportions of each crime in a

precinct are considered (Egozcue et al., 2003). Such quantities are constrained to add up to 1

for each precinct (or 100 if percentages are used) and also to be not less than zero. These

constraints can distort the distance metrics used in PAM to assess similarity of crime type

composition. Essentially there is one degree of freedom less than the number of crime types

and less variability in the distribution of proportions when some are close to zero or one.

The ILR transform takes the proportions as an m-dimensional vector and maps them on to

an unconstrained m�1 dimensional vector space. The definition of the transform is relatively

complicated, but details are given in the Egozcue paper cited above. Furthermore, an

R package offering a function for carrying out the transformation (‘compositions’) is docu-

mented in Van den Boogaart and Tolosana-Delgado (2008). Distances between vectors in

the transformed space are not subject to the distortions mentioned above and are a better

foundation for the cluster analysis.
To visualise the results of the cluster analysis in the form of radar plots, cyclic splines are

fitted. These have a roughness penalty, and satisfy f(x)¼ f(xþ c), f0(x)¼ f0(xþ c) and f00(x)¼
f00(xþ c) where c¼ 24� 7¼ 168 hours.

Results and discussion

The cluster analysis reveals distinct weekly cluster types that are each specific to a particular

crime type (Figure 3). For example, for drug crimes the four distinct types might be

described in the following way: Type 1, multimodal weekend peak, displays a particular

Figure 2. Count of crimes in commercial precincts.
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predominance of crimes during both weekend days. Type 2, low uniform, wherein the full
weekly cycle is characterised by low crime. Type 3, high uniform, is characterised by mod-
erate to high levels of crime through most of the week with a peak Friday evening. Type 4,
multimodal weekday and weekend peak, is characterised by two main peaks, a smaller one in
the early hours of Thursday morning and a larger one on Friday night. Plotting the four
cluster types with their 95% error bars at each observation indicates that for each cluster
and crime type, error is acceptable, with the exception of cluster 3 for nuisance crimes. In
this particular case, cluster 3 represents just 14 commercial precincts that are subject to
24.9% of all public nuisance crimes. Table 1 provides a full assessment of commercial
precinct membership by cluster and crime type.

The geography of cluster types for drug crimes (Figure 4) reveals an interesting mix of
cluster membership across the study context. The two map panels at the bottom of Figure 4
show this mix of cluster membership in Brisbane (left) and within Brisbane’s Central
Business District (CBD) and surrounds (right). Both maps highlight the way in which the
temporality of crime in spatially adjacent commercial precincts can be very different. For
example, of the 106 commercial precincts that are depicted in the Brisbane CBD and
surrounds (Figure 4, bottom right), all four temporality types are represented (Type 1
(36), Type 2 (21), Type 3 (34), Type 4 (15)) and display no systematic spatial patterning;
rather there exists is a relatively spatial dispersed patterning. This is confirmed through a test
for spatial autocorrelation wherein Moran’s I3 values for each of the cluster types reveal
either relatively weak positive spatial autocorrelation (clusters 2 and 3, with I values of 0.04
(p¼ 0.00) and 0.184 (p¼ 0.00), respectively), or spatially random patterns (clusters 1 and 4,

Cluster 1 Cluster 2 Cluster 3 Cluster 4
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Figure 3. Weekly cluster types for each crime with 95% error bars.
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with I values of 0.02 (p¼ 0.50) and �0.02 (p¼ 0.94), respectively). Examination of the
geography of cluster types for the other crime categories reveals a similar story. That is
for all cluster types either weak positive spatial autocorrelation or spatially random patterns
exist (Table 1).

Taken together the results suggest that crime in commercial precincts is for the large part
precinct specific and is a likely reflection of the characteristics of the site that include acces-
sibility, opening hours and regulation. For example, while some commercial precincts
remain open to the public after closing hours, others have security screens that restrict
the entry of individuals after stores have closed. As such, we would argue that these site-
specific features act to either permit or restrict the flow of temporary populations at certain
times of the day and in doing so regulate the co-presence of potential targets, offenders and
guardians. Thus, the design of commercial precincts is critical in conditioning both the
number of individuals in the space and the mix of legitimate and non-legitimate users.
Further, the spatial patterning of cluster types is likely a consequence of the multiple
functions of commercial places. For example, Type 2 (property theft), Types 3 and 4 (prop-
erty damage) and Type 4 (drug crimes) precincts display multi-modal weekday and weekend
peaks which may be indicative of their multiple functions such as late night shopping during
the week as well as forming part of a night time entertainment district during weekends.

The variation in crime at fine spatial scales (such as the individual address or street
segment), commonly referred to in the literature as ‘micro places’ is well established in
criminological scholarship (Braga et al., 2010; Weisburd et al., 2004). Whereas the focus
of much of this literature has been to understand crime at fine spatial scales, here we place
the focus on the temporality of crime and argue the need to consider this dimension in
alliance with space in order to unpack the crime narrative within and across places.
Revealing the way in which the temporality of crime varies across places is particularly
important because increasing population density, the demise of the universal 9 to 5 work
day and shifts towards a 24 hour economy, are bringing together a greater diversity of
potential offenders, victims and targets in particular places across longer periods of the
day and night (here we focus on commercial spaces). Further, in many of these places the
regulatory responsibilities straddle private security and police during times when the legit-
imate users (commercial operators and customers/clients) are not present. This means that it
is even more important to have a targeted approach to prevention and response so the role
of security and police can be clearly articulated.

The differences we capture in our typology of commercial precincts are likely a reflection
of daily population flows and, in the case of commercial facilities, in large part mirror the
opening hours of these places. From the demographic scholarship we know that there exists
a large shift in population numbers from one area of a city to another throughout the day
(Charles-Edwards, 2016; Dobson et al., 2000; Novák and S�ykora, 2007; Shen, 2002). This
area of research remains an emerging area of interest as new methods and sources of data

Table 1. Number (and proportion) of commercial precincts by crime and cluster type.

Cluster membership
Total number of

commercial precincts1 2 3 4

Property theft 1200 (76.7%) 185 (11.8%) 117 (7.5%) 62 (4.0%) 1564 (68.4%)

Property damage 950 (83.7%) 55 (4.8%) 46 (4.1%) 84 (7.4%) 1135 (49.7%)

Drug 68 (6.1%) 890 (80.3%) 89 (8.0%) 62 (5.6%) 1109 (48.5%)

Public Nuisance 938 (81.7%) 144 (12.5%) 14 (1.2%) 52 (4.5%) 1148 (50.2%)

Corcoran et al. 9



become available through which temporary populations can be estimated at progressively

finer spatial and temporal scales (Kontokosta and Johnson, 2017). The recent availability of

mobile phone-based data and the use of smartphone applications would appear promising

in its capacity to offer high resolution coverage of a metropolis (Ahas et al., 2010; Birenboim

and Shoval, 2016); however, data confidentiality issues are arguably the greatest hindrance

to its broader application for temporary population estimation.

^ Cluster 1

! Cluster 2

# Cluster 3

" Cluster 4

Figure 4. The geography of cluster types (drug crimes).
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A key consideration in studies incorporating a time component is the choice of temporal
unit. To date the crime literature has examined seasonal variations across the year
(McDowall et al., 2012), variations across days of the week (Andresen and Malleson,
2015) and to a lesser extent differences between day and night time crime (Ceccato and
Uittenbogaard, 2014). However, there tends to be an inverse relationship between the degree
of aggregation in the spatial and temporal components; when larger spatial units are used,
temporal units tend to be smaller. The opposite is also true. In this paper we use the location
and timing of crime at the finest space-time granularity that is possible with the data avail-
able, that is by hour of day and by mesh block. In doing so, allied with the application of
our temporal typology method, we reject the assumption that temporal patterns of crime
across facilities in a geographic area are homogeneous and align with Eck et al.’s (2007)
finding that the timing and intensity of crime across risky facilities of a similar type is
heterogeneous.

A number of limitations associated with the input data and the results need noting. First,
offence types occurring within commercial precincts are diverse and go beyond the four
presented herein. Given this, re-running the clustering method for each independent crime
type would be useful to reveal the way in which drug offences might differ in their temporal
signature to assault or robbery, for example. The second limitation relates to the temporal
accuracy of the crime data. Previous research has highlighted the way in which the officially
recorded time of a crime may not be reflective of the actual time the crime occurred and that
this precision varies by crime type (Ratcliffe, 2002). As such it is reasonable to assume that
for the four crime types used in this study that the time associated with each recorded crime
varies in precision and is reflective of whether witnesses were present at the time of a crime
and if these witnesses reported the incident to the police as it was unfolding or were at least
able to report an accurate event time. We do know that for some crimes such as robbery, the
difference between the recorded time of the offence and the actual time can be a matter of
seconds, whereas burglary can be as much as weeks in situations where home owners return
from a period away to find their place burgled (Ratcliffe, 2002). In lieu of any alternate data
(such as accident and emergency records or information from social media feeds such as
Twitter or Facebook) through which we can triangulate crime timings, we need to treat the
results with some degree of caution as it relates to temporal precision.

The development of our temporal clustering methodology paves the way for several
avenues of future research. First, is the collection of data that helps us to estimate the
way that crime intersects with the temporary populations present within and across our
commercial facilities. Given that many commercial precincts offer free Wi-Fi coverage this
would appear to be a promising data source to begin to unpack the temporary population–
crime relationship (Charles-Edwards and Bell, 2013). Second, is to model the determinants
of cluster membership to ascertain the extent to which built and natural environmental
features in alliance with socio-demographic characteristics play a role in generating crime
opportunities. Third, is to apply our methodology to other situational contexts and land use
types to reveal the extent to which the cluster types identified for commercial facilities in
Queensland, Australia exist elsewhere as it relates to their spatial and temporal dynamics.

Conclusions

In this paper we have developed a new method to construct temporal typologies of crime.
With a focus on the 2286 commercial facilities across the State of Queensland, Australia our
method distinguished four distinct cluster types. Interestingly, the geographic patterning of
these four cluster types shows that the temporality of crime in spatially adjacent commercial
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facilities can be very different. This is likely reflective of daily population flows, business

hours as well as the local security presence and physical design of these locales – all features

that contribute to crime opportunities. The capacity to segment facilities based on patterns

of crime in this way has direct utility in both the allocation of finite policing resources to

specific locales at specific times identified as crime prone, as well as in the development of

common crime prevention initiatives to apply across locations considered to be members of

the same cluster type.
The practical implications of this research go beyond criminal justice responses to crime

prevention and management wherein we suggest that the findings can inform urban planners

and local building management authorities on how to best utilise ‘mixing’ of facilities to

optimise the presence of legitimate users of commercial precincts and minimise unnecessary

encounters between likely or motivated offenders (illegitimate users) and targets when secu-

rity, police or informal guardians are not present. Identification of a precinct’s typology can

reveal its crime opportunity profile and associated prevention action, thus avoiding the

necessity for costly and time consuming individual site analyses. For example, in our

study, crime prevention initiatives in precincts that are members of clusters 3 and 4

should target theft with a particular focus on Friday evenings. Focusing interventions on

peak crime types and ‘hot’ times has the greatest potential to impact overall crime rates

which in turn can positively affect public perceptions of the precinct, improve feelings of

safety and increase patronage. Identification of a precinct’s typology can also help to

manage, and set priorities within, a local area’s situational crime prevention strategy for

planners and developers. In situations where evenings are identified as the crime ‘hot’ time,

lighting may be the top priority for physical environmental approaches to safety. In areas

where property damage is revealed as the most common problem, CCTV and target hard-

ening approaches, including access control during particular hours, could be appropriate

approaches. These examples demonstrate that a key benefit of the method we present here

for capturing temporal signatures of crime at places is the direct transferability of the

research outcomes to practice.
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Notes

1. It should be noted that the land use ascribed to a mesh block is an indicator of the main planned

land use. A mesh block is formed from an aggregation of individual land parcels.
2. Theft includes both theft and the handling of stolen goods, public nuisance includes good order

offences and illegal alcohol consumption, drug crimes include consumption and dealing, and prop-

erty damage includes unlawful entry and arson.
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3. Moran’s I values were computed using the total number of crimes recorded in a given commercial

precinct, by cluster type. The distance metric was inverse distance squared and row standardisation

was employed.
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