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a b s t r a c t

This paper studies a remote state estimation problem where a sensor, equipped with energy harvesting
capabilities, observes a dynamical process and transmits local state estimates over a packet dropping
channel to a remote estimator. The objective is to decide, at every discrete time instant, whether the
sensor should transmit or not, in order tominimize the expected estimation error covariance at the remote
estimator over a finite horizon, subject to constraints on the sensor’s battery energy governedby an energy
harvesting process.We establish structural results on the optimal schedulingwhich show that, for a given
battery energy level and a given harvested energy, the optimal policy is a threshold policy on the error
covariance. Similarly, for a given error covariance and a given harvested energy, the optimal policy is a
threshold policy on the current battery level. An extension to the problem of transmission scheduling and
control with an energy harvesting sensor is also considered.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The harvesting of energy from the surrounding environment,
such as solar, thermal, mechanical vibrations, or electromagnetic
radiation, has attracted significant research interest, due to its
potential for enabling self-sustaining and environmentally friendly
devices. In wireless communications, transmission strategies
for optimizing communication objectives such as maximizing
throughput or minimizing transmission delay have been exten-
sively studied, see e.g. Ho and Zhang (2012), Ozel, Tutuncuoglu,
Yang, Ulukus, and Yener (2011) and Sharma, Mukherji, Joseph, and
Gupta (2010). In the control literature, power/energy allocation
strategies for optimizing state estimation (Li, Quevedo, Lau, Dey,
& Shi, 2017; Nourian, Leong, & Dey, 2014) and control (Knorn &
Dey, 2017) objectives have also received recent attention.

In event triggered estimation, a sensor will transmit to a
remote estimator only when certain events occur, e.g. if the esti-
mation quality has deteriorated sufficiently, with different trans-
mission strategies proposed (Li, Lemmon, & Wang, 2010; Trimpe
& D’Andrea, 2014; Wu, Jia, Johansson, & Shi, 2013; Xia, Gupta,
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& Antsaklis, 2013). A probabilistic triggering mechanism has also
been recently studied in event triggered estimationwith an energy
harvesting sensor (Huang, Shi, & Chen, 2017).

In this paper we will study a transmission scheduling problem
for remote state estimation, that minimizes the expected estima-
tion error covariance at the remote estimator. The scheduling is
subject to the constraint that the sensor is equipped with energy
harvesting capabilities, and transmission over a packet dropping
channel can only occur if there is sufficient energy in the sensor
battery. Note that one can regard the situation where there is
insufficient battery energy for transmission as a sensor failure.
Other related work on sensor failures include Chen, Yu, Zhang, and
Liu (2013), Hounkpevi and Yaz (2007), Qu and Zhou (2013), Wang,
Ho, and Liu (2003), to mention a few.

We will derive structural results on the optimal transmission
policy. Namely, for a given battery energy level and a given har-
vested energy, we will show that the optimal policy is a threshold
policy on the estimation error covariance. Similarly, for a given
error covariance and a given harvested energy, the optimal policy
is a threshold policy on the battery level. This is reminiscent of the
threshold based policies often considered in event triggered esti-
mation.We then extend our results to the problem of transmission
scheduling and control with an energy harvesting sensor, where
one can show that this problem is separable into an LQG-type
control problem and a transmission scheduling problem, with the
optimal transmission schedule having threshold-type behaviour.

Optimality of threshold-type policies has been shown in other
contexts. For the case of noiseless measurements and no packet
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Fig. 1. Remote state estimation with an energy harvesting sensor.

drops, Lipsa and Martins (2011) showed a threshold behaviour
in the difference between the current state and most recently
transmitted state, with Nayyar, Başar, Teneketzis, and Veeravalli
(2013) also considering energy harvesting. In event triggered con-
trol, optimality of threshold policies have been shown in Molin
and Hirche (2010). For variance based triggering (where transmit
decisions depend on the estimation error covariance) with no
energyharvesting, itwas shown in Leong, Dey, andQuevedo (2017)
(see alsoMo, Sinopoli, Shi, & Garone, 2012; Ren, Cheng, Chen, Shi, &
Zhang, 2014) that threshold-type policies are optimal, in the sense
that it minimizes a linear combination of the expected estimation
error covariance and expected energy usage of the sensors.

The paper is organized as follows. Section 2 describes the
system model. The optimal transmission scheduling problem is
formulated in Section 3. Structural results for the optimal transmis-
sion schedule are derived in Section 4. The problemof transmission
scheduling for control with an energy harvesting sensor is consid-
ered in Section 5. Numerical studies are presented in Section 6.

2. Systemmodel

A diagram of the system model is shown in Fig. 1. Consider a
discrete time process

xk+1 = Axk + wk (1)

where xk ∈ Rnx and wk is i.i.d. Gaussian with zero mean and
covariance Q ≥ 0.1 There is a sensor taking measurements

yk = Cxk + vk, (2)

where yk ∈ Rny and vk is Gaussian with zero mean and covariance
R > 0. The noise processes {wk} and {vk} are assumed to be mutu-
ally independent.

The sensor has some computational capabilities and can run a
local Kalman filter. The local state estimates and estimation error
covariances
x̂sk|k−1 ≜ E[xk|y0, . . . , yk−1], x̂sk|k ≜ E[xk|y0, . . . , yk]

P s
k|k−1 ≜ E[(xk − x̂sk|k−1)(xk − x̂sk|k−1)

T
|y0, . . . , yk−1]

P s
k|k ≜ E[(xk − x̂sk|k)(xk − x̂sk|k)

T
|y0, . . . , yk]

can be computed at the sensor using the standard Kalman filtering
equations.We assume that the pair (A, C) is detectable and the pair
(A,Q 1/2) is stabilizable, with the local Kalman filter operating in
steady state,2 i.e. P s

k|k = P̄, ∀k, where P̄ is the steady state value of
P s
k|k, which exists by the detectability assumption.

1 For a symmetric matrix X , we say that X > 0 if it is positive definite, and X ≥ 0
if it is positive semi-definite. Given two symmetric matrices X and Y , we say that
X ≤ Y if Y − X is positive semi-definite, and X < Y if Y − X is positive definite.
2 The local Kalman filter in general converges to steady state at an exponential

rate.

Let νk ∈ {0, 1} be decision variables such that νk = 1 if and only
if x̂sk|k is to be transmitted3 by the sensor to the remote estimator
at time k. Let Bk denote the battery level of the sensor at time k,
with Bmax themaximumcapacity of the sensor’s battery. There is an
energy usage of E for each scheduled transmission. Transmission
at time k can only occur if there is sufficient energy in the battery,
i.e. νk = 1 is possible only when Bk ≥ E. The sensor is equipped
with energy harvesting capabilities, with the energy harvested by
the sensor between the discrete time instants k− 1 and k denoted
by Hk. Similar to Ho and Zhang (2012), the evolution of the battery
level is modelled as

Bk+1 = min{Bk − νkE + Hk+1, Bmax}, (3)

with νk = 0 if Bk < E. The harvested energy process {Hk} can in
general be temporally correlated, e.g. the amount of solar energy
harvested may differ significantly depending on the time of day
and weather conditions (Ho & Zhang, 2012). In this paper we will
assume that {Hk} is Markovian. We denote the support of {Hk} by
H, and that of Bk by B ⊆ [0, Bmax].

At time instances when νk = 1, the sensor transmits its local
state estimate x̂sk|k over a packet dropping channel, see Fig. 1. Let
γk ∈ {0, 1} be random variables such that γk = 1 if and only if
the transmission at time k is successfully received by the remote
estimator. We will assume that {γk} is i.i.d. Bernoulli with

P(γk = 1) = λ ∈ (0, 1).

At instances where νk = 1, it is assumed that the remote es-
timator knows whether the transmission was successful or not,
i.e., the remote estimator knows the value γk, with droppedpackets
discarded. Define

Ik ≜{ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0x̂s0|0, . . . , νkγkx̂sk|k}

as the information set available to the remote estimator at time
k. Denote the state estimates and error covariances at the remote
estimator by:

x̂k|k ≜ E[xk|Ik], Pk|k ≜ E[(xk − x̂k|k)(xk − x̂k|k)T |Ik]. (4)

Given that the decision variables νk depend on Pk−1|k−1,Hk and
Bk, but not on the state xk, the optimal remote estimator can be
shown to have the following form, similar to Xu and Hespanha
(2005):

x̂k|k =

{
Ax̂k−1|k−1 , νkγk = 0

x̂sk|k , νkγk = 1

Pk|k =

{
f (Pk−1|k−1) , νkγk = 0

P̄ , νkγk = 1,

(5)

where

f (X) ≜ AXAT
+ Q . (6)

We assume that γk is fed back to the sensor before the trans-
mission decision at the next time instant k + 1. Thus, the remote
estimate Pk|k can be reconstructed at the sensor with this acknowl-
edgement mechanism.4

Define the countable set

S = {P̄, f (P̄), f 2(P̄), . . .}, (7)

where f n(.) is the n-fold composition of f (.), with the convention
that f 0(X) = X . Then it is clear from (5) that S consists of all

3 When there are packet drops, sending state estimates generally gives better
estimation performance than sending measurements (Xu & Hespanha, 2005).
4 The case of imperfect feedback acknowledgements can also be considered,

using similar ideas as in Nourian et al. (2014).
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possible values of Pk|k at the remote estimator. There is a total
ordering on the elements of S given by (see e.g. Shi and Zhang
(2012))

P̄ ≤ f (P̄) ≤ f 2(P̄) ≤ · · · .

3. Optimal transmission scheduling

In this section we will formulate an optimization problem
for determining the transmission schedule, that minimizes the
expected error covariance of the remote estimator over a finite
horizon, subject to energy harvesting constraints at the sensor.

As mentioned in Section 2, we will consider transmission poli-
cies where νk depends on Pk−1|k−1, Bk, and Hk. We will consider the
following optimization problem of finite horizon K :

min
{ν1,...,νK }

K∑
k=1

E[trPk|k]

= min
{ν1,...,νK }

K∑
k=1

E
[
E[trPk|k|Pk−1|k−1, Bk,Hk, νk]

] (8)

subject to the energy harvesting constraints:

νkE ≤ Bk, Bk+1 = min{Bk − νkE + Hk+1, Bmax}, (9)

∀k ∈ {1, . . . , K }. Note that if for some κ ∈ {1, . . . , K } we have
νκ = 1, then

E[trPκ|κ |Pκ−1|κ−1, νκ ,Hκ , Bκ ]

= νκ [λtr(P̄) + (1 − λ)trf (Pκ−1|κ−1)] + (1 − νκ )trf (Pκ−1|κ−1)

= νκλtr(P̄) + (1 − νκλ)trf (Pκ−1|κ−1),

(10)

whereas if νκ = 0, then

E
[
E[trPκ|κ |Pκ−1|κ−1, Bκ ,Hκ , νκ ]

]
= APκ−1|κ−1AT

+ Q . (11)

Let the functions Jk(·, ·, ·) : S × H × B → R be defined
recursively as:

JK+1(P,H, B) = 0

Jk(P,H, B) = min
ν∈{0,1}
νE≤B

{
νλtr(P̄) + (1 − νλ)trf (P)

+ νλE
[
Jk+1(P̄, H̃, b(B − νE + H̃))|H

]
+ (1 − νλ)E

[
Jk+1(f (P), H̃, b(B − νE + H̃))|H

] }
(12)

for k = K , . . . , 1, where the conditional expectations are with
respect to H̃ given H (with H̃ representing the harvested energy
at time k + 1 given that Hk = H), and b(.) is defined as

b(x) ≜ min{x, Bmax}. (13)

Problem (8) can be solved using the dynamic programming algo-
rithm, by computing Jk(Pk−1|k−1,Hk, Bk) for k = K , K − 1, . . . , 1,
after discretization of H and B if needed (e.g. if Hk and Bk are
continuous valued).

4. Structural properties of optimal transmission schedule

In this section, we will derive structural results on the optimal
solutions to problem (8). Specifically, we show in Theorem 4.3 that
for given Bk and Hk, the optimal policy is a threshold policy with
respect to the error covariance Pk−1|k−1, i.e. it is optimal to transmit
if and only if Pk−1|k−1 exceeds a certain threshold P∗

k (dependent on
k, Bk andHk). Similarly, for fixed Pk−1|k−1 andHk, the optimal policy
is a threshold policy with respect to the battery level Bk.

We will say that a function F (.) : S → R is increasing if

X ≤ Y ⇒ F (X) ≤ F (Y ). (14)

Lemma 4.1. For any n ∈ N, the function F (P) = tr(f n(P)) is an
increasing function of P.

Proof. We have

F (P) = tr(f n(P)) = tr

(
AnP(An)T +

n−1∑
m=0

AmQ (Am)T
)

.

As P1 ≤ P2 ⇒ AnP1(An)T ≤ AnP2(An)T ⇒ tr(AnP1(An)T ) ≤

tr(AnP2(An)T ), the result follows. ■

Lemma 4.2. For d ≥ 0, b(.) defined in (13) satisfies

0 ≤ b(x) − b(x − d) ≤ d.

Proof. The inequality b(x) − b(x − d) ≥ 0 is obvious. For the other
inequality, note that if x ≤ Bmax, then b(x)−b(x−d) = x−(x−d) =

d. If x > Bmax and x−d > Bmax, then b(x)−b(x−d) = Bmax−Bmax =

0. If x > Bmax (which implies x − d > Bmax − d) and x − d ≤ Bmax,
then b(x)− b(x− d) = Bmax − (x− d) < Bmax − (Bmax − d) = d. ■

Theorem 4.3. (i) For fixed Bk and Hk, the optimal ν∗

k to problem (8)
is of the form:

ν∗

k (Pk−1|k−1, Bk,Hk) =

{
0 , Pk−1|k−1 ≤ P∗

k
1 , otherwise

where the threshold P∗

k ∈ S depends on k, Bk and Hk.
(ii) For fixed Pk−1|k−1 and Hk, the optimal ν∗

k to problem (8) is of the
form:

ν∗

k (Pk−1|k−1, Bk,Hk) =

{
0 , Bk ≤ B∗

k
1 , otherwise

where B∗

k ∈ R depends on k, Pk−1|k−1 and Hk.

Proof. See Appendix. ■

Remark 4.4. Determining the actual values of P∗

k and B∗

k , in general
needs to be done numerically, e.g. by solving problem (8) via (12).

By making use of both parts (i) and (ii) of Theorem 4.3, we
see that for a given k and Hk, the region of possible values of
(Pk−1|k−1, Bk) can be divided into a ‘‘transmit’’ and ‘‘don’t transmit’’
region, separated by a staircase-like threshold, see Fig. 3.

Knowing that the optimal policies are of threshold-type simpli-
fies real-time implementation. In addition, specialized algorithms
can be derived which can provide computational savings when
solving problem (8) numerically. For example, for a given (k,Hk),
suppose we want to compute ν∗

k (Pk−1|k−1, Bk,Hk) for all possible
(Pk−1|k−1, Bk). Let B′ be equal to B if B is a finite set, otherwise let B′

denote a discretized version of B. Without structural information,
one would need to compare the values νk = 0 and νk = 1 at each
(Pk−1|k−1, Bk), which results in around (k + 1) × |B′

| comparisons,
where |B′

| is the cardinality of B′. However, by using structural
information, one way to determine the staircase-like threshold is
as follows. For the smallest possible value of Pk−1|k−1, which is P̄ ,
search (in decreasing order) starting from the largest value of Bk
(i.e. Bmax) to find the threshold B∗

k(P̄,Hk). Then for the next smallest
value of Pk−1|k−1, which is f (P̄), the threshold B∗

k(f (P̄),Hk) satisfies
B∗

k(f (P̄),Hk) ≤ B∗

k(P̄,Hk), so we can now search (in decreasing
order) for B∗

k(f (P̄),Hk) starting from B∗

k(P̄,Hk) rather than from
Bmax. Continuing this procedure until we cover all possible values
of Pk−1|k−1, it is not too difficult to show that the number of
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Fig. 2. Control with an energy harvesting sensor.

Fig. 3. ν∗

k for different values of Pk−1|k−1 = f n(P̄) and Bk , with k = 5 and Hk = 1.

comparisons required (for each (k,Hk)) to determine the staircase-
like threshold is upper bounded by 2(k + 1 + |B′

|). This could be
significantly less than (k + 1) × |B′

|, the number of comparisons
needed if no structural information is assumed.

5. Transmission scheduling for control with an energy harvest-
ing sensor

In this section we briefly describe an extension to the problem
of transmission scheduling and control with an energy harvesting
sensor. A diagram of the system model is shown in Fig. 2. The
system model mostly follows that of Section 2, except that the
discrete time process is now:

xk+1 = Axk + Buk + wk, (15)

where the control signal uk ∈ Rnu .
We wish to solve the following problem:

min
{ν1,...,νK ,

u1,...,uK }

E
[ K∑
k=1

(xTkWxk + uT
kUuk) + xTK+1WxK+1

]
(16)

subject to the energy harvesting constraints (9), where the ma-
trices W ≥ 0 and U > 0. This problem minimizes the control
cost (16) subject to the energy harvesting constraints (9), with the
optimization being over both the controls {uk} and transmission
decisions {νk}. By following similar arguments as in Knorn and Dey
(2017), we can show that for transmit decisions νk dependent only
on (Pk−1|k−1, Bk,Hk), problem (16) is equivalent to:

min
{ν1,...,νK }

[
min

{u1,...,uK }

E
[ K∑

k=1

(xTkWxk + uT
kUuk) + xTK+1WxK+1

]]
, (17)

subject to (9). The inner optimization in (17) is an LQG-type prob-
lemwith optimal cost tr(S1P1)+

∑K
k=1tr(Sk+1Q )+

∑K
k=1tr

(
(AT Sk+1

A + W − Sk)E[Pk|k]
)
, where SK+1 = W ,

Sk = AT Sk+1A+W − AT Sk+1B(BT Sk+1B+U)−1BT Sk+1A, and P1 is
the covariance of x1.

The optimal transmission schedule can then be found by solving
the problem:

min
{ν1,...,νK }

[ K∑
k=1

tr
(
(AT Sk+1A + W − Sk)E[Pk|k]

)]
(18)

subject to (9). We have:

Theorem 5.1. (i) For fixed Bk and Hk, the optimal ν∗

k to problem (18)
is of the form:

ν∗

k (Pk−1|k−1, Bk,Hk) =

{
0 , Pk−1|k−1 ≤ P̃∗

k
1 , otherwise

where P̃∗

k ∈ S depends on k, Bk and Hk.
(ii) For fixed Pk−1|k−1 and Hk, the optimal ν∗

k to problem (18) is of the
form:

ν∗

k (Pk−1|k−1, Bk,Hk) =

{
0 , Bk ≤ B̃∗

k
1 , otherwise

where B̃∗

k ∈ R depends on k, Pk−1|k−1 and Hk.

Proof. Let us denoteGk ≜ AT Sk+1A+W−Sk. From the recursion for
Sk we have Gk = AT Sk+1B(BT Sk+1B + U)−1BSk+1A, which shows
that Gk ≥ 0, ∀k, since Sk+1 ≥ 0 and U > 0. As Gk ≥ 0, we can use
Lemma 8.4.12 of Bernstein (2009) to extend Lemma 4.1 to show
that F (P) = tr(Gkf n(P)) is increasing in P for all k and all n. Wemay
then verify that similar arguments used in the proof of Theorem4.3
also apply to problem (18). ■

6. Numerical studies

We consider an example with parameters

A =

[
1.2 0.2
0.2 0.7

]
, C =

[
1 1

]
, Q = I, R = 1,

in which case P̄ is easily computed as

P̄ =

[
1.3634 −0.8347

−0.8347 1.0809

]
.

The packet reception probability is chosen to be λ = 0.7. The
transmission energy E = 2. The harvested energy process {Hk}

is chosen to be a Markov chain with state space {0, 1, 2} and
transition probability matrix⎡⎣p00 p01 p02

p10 p11 p12
p20 p21 p22

⎤⎦ =

⎡⎣0.2 0.3 0.5
0.3 0.4 0.3
0.1 0.2 0.7

⎤⎦ ,

with the initial distribution of H1 having the stationary distribu-
tion. The maximum battery capacity Bmax = 6. We use the finite
horizon K = 10.

Fig. 3 plots ν∗

k for different values of Pk−1|k−1 = f n(P̄) and Bk,
for fixed k = 5 and Hk = 1. We observe threshold-like behaviour
in agreement with Theorem 4.3. Next, we consider the case where
the maximum battery capacity Bmax is varied. Fig. 4 plots the trace
of the expected error covariance trE[Pk|k] vs. Bmax, with trE[Pk|k]
obtained by averaging over 100000 Monte Carlo runs, with each
run having the initial values P0|0 = P̄ and B1 = E. We compare
the performance with a simple suboptimal policy which always
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Fig. 4. Expected error covariance vs. Bmax .

Fig. 5. Expected control cost vs. Bmax .

transmits provided it has enough energy. We see that the optimal
policy significantly outperforms this suboptimal policy.

Finally, we consider the control problem of Section 5. We use
the same parameters as before, together withB =

[
1 2

]T
,W = I ,

U = 1. Fig. 5 plots the expected control cost E
[∑K

k=1(x
T
kWxk +

uT
kUuk)+ xTK+1WxK+1

]
vs. Bmax. We compare the performance with

the policy which always transmits provided it has enough energy,
which we again see is significantly outperformed by the optimal
policy.

7. Conclusion

This paper has studied transmission scheduling problems for
remote state estimation and control, where the sensor is equipped
with energy harvesting capabilities, and transmission is over a
stochastic packet dropping channel. We have derived structural
results on the optimal transmission schedules, with thresholding
behaviour in both the estimation error covariance and battery
level.

Appendix. Proof of Theorem 4.3

We will prove part (i). The proof of part (ii) is omitted, since it
can be proved using similar techniques as in the proof of Theorem
6.1 of Nourian et al. (2014).

For B ≥ E, Jk(P,H, B) in (12) can be expressed as

Jk(P,H, B) = min
{
trf (P) + E[Jk+1(f (P), H̃, b(B + H̃))|H],

λtrP̄ + (1 − λ)trf (P) + λE[Jk+1(P̄, H̃, b(B − E + H̃))|H]

+ (1 − λ)E[Jk+1(f (P), H̃, b(B − E + H̃))|H]

}
,

where the two terms in theminimization correspond to the values
νk = 0 or νk = 1. Since νk only takes on the two values 0 and 1,
Theorem 4.3 will be proved if we can show that for fixed B ≥ E and
H , the functions

φk(P) ≜ trf (P) + E[Jk+1(f (P), H̃, b(B + H̃))|H] − λtrP̄

− (1 − λ)trf (P) − λE[Jk+1(P̄, H̃, b(B − E + H̃))|H]

− (1 − λ)E[Jk+1(f (P), H̃, b(B − E + H̃))|H],

= λ

(
trf (P) − trP̄ − E[Jk+1(P̄, H̃, b(B − E + H̃))|H]

)
+ E[Jk+1(f (P), H̃, b(B + H̃))|H]

− (1 − λ)E[Jk+1(f (P), H̃, b(B − E + H̃))|H]

for k = 1, . . . , K are increasing functions of P . As trf (P) is increas-
ing with P by Lemma 4.1, this will be the case if we can show
that E[Jk(f (P), H̃, b(B + H̃))|H] − (1 − λ)E[Jk(f (P), H̃, b(B − E +

H̃))|H] is an increasing function of P for all k. To prove this using
an induction argument, we will in fact prove a slightly stronger
statement, namely that

Jk(f n(P),H, B) − (1 − λ)Jk(f n(P),H, B′) (A.1)

is an increasing function of P for all k ∈ {1, . . . , K + 1}, n ∈ N,
H ≥ 0, B ≥ 0, B′

≥ 0 with 0 ≤ B − B′
≤ E, noting that

0 ≤ b(B + H̃) − b(B − E + H̃) ≤ E by Lemma 4.2. In order to
show that (A.1) is an increasing function of P , it turns out that we
also need to show that

Jk(f n(P),H, B′) − Jk(f n(P),H, B) (A.2)

is an increasing function of P for all k ∈ {1, . . . , K + 1}, n ∈ N,
H ≥ 0, B ≥ 0, B′

≥ 0 with 0 ≤ B − B′
≤ E.

As stated before, the proof is by induction. That (A.1) and (A.2)
are increasing functions of P in the case of k = K + 1 is clear. For
P ≥ P ′ and 0 ≤ B − B′

≤ E, assume that
Jl(f n(P),H, B) − (1 − λ)Jl(f n(P),H, B′)

− Jl(f n(P ′),H, B) + (1 − λ)Jl(f n(P ′),H, B′) ≥ 0
(A.3)

and
Jl(f n(P),H, B′) − Jl(f n(P),H, B)

− Jl(f n(P ′),H, B′) + Jl(f n(P ′),H, B) ≥ 0
(A.4)

hold for l = K + 1, K , . . . , k + 1.
Let us first show that (A.3) holds for l = k. We have

Jk(f n(P),H, B) − (1 − λ)Jk(f n(P),H, B′)

− Jk(f n(P ′),H, B) + (1 − λ)Jk(f n(P ′),H, B′)

= min
ν,νE≤B

{
νλtrP̄ + (1 − νλ)trf n+1(P)

+ νλE
[
Jk+1(P̄, H̃, b(B − νE + H̃))|H

]
+ (1 − νλ)E

[
Jk+1(f n+1(P), H̃, b(B − νE + H̃))|H

] }
− (1 − λ) min

ν,νE≤B′

{
νλtrP̄ + (1 − νλ)trf n+1(P)



A.S. Leong et al. / Automatica 91 (2018) 54–60 59

+ νλE
[
Jk+1(P̄, H̃, b(B′

− νE + H̃))|H
]

+ (1 − νλ)E
[
Jk+1(f n+1(P), H̃, b(B′

− νE + H̃))|H
] }

− min
ν,νE≤B

{
νλtrP̄ + (1 − νλ)trf n+1(P ′)

+ νλE
[
Jk+1(P̄, H̃, b(B − νE + H̃))|H

]
+ (1 − νλ)E

[
Jk+1(f n+1(P ′), H̃, b(B − νE + H̃))|H

] }
+ (1 − λ) min

ν,νE≤B′

{
νλtrP̄ + (1 − νλ)trf n+1(P ′)

+ νλE
[
Jk+1(P̄, H̃, b(B′

− νE + H̃))|H
]

+ (1 − νλ)E
[
Jk+1(f n+1(P ′), H̃, b(B′

− νE + H̃))|H
] }

.

If B ≥ E and B′
≥ E, then

Jk(f n(P),H, B) − (1 − λ)Jk(f n(P),H, B′)

− Jk(f n(P ′),H, B) + (1 − λ)Jk(f n(P ′),H, B′)

≥ min
ν

(1 − νλ)
{
λ
[
trf n+1(P) − trf n+1(P ′)

]
+ E

[
Jk+1(f n+1(P), H̃, b(B − νE + H̃))|H

]
− (1 − λ)E

[
Jk+1(f n+1(P), H̃, b(B′

− νE + H̃))|H
]

− E
[
Jk+1(f n+1(P ′), H̃, b(B − νE + H̃))|H

]
+ (1 − λ)E

[
Jk+1(f n+1(P ′), H̃, b(B′

− νE + H̃))|H
] }

≥ 0,

where the last inequality holds (for both cases ν∗
= 0 and ν∗

= 1)
by Lemma 4.1 and the induction hypothesis (A.3), since 0 ≤ b(B −

νE + H̃) − b(B′
− νE + H̃) ≤ E when 0 ≤ B − B′

≤ E.
If B < E and B′ < E, then

Jk(f n(P),H, B) − (1 − λ)Jk(f n(P),H, B′)

− Jk(f n(P ′),H, B) + (1 − λ)Jk(f n(P ′),H, B′)

=

{
λ
[
trf n+1(P) − trf n+1(P ′)

]
+ E

[
Jk+1(f n+1(P), H̃, b(B + H̃))|H

]
− (1 − λ)E

[
Jk+1(f n+1(P), H̃, b(B′

+ H̃))|H
]

− E
[
Jk+1(f n+1(P ′), H̃, b(B + H̃))|H

]
+ (1 − λ)E

[
Jk+1(f n+1(P ′), H̃, b(B′

+ H̃))|H
] }

≥ 0,

by Lemma 4.1 and the induction hypothesis (A.3).
If B ≥ E and B′ < E, then

Jk(f n(P),H, B) − (1 − λ)Jk(f n(P),H, B′)

− Jk(f n(P ′),H, B) + (1 − λ)Jk(f n(P ′),H, B′)

≥ min
ν

{
λ(1 − ν)

[
trf n+1(P) − trf n+1(P ′)

]
+ (1 − νλ)E

[
Jk+1(f n+1(P), H̃, b(B − νE + H̃))|H

]
− (1 − λ)E

[
Jk+1(f n+1(P), H̃, b(B′

+ H̃))|H
]

− (1 − νλ)E
[
Jk+1(f n+1(P ′), H̃, b(B − νE + H̃))|H

]
+ (1 − λ)E

[
Jk+1(f n+1(P ′), H̃, b(B′

+ H̃))|H
] }

.

In the minimization above, if the optimal ν∗
= 0, then Jk(f n(P),

H, B) − (1 − λ)Jk(f n(P),H, B′) − Jk(f n(P ′),H, B) + (1 − λ)Jk(f n(P ′),
H, B′) ≥ 0 by a similar argument as before. If instead ν∗

= 1, then

Jk(f n(P),H, B) − (1 − λ)Jk(f n(P),H, B′)

− Jk(f n(P ′),H, B) + (1 − λ)Jk(f n(P ′),H, B′)

≥ (1 − λ)E
[
Jk+1(f n+1(P), H̃, b(B − E + H̃))|H

]
− (1 − λ)E

[
Jk+1(f n+1(P), H̃, b(B′

+ H̃))|H
]

− (1 − λ)E
[
Jk+1(f n+1(P ′), H̃, b(B − E + H̃))|H

]
+ (1 − λ)E

[
Jk+1(f n+1(P ′), H̃, b(B′

+ H̃))|H
]

≥ 0

where the last inequality now holds by induction hypothesis (A.4),
since 0 ≤ b(B′

+ H̃)− b(B− E + H̃) ≤ E when 0 ≤ B− B′
≤ E. This

proves that (A.3) holds for l = k.
It remains to show that (A.4) holds for l = k, i.e. that

Jk(f n(P),H, B′) − Jk(f n(P),H, B)
− Jk(f n(P ′),H, B′) + Jk(f n(P ′),H, B) ≥ 0. (A.5)

This can be done by using similar arguments as showing that (A.3)
holds for l = k, and making use of both induction hypotheses (A.4)
and (A.3). The details are omitted for brevity.
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