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Abstract—We consider linear positive systems with delay and switchings of operation modes.
We establish conditions under which it is possible to construct a common Lyapunov–Krasovskii
diagonal functional for the family of subsystems corresponding to the system with switchings in
consideration. These conditions are formulated in terms of the feasibility of auxiliary systems
of linear algebraic inequalities. In addition, we study the problem of the existence of a diagonal
functional of a special form. We also show that our results can be used to analyze the stability
of some classes of nonlinear positive systems with delay.
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1. INTRODUCTION

Stability analysis of positive systems is an important problem of modern control theory [1–4].
Positive systems are those for which the non-negative orthant of the phase space is a positively
invariant set. Such systems are used to simulate economic, biological, chemical, and a number of
other processes [1, 5–7]. In recent years, they have found extensive applications in network control
problems (see, for example, [4, 8]). In addition, positive systems arise as the result of constructing
comparison systems for complex systems [5, 9, 10].

Positive systems have a number of important and interesting properties that are effectively used
in the analysis of stability and the synthesis of controls for these systems. One of these properties
is diagonal stability. It is known [1, 7] that a positive linear stationary system is asymptotically
stable if and only if there exists a Lyapunov function for this system in the form of a quadratic form
with a diagonal matrix. The use of diagonal Lyapunov functions is convenient due to their simple
structure. They are successfully used to study the stability of population dynamics models and
neural networks, as well as in decentralized control problems for complex systems (see [1, 2, 7, 11]).
In many cases, they make it possible to prove the robustness of stability with respect to parametric
perturbations and delays [1, 3, 7, 12].

One very interesting extension of the diagonal stability property is to pass from linear stationary
systems to wider classes of positive systems, including systems with delay, with switchings, and
nonlinear systems. A series of results in these directions have been obtained in [1, 3, 7, 12–15].

It should be noted that modern literature has no general definition of diagonal stability. For a
given system, the Lyapunov diagonal function can be chosen in different forms [7]. Thus, diagonal
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stability is not a property of the system itself, but of the “system—Lyapunov function” pair (or
the “system—Lyapunov–Krasovskii functional” pair).

In this work, we study the conditions for diagonal stability of linear positive systems with delay
and switchings of operation modes. A switching system is a hybrid dynamic system consisting of
a family of subsystems and a switching law that determines which of the subsystems is active at
every moment of time. In a wide class of cases, the design of controlled systems requires to ensure
their stability for any valid switching law [16, 17]. The main approach to proving stability, uniform
with respect to the switching law, is to find a common Lyapunov function for a set of subsystems
corresponding to the considered hybrid system [16, 18]. However, the problem of the existence of
the common Lyapunov function has not yet been fully solved even for the family of linear stationary
subsystems [16].

In this work, we establish conditions under which we can construct a common Lyapunov–
Krasovskii diagonal functional for a family of subsystems corresponding to a given positive system
with switchings. These conditions are formulated in terms of the feasibility of auxiliary systems
of linear algebraic inequalities. In addition, we study the problem of the existence of a diagonal
functional of a special form. We also show that the obtained results can be used to analyze the
stability of some classes of nonlinear positive systems with delay.

2. PRELIMINARIES AND PROBLEM SETTING

Consider a linear stationary system

ẋ(t) = Ax(t), (1)

where x(t) = (x1(t), . . . , xn(t))
� is the system state vector, A is a constant matrix, � denotes

transposition.

It is known [5, 6] that system (1) is positive if and only if all off-diagonal elements in the matrix A
are nonnegative. Such matrices are called Metzler.

Definition 1. We say that system (1) is diagonally stable if for this system there exists a Lya-
punov function in the form of a quadratic form with a diagonal matrix that satisfies the requirements
of the Lyapunov theorem on asymptotic stability.

Statement 1 [1]. Let A be a Metzler matrix. Then the following conditions are equivalent:

(a) A is a Hurwitz matrix ;

(b) there exists a vector θ > 0 such that

Aθ < 0; (2)

(c) there exists a vector d > 0 such that

A�d < 0; (3)

(d) there exists a diagonal positive definite matrix P = diag {p1, . . . , pn} such that the matrix
A�P + PA is negative definite.

Hereinafter, we understand vector inequalities to hold componentwise.

Remark 1. It is known [1, 6] that if positive vectors θ = (θ1, . . . , θn)
� and d = (d1, . . . , dn)

�

satisfy inequalities (2) and (3) respectively, then in the condition (d) of Statement 1 one such
diagonal matrix P is obtained by setting

pi = di/θi, i = 1, . . . , n. (4)
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Remark 2. Statement 1 implies that for the diagonal stability of the positive system (1) it is
necessary and sufficient that the matrix A is Hurwitz.

Next, we consider a linear positive system with switchings

ẋ(t) = Aσx(t)

and the corresponding family of subsystems

ẋ(t) = Asx(t), s = 1, . . . , N, (5)

where A1, . . . , AN are constant Metzler matrices, σ = σ(t) is a piecewise constant function that
defines the switching law, σ(t) : [0,+∞) �→ {1, . . . , N}. For all hybrid systems considered in this
work, we will assume that function σ(t) on any bounded interval has a finite number of discontinuity
points. Such switching laws will be called admissible.

Statement 2 [15]. Suppose that there exist numbers λ, μ and positive vectors θ = (θ1, . . . , θn)
�,

d = (d1, . . . , dn)
� such that

λ+ μ < 0, Asθ � λθ, A�
s d � μd, s = 1, . . . , N.

If P = diag {d1/θ1, . . . , dn/θn}, then the matrices

A�
s P + PAs, s = 1, . . . , N, (6)

are negative definite.

Thus, if conditions of Statement 2 are satisfied for family (5), there is a common Lyapunov
diagonal function V (x) = x�Px.

Consider now a linear system with delay

ẋ(t) = Ax(t) +Bx(t− τ). (7)

Here x(t) ∈ R
n, A and B are constant matrices, τ is a constant non-negative delay. By xt we

denote a segment of the solution of system (7): xt : ξ �→ x(t+ ξ), ξ ∈ [−τ, 0]. It is known [5, 12]
that system (7) is positive if and only if A is Metzler and B is a non-negative matrix.

Definition 2. We say that system (7) is diagonally stable if for this system one can construct a
Lyapunov–Krasovskii type functional

V (xt) = x�(t)Px(t) +

t∫

t−τ

x�(u)Qx(u)du (8)

with diagonal positive definite matrices P and Q that for all τ > 0 satisfy the requirements of the
Krasovskii theorem on asymptotic stability [19].

Statement 3 [20]. Suppose that matrix A is Metzler and B is nonnegative. Then for the diagonal
stability of system (7) it is necessary and sufficient that matrix A+B is Hurwitz.

Remark 3. Results obtained in [20] imply that if conditions of Statement 3 are satisfied, then di-
agonal elements of matrix P can be determined by formulas (4), where di and θi are the components
of positive vectors θ and d satisfying inequalities (A+B)θ < 0 and (A+B)�d < 0 respectively.

In this work, we consider a linear positive system with delay and switchings

ẋ(t) = Aσx(t) +Bσx(t− τ). (9)

Here x(t) ∈ R
n, As are constant Metzler matrices, Bs are constant non-negative matrices, σ = σ(t)

is an admissible switching law, σ(t) : [0,+∞) �→ {1, . . . , N}, τ is a constant non-negative delay.
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Definition 3. We say that system (9) is diagonally stable if for the corresponding family of
subsystems

ẋ(t) = Asx(t) +Bsx(t− τ), s = 1, . . . , N, (10)

there exists a common Lyapunov–Krasovskii functional (8) with diagonal positive definite matri-
ces P and Q that satisfies for all τ > 0 the conditions of the Krasovskii theorem on asymptotic
stability [19].

We study the conditions for the diagonal stability of system (9). In addition, we show that the
resulting conditions can be used to analyze the stability of certain types of nonlinear systems with
delay and switching operation modes.

3. SUFFICIENT CONDITIONS FOR DIAGONAL STABILITY

Statement 3 implies that system (7) with a Metzler matrix A and a non-negative matrix B is
diagonally stable if and only if the corresponding delay-free system ẋ(t) = (A+B)x(t) is diagonally
stable. Based on this fact, we can suppose that if for a family of subsystems without delay

ẋ(t) = (As +Bs)x(t), s = 1, . . . , N, (11)

with Metzler matrices As and non-negative matrices Bs there exists a common Lyapunov function
in the form of a quadratic form with a diagonal matrix, then for the corresponding family (10) there
exists a common diagonal Lyapunov–Krasovskii functional of type (8). However, this hypothesis is
incorrect.

Indeed, suppose that family (10) consists of two second-order subsystems (n = 2, N = 2) with
matrices

A1 =

(
−2 0

0 −3

)
, A2 =

(
−4 0

0 −1

)
, B1 = B2 =

(
0 2

1 0

)
.

In this case, function V (x1, x2) = x21 + x22 is the general diagonal Lyapunov function for the
corresponding family (11). At the same time, it is easy to show that family (10) has no diagonal
Lyapunov–Krasovskii functional (8).

To obtain sufficient conditions for the diagonal stability of the system (9), we use the approaches
proposed in [15, 21].

Theorem 1. Let As be Metzler, and let Bs be nonnegative matrices, s = 1, . . . , N . If there exist
numbers λ, μ and positive vectors θ, d such that

λ+ μ < 0, (As +Bs)θ � λθ, s = 1, . . . , N,

(As +Br)
�d � μd, s, r = 1, . . . , N,

then system (9) is diagonally stable.

Proof of Theorem 1, as well as Theorems 3, 4, and Corollary 2 are given in the Appendix.

Remark 4. The proof of Theorem 1 contains a constructive algorithm for finding the required
functional.

Corollary 1. Let As be Metzler, and let Bs be nonnegative matrices, s = 1, . . . , N . If there exist
positive vectors θ, d such that

(As +Bs)θ < 0, s = 1, . . . , N, (12)

(As +Br)
�d < 0, s, r = 1, . . . , N, (13)

then system (9) is diagonally stable.
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When analyzing the stability of linear systems with switchings, of particular interest are the
cases when matrices of the subsystems commute [22] or generate a solvable Lie algebra [23]. It is
known [16, 22] that if in the family (5) matrices A1, . . . , AN are Hurwitz (and they do not have to
be Metzler) and satisfy the conditions AsAr = ArAs, s, r = 1, . . . , N , then there exists a constant
positive matrix P (not necessarily diagonal) for which matrices (6) are negative definite. It was
shown in [13] that under the additional assumption that A1, . . . , AN are Metzler matrices the
required matrix P can be chosen to be diagonal. The case of commutative matrices is also interesting
for the problem considered in this work.

Corollary 2. Let As be Metzler and let Bs be nonnegative matrices, s = 1, . . . , N . If matrices
As +Br, s, r = 1, . . . , N are commutative and Hurwitz, then system (9) is diagonally stable.

Theorem 1 can be extended to systems with several delays.

Consider a hybrid system

ẋ(t) = Aσx(t) +B(1)
σ x(t− τ1) + . . . +B(m)

σ x(t− τm)

and the corresponding family of subsystems

ẋ(t) = Asx(t) +B(1)
s x(t− τ1) + . . . +B(m)

s x(t− τm), s = 1, . . . , N. (14)

Here x(t) ∈ R
n, As and B

(j)
s are constant matrices, s = 1, . . . , N , j = 1, . . . ,m, σ = σ(t) is an

admissible switching law, σ(t) : [0,+∞) �→ {1, . . . , N}, τ1, . . . , τm are constant non-negative delays.

Theorem 2. Let As be Metzler and B
(j)
s be non-negative matrices, s = 1, . . . , N , j = 1, . . . ,m.

If there exist numbers λ, μ and positive vectors θ, d such that λ+ μ < 0,(
As +B(1)

s + . . .+B(m)
s

)
θ � λθ, s = 1, . . . , N,

(
As +B(1)

r1 + . . .+B(m)
rm

)�
d � μd, s, r1, . . . , rm = 1, . . . , N,

then for the family (14) we can construct a common Lyapunov–Krasovskii functional

V (xt) = x�(t)Px(t) +

t∫

t−τ1

x�(u)Q(1)x(u)du+ . . .+

t∫

t−τm

x�(u)Q(m)x(u)du

with positive definite diagonal matrices P,Q(1), . . . , Q(m).

Proof of this theorem is similar to the proof of Theorem 1.

4. CONDITIONS FOR THE EXISTENCE OF A DIAGONAL FUNCTIONAL
OF A SPECIAL TYPE

The work [24] investigated diagonal stability of linear positive systems of the form (1). Based
on the duality principle, the work established a criterion for the existence of a quadratic Lyapunov
function V (x) = x�Px with a diagonal matrix P , where a part of the diagonal elements are equal
to one, i.e.,

P =

(
I 0

0 P̃

)
.

Here I is the identity matrix of dimension l, P̃ is a diagonal positive definite matrix of dimen-
sion n− l, 1 � l < n.

In this section, we study the conditions under which we can construct a Lyapunov–Krasovskii
functional of a diagonal type (8) with identity matrix P for a linear positive system with delay.

First, we consider the system without switching (7).
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Theorem 3. Let A be Metzler, and let B be a non-negative matrix. Then in order for system (7)
to have a diagonal Lyapunov–Krasovskii functional (8) with the identity matrix P , it is necessary
and sufficient that the matrix

C = A+B + (A+B)� (15)

is negative definite.

We now consider the hybrid system (9).

Theorem 4. Let As be Metzler and let Bs be non-negative matrices, s = 1, . . . , N . If there exists
a positive vector ζ such that(

As +Bs +A�
s +B�

r

)
ζ < 0, s, r = 1, . . . , N, (16)

then for the family (10) one can construct a common Lyapunov–Krasovskii functional of the form (8)
with identity matrix P .

5. APPLICATIONS OF THE OBTAINED RESULTS TO THE ANALYSIS
OF THE STABILITY OF NONLINEAR SYSTEMS

5.1. Systems with Separable Nonlinearities of Sector Type

Suppose that we are given a nonlinear switching system

ẋ(t) = Aσf(x(t)) +Bσf(x(t− τ)) (17)

and the corresponding family of subsystems

ẋ(t) = Asf(x(t)) +Bsf(x(t− τ)), s = 1, . . . , N. (18)

Here x(t) ∈ R
n, As and Bs are constant matrices, σ = σ(t) is an admissible switching law, the

vector function f(x) is defined and continuous for ‖x‖ < H (0 < H � +∞, ‖ · ‖ is the Euclidean
norm of a vector), τ is a constant non-negative delay. We assume that f(x) is a separable nonlin-
earity, i.e., f(x) = (f1(x1), . . . , fn(xn))

�, and that scalar functions fi(xi) satisfy the following sector
constraints: xifi(xi) > 0 with xi �= 0, i = 1, . . . , n. Such functions will be called admissible. Sys-
tems of the form (17) are widely used in modeling automatic control systems and neural networks
(see [1, 5, 7]).

Consider the functional

V (xt) = 2
n∑

i=1

pi

xi(t)∫

0

fi(η)dη +
n∑

i=1

qi

t∫

t−τ

f2
i (xi(u))du, (19)

where pi, qi are constant positive coefficients.

We choose an index s ∈ {1, . . . , N} and differentiate the functional (19) with respect to the
sth subsystem of family (18). We get

V̇
∣∣
(s)

=

(
f(x(t))

f(x(t− τ))

)�(
A�

s P + PAs +Q PBs

B�
s P −Q

)(
f(x(t))

f(x(t− τ))

)
.

Here P = diag {p1, . . . , pn}, Q = diag {q1, . . . , qn}.
Suppose that conditions of Theorem 1 are satisfied. Then positive numbers p1, . . . , pn, q1, . . . , qn

can be chosen in such a way that the following estimates hold:

V̇
∣∣
(s)

� −β
(
‖f(x(t))‖2 + ‖f(x(t− τ))‖2

)
, s = 1, . . . , N, β = const > 0.

Hence, the zero solution of system (17) will be asymptotically stable for any admissible nonlinear-
ities, any admissible switching law, and any non-negative delay.
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5.2. Systems with Non-Conservative Perturbations

Along with system (10), we consider a perturbed system

ẋ(t) = Aσx(t) +Bσx(t− τ) +G(t, x(t), x(t − τ))x(t), (20)

where G(t, x, y) is a skew-symmetric matrix (G� = −G) continuous for t � 0, x, y ∈ R
n. Thus, the

disturbing forces are non-conservative: x�G(t, x, y)x = 0.

Suppose that matrices As, Bs, s = 1, . . . , N , possess the properties specified in Theorem 4. Then
for system (20) we can construct a diagonal functional of Lyapunov–Krasovskii type (8) with
identity matrix P . For the derivative of this functional with respect to the perturbed system we
get the estimate

V̇ � −β(‖x(t)‖2 + ‖x(t− τ)‖2), β = const > 0.

Therefore, if the conditions of Theorem 4 are satisfied, then for any continuous skew-symmetric
matrix G, any admissible switching law, and any non-negative delay, the zero solution of system (20)
will be globally asymptotically stable.

5.3. Construction of a “Potential” Functional

Consider now the hybrid system

ẋ(t) = Aσ
∂W (x(t))

∂x
+Bσ

∂W (x(t− τ))

∂x
(21)

and the corresponding family of subsystems

ẋ(t) = As
∂W (x(t))

∂x
+Bs

∂W (x(t− τ))

∂x
, s = 1, . . . , N. (22)

Here x(t) ∈ R
n, As and Bs are constant matrices, s = 1, . . . , N , σ = σ(t) is an admissible switching

law, the function W (x) is continuously differentiable for ‖x‖ < H (0 < H � +∞) and positive
definite, τ is a constant non-negative delay. In addition, suppose that ∂W (x)/∂x = 0 if and only
if x = 0. For example, this assumption is satisfied if W (x) is a continuously differentiable positive
definite homogeneous function of order ν > 1.

Remark 5. It is obvious that system (17) is a special case of system (21).

For family (22), we construct a common Lyapunov–Krasovskii functional in the form

V (xt) = W (x(t)) +

t∫

t−τ

(
∂W (x(u))

∂x

)�
Q

∂W (x(u))

∂x
du, (23)

where Q is a constant positive definite diagonal matrix.

Fix an index s ∈ {1, . . . , N}. Differentiating the functional (23) with respect to the sth subsys-
tem of family (22), we have

V̇
∣∣
(s)

=

⎛
⎜⎜⎜⎝

∂W (x(t))

∂x

∂W (x(t− τ))

∂x

⎞
⎟⎟⎟⎠

�⎛
⎝A

�
s +As +Q Bs

B�
s −Q

⎞
⎠
⎛
⎜⎜⎜⎝

∂W (x(t))

∂x

∂W (x(t− τ))

∂x

⎞
⎟⎟⎟⎠ .
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If the conditions of Theorem 4 are satisfied, then there exists a positive definite diagonal matrixQ
such that

V̇
∣∣
(s)

� −β

(∥∥∥∥ ∂W (x(t))

∂x

∥∥∥∥
2

+

∥∥∥∥ ∂W (x(t− τ))

∂x

∥∥∥∥
2
)
,

s = 1, . . . , N, β = const > 0.

Therefore, the zero solution of the system (21) will be asymptotically stable for any function W (x)
with the above properties, any admissible switching law, and any non-negative delay.

5.4. A Discrete Switching System with Small Parameter

Consider a discrete system

x(k + 1) = (Rσ + μDσ)f(x(k)) + μMσf(x(k − l)). (24)

Here x(k) ∈ R
n, the function σ = σ(k) defines the switching law, σ(k) ∈ {1, . . . , N}, Rs,Ds,Ms are

constant matrices, s = 1, . . . , N , f(x) = (f1(x1), . . . , fn(xn))
� is a separable nonlinearity, l is a

natural delay, μ is a small positive parameter, k = 0, 1, 2, . . . .

As admissible functions fi(xi) we consider functions continuous for ‖x‖ < H (0 < H � +∞)
that satisfy the following conditions:

xifi(xi) > 0 for xi �= 0, |fi(xi)| � |xi|, i = 1, . . . , n.

Switchings in system (24) are carried out between subsystems of the family

x(k + 1) = (Rs + μDs)f(x(k)) + μMsf(x(k − l)), s = 1, . . . , N. (25)

Systems of the form (25) are widely used as discrete models of digital filters and neural networks,
as well as in the development of iterative numerical methods (see [7]).

Consider the case where R1, . . . , RN are orthogonal matrices (R�
s Rs = I, s = 1, . . . , N). Then,

for any switching law, the zero solution of the system

x(k + 1) = Rσx(k),

resulting from (24) with μ = 0 and f(x) = x, is not asymptotically stable.

For the family (25) we construct a common Lyapunov–Krasovskii functional in the form

V (x(k)) = x�(k)x(k) + μ
l∑

j=1

f�(x(k − j))
(
Q+ μ(l − j + 1)I

)
f(x(k − j)), (26)

where

x(k) =
(
x�(k), x�(k − 1), . . . , x�(k − l)

)�
,

and Q is a constant positive definite diagonal matrix.
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Let us fix an index s ∈ {1, . . . , N} and calculate the increment of the functional (26) on solutions
of the sth subsystem of the family (25). We get

ΔV
∣∣
(s)

= f�(x(k))f (x(k)) − x�(k)x(k) + μf� (x(k))R�
s (Dsf(x(k)) +Msf(x(k − l)))

+ μ (Dsf (x(k)) +Msf (x(k − l)))�Rsf (x(k)) + μ2‖Dsf (x(k)) +Msf (x(k − l)) ‖2

+ μf� (x(k))Qf (x(k))− μf� (x(k − l))Qf (x(k − l)) + lμ2 ‖f (x(k))‖2 − μ2
l∑

j=1

‖f (x(k − j))‖2

� μ

(
f (x(k))

f (x(k − l))

)�(
A�

s +As +Q Bs

B�
s −Q

)(
f (x(k))

f (x(k − l))

)

+ cμ2
(
‖f (x(k))‖2 + ‖f (x(k − l))‖2

)
− μ2

l∑
j=1

‖f (x(k − j))‖2 .

Here As = R�
s Ds, Bs = R�

s Ms, c is a positive constant.

If matrices As, Bs, s = 1, . . . , N , possess the properties specified in Theorem 4, then there exist
a number β > 0 and a positive definite diagonal matrix Q such that

ΔV
∣∣
(s)

� −μ(β − cμ)
(
‖f(x(k))‖2 + ‖f(x(k − l))‖2

)
− μ2

l∑
j=1

‖f(x(k − j))‖2, s = 1, . . . , N.

Therefore, there exists μ0 > 0 such that for all μ ∈ (0, μ0) the zero solution of system (24) is
asymptotically stable for any admissible functions f1(x1), . . . , fn(xn), any admissible switching
law, and any positive integer delay.

6. EXAMPLE

Consider an automatic control system defined by the following equations with switchings and
delay in feedback:

ẋi(t) = a
(σ)
i xi(t) + b

(σ)
i ϕ(xn(t− τ)), i = 1, . . . , n− 1,

ẋn(t) =
n−1∑
j=1

c
(σ)
j xj(t) + a(σ)n ϕ(xn(t)),

(27)

where σ = σ(t) is an admissible switching law, σ(t) : [0,+∞) �→ {1, . . . , N}; a(s)j , c
(s)
i , b

(s)
i are con-

stant coefficients, and a
(s)
j < 0, c

(s)
i > 0, b

(s)
i > 0, i = 1, . . . , n− 1, j = 1, . . . , n, s = 1, . . . , N ;

ϕ(xn) is a scalar nonlinearity continuous for |xn| < H (0 < H � +∞) and satisfying a sector type
condition xnϕ(xn) > 0 for xn �= 0; τ is a constant non-negative delay. Thus, at every moment of
time one of the subsystems in the following family is active:

ẋi(t) = a
(s)
i xi(t) + b

(s)
i ϕ(xn(t− τ)), i = 1, . . . , n− 1,

ẋn(t) =
n−1∑
j=1

c
(s)
j xj(t) + a(s)n ϕ(xn(t)), s = 1, . . . , N.

(28)

System (27) is a special case of system (17) (here fi(xi) = xi, i = 1, . . . , n− 1, fn(xn) = ϕ(xn)).
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By considering the system matrices,

As =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(s)
1 0 · · · 0 0

0 a
(s)
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · a
(s)
n−1 0

c
(s)
1 c

(s)
2 · · · c

(s)
n−1 a

(s)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Bs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 b
(s)
1

0 0 · · · 0 b
(s)
2

...
...

. . .
...

...

0 0 · · · 0 b
(s)
n−1

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, s = 1, . . . , N, (29)

and applying the conditions of Theorem 1, we find that if there exist numbers λ and μ such that

λ+ μ < 0, λ > max
j=1,...,n

max
s=1,...,N

a
(s)
j , μ > max

j=1,...,n
max

s=1,...,N
a
(s)
j , (30)

n−1∑
i=1

c
(s)
i max

l=1,...,N

b
(l)
i

λ− a
(l)
i

� λ− a(s)n , s = 1, . . . , N, (31)

n−1∑
i=1

b
(r)
i max

l=1,...,N

c
(l)
i

μ− a
(l)
i

+ max
s=1,...,N

a(s)n � μ, r = 1, . . . , N, (32)

then for the family (28) one can construct a common Lyapunov–Krasovskii functional of the
form (19).

The conditions of Corollary 1 are satisfied for the matrices (29) if and only if

n−1∑
i=1

c
(s)
i max

l=1,...,N

b
(l)
i

|a(l)i |
< |a(s)n |, s = 1, . . . , N, (33)

n−1∑
i=1

b
(r)
i max

l=1,...,N

c
(l)
i

|a(l)i |
+ max

s=1,...,N
a(s)n < 0, r = 1, . . . , N. (34)

Applying Theorem 4, we get that if the following inequalities hold:

n−1∑
i=1

(
c
(s)
i + b

(r)
i

)
max

l=1,...,N

1

|a(l)i |
(
c
(l)
i + b

(l)
i

)
< 4|a(s)n |, s, r = 1, . . . , N, (35)

then for the family (28) there exists a common Lyapunov–Krasovskii type functional (19) with the
identity matrix P .

Suppose that the family (28) consists of two third-order subsystems (n = 3, N = 2) with the
following coefficients:

a
(1)
1 = a, a

(2)
1 = −4, a

(1)
2 = a

(2)
2 = −6, a

(1)
3 = −4, a

(2)
3 = −8,

b
(1)
1 = 2, b

(2)
1 = 1, b

(1)
2 = b

(2)
2 = 1,

c
(1)
1 = 1, c

(2)
1 = 2, c

(1)
2 = 2, c

(2)
2 = 1.

Here a is a negative parameter.

In this case, conditions (35), which guarantee the existence of a common diagonal functional of
the form (19) with identity matrix P , are fulfilled with a < −18/29. Relations (33) and (34) hold
if and only if a < −3/5. Using the results of [15], it is easy to show that if a < −0.546, then there
exist numbers λ and μ for which the inequalities (30)–(32) hold.
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7. CONCLUSION

In this work, we have investigated the conditions for the existence of a common diagonal
Lyapunov–Krasovskii functional for a family of linear positive systems with delay. It is well known
that the problem of constructing the required functional can be reduced to finding the solution of
the corresponding system of linear matrix inequalities. However, such an approach is not always
convenient, especially for systems that contain parametric uncertainties. The conditions established
in this work are formulated in terms of the feasibility of systems of linear algebraic inequalities,
and proofs of the theorems contain constructive algorithms for obtaining the desired functionals.
We have shown that our results can be used to analyze the stability of not only linear systems but
also some classes of nonlinear differential and difference systems with delay.

As a possible direction for further research, we note an application of the developed approaches
to control problems for multi-agent systems with delay and switching communication topology.
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APPENDIX

Proof of Theorem 1. Let

P = diag {p1, . . . , pn} , Q = diag {q1, . . . , qn} ,

where pi, qi are some positive numbers, i = 1, . . . , n. Consider the functional (8) corresponding to
these matrices. We get

α1‖x(t)‖2 � V (xt) � α2‖xt‖2τ .

Here α1, α2 are positive constants, and

‖xt‖τ = sup
ξ∈[−τ,0]

‖x(t+ ξ)‖.

Fix an index s ∈ {1, . . . , N}, and let us differentiate the functional (8) with respect to the
sth subsystem of the family (10). We get

V̇
∣∣
(s)

= 2
n∑

i,j=1

pia
(s)
ij xi(t)xj(t) + 2

n∑
i,j=1

pib
(s)
ij xi(t)xj(t− τ) +

n∑
i=1

qi
(
x2i (t)− x2i (t− τ)

)
,

where a
(s)
ij and b

(s)
ij are elements of the matrices As and Bs, respectively.

Suppose now that there exist numbers λ, μ and positive vectors θ = (θ1, . . . , θn)
� and d =

(d1, . . . , dn)
�, that satisfy the conditions of Theorem 1. Let pi = di/θi, xi(t) = θizi(t), xi(t− τ) =
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θiyi(t), i = 1, . . . , n. Then

V̇
∣∣
(s)

= 2
n∑

i,j=1

dia
(s)
ij θjzi(t)zj(t) + 2

n∑
i,j=1

dib
(s)
ij θjzi(t)yj(t) +

n∑
i=1

θ2i qi
(
z2i (t)− y2i (t)

)

�
n∑

i,j=1

dia
(s)
ij θj

(
z2i (t) + z2j (t)

)
+

n∑
i,j=1

dib
(s)
ij θj

(
z2i (t) + y2j (t)

)
+

n∑
i=1

θ2i qi
(
z2i (t)− y2i (t)

)

=
n∑

i=1

z2i (t)

⎛
⎝di

n∑
j=1

(
a
(s)
ij + b

(s)
ij

)
θj + θ2i qi + θi

n∑
j=1

a
(s)
ji dj

⎞
⎠+

n∑
i=1

θiy
2
i (t)

⎛
⎝ n∑

j=1

b
(s)
ji dj − θiqi

⎞
⎠

�
n∑

i=1

θiz
2
i (t)

⎛
⎝λdi + θiqi +

n∑
j=1

a
(s)
ji dj

⎞
⎠+

n∑
i=1

θiy
2
i (t)

⎛
⎝ n∑

j=1

b
(s)
ji dj − θiqi

⎞
⎠ .

Now let

qi =
1

θi

⎛
⎝ max

s=1,...,N

n∑
j=1

b
(s)
ji dj + ε

⎞
⎠ , i = 1, . . . , n,

where ε is a positive parameter. We get

V̇
∣∣
(s)

�
n∑

i=1

θiz
2
i (t) ((λ+ μ)di + ε)− ε

n∑
i=1

θiy
2
i (t).

With sufficiently small values of ε, we have

V̇
∣∣
(s)

� −α3

n∑
i=1

θ2i z
2
i (t) = −α3‖x(t)‖2, α3 = const > 0.

Thus, the constructed functional is a common Lyapunov–Krasovskii functional for the family of
subsystems (10), satisfying the requirements of the Krasovskii theorem on asymptotic stability [19]
for all τ > 0. This completes the proof of Theorem 1.

Proof of Corollary 2. Let γ = (1, . . . , 1)�. It is easy to show (see [5, 13]) that if matrices As +Br,
s, r = 1, . . . , N are Hurwitz commutative matrices, then the vectors

θ = (−1)N
N∏
s=1

(As +Bs)
−1γ, d = (−1)N

N∏
s,r=1

(
A�

s +B�
r

)−1
γ

are positive solutions of systems (12) and (13) respectively.

Applying Corollary 1, we obtain that for the family (10) there exists a common Lyapunov–
Krasovskii diagonal functional of the form (8).

Proof of Theorem 3. Necessity. From the existence of the required functional, it follows that
there exists a diagonal positive definite matrix Q such that the quadratic form

W (y, z) =

(
y
z

)�(
A� +A+Q B

B� −Q

)(
y
z

)

is negative definite. With y = z we have W (y, y) = y�(A+B +A� +B�)y. This means that
matrix (15) must be negative definite.
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Sufficiency. The matrix (15) is Metzler. If it is negative definite, then, according to Statement 1,
there exists a positive vector ζ such that Cζ < 0.

We find the diagonal positive definite matrix Q satisfying condition Qζ = B�ζ + εγ. Here
ε = const > 0, γ = (1, . . . , 1)�.

Let

L̃ =

(
A� +A+Q B

B� −Q

)
.

Then

L̃

(
ζ

ζ

)
=

(
Cζ + εγ

−εγ

)
.

If the value of the parameter ε is small enough, then

L̃

(
ζ

ζ

)
< 0. (A.1)

The matrix L̃ is Metzler. Therefore, since inequality (A.1) holds it follows that it is Hurwitz.
And since L̃ is a symmetric matrix, its negative definiteness follows from the fact that it is Hurwitz.
This completes the proof of Theorem 3.

Proof of Theorem 4. Suppose that for a positive vector ζ = (ζ1, . . . , ζn)
� inequalities (16) are

satisfied. Then there exists a number δ > 0 such that
(
As +Bs +A�

s +B�
r

)
ζ < −δγ, s, r = 1, . . . , N.

Here γ = (1, . . . , 1)�.
Consider the matrices

L̃s =

(
A�

s +As +Q Bs

B�
s −Q

)
, s = 1, . . . , N, (A.2)

where elements of the positive definite diagonal matrix Q = diag {q1, . . . , qn} satisfy conditions

qiζi = max
r=1,...,N

n∑
j=1

b
(r)
ji ζj + ε, i = 1, . . . , n,

and ε = const > 0. If 0 < ε < δ, then

L̃s

(
ζ

ζ

)
�
(−δγ + εγ

−εγ

)
<

(
0

0

)
, s = 1, . . . , N.

Using the obtained inequalities, it is easy to show (see the proof of Theorem 3) that the matrices
given by (A.2) are negative definite. This completes the proof of Theorem 4.
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