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Asymptotics and Power

Allocation for State Estimation

Over Fading Channels
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State estimation of linear systems using analog amplify and

forwarding with multiple sensors, for both multiple access and

orthogonal access schemes is considered. Optimal state estimation

can be achieved at the fusion center using a time-varying Kalman

filter. We show that in many situations, the estimation error

covariance decays at a rate of 1=M when the number of sensors

M is large. We consider optimal allocation of transmission powers

that 1) minimizes the sum power usage subject to an error

covariance constraint, and 2) minimizes the error covariance

subject to a sum power constraint. In the case of fading channels

with channel-state information, the optimization problems are

solved using a greedy approach, while for fading channels without

channel state information (CSI) but with channel statistics

available, a suboptimal linear estimator is derived.
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I. INTRODUCTION

Wireless sensor networks are collections of sensors

which can communicate with each other or to a

central node or base station through wireless links.

Potential uses include environment and infrastructure

monitoring, healthcare and military applications, to

name a few. Often these sensors will have limited

energy and computational ability, which imposes

severe constraints on system design, and signal

processing algorithms that can efficiently utilise these

resources have attracted great interest.

In recent years there has been considerable

literature on estimation and detection schemes

designed specifically for use in wireless sensor

networks. Work on detection in wireless sensor

networks includes [1], which studies the asymptotic

optimality of using identical sensors in the presence of

energy constraints, and [2]—[4] which derive fusion

rules for distributed detection in the presence of

fading. Parameter estimation or estimation of constant

signals is studied in, e.g., [5]—[8], where issues of

quantization and optimization of power usage are

addressed. Type-based methods for detection and

estimation of discrete sources are proposed and

analyzed in [9]—[11]. Estimation of fields has been

considered in, e.g., [12]—[14].

A promising scheme for distributed estimation

in sensor networks is analog amplify and forward

[15] (in distributed detection, analog forwarding

has also been considered in, e.g., [16], [17]), where

measurements from the sensors are transmitted

directly (possibly scaled) to the fusion center without

any coding, which is motivated by optimality results

on uncoded transmissions in point-to-point links

[18, 19]. (Other related information-theoretic results

include [20], [21].) Analog forwarding schemes

are attractive due to their simplicity as well as the

possibility of real-time processing since there is no

coding delay. In [15] the asymptotic (large number

of sensors) optimality of analog forwarding for

estimating an independent and identically distributed

(IID) scalar Gaussian process was shown, and exact

optimality was later proved for a “symmetric” sensor

network [22]. Analog forwarding with optimal power

allocation is studied in [23] and [24] for multi-access

and orthogonal schemes, respectively. Lower bounds

and asymptotic optimality results for estimating

independent vector processes is addressed in [25].

Estimation with correlated data between sensors is

studied in [26], [27]. Other aspects of the analog

forwading technique that have been studied include

the use of different network topologies [28], other

multiple access schemes such as slotted ALOHA [29],

and consideration of the impact of channel estimation

errors [30] on estimation performance.

Most of the previous work on analog forwarding

has dealt with estimation of processes which are
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either constant or IID over time. In this paper we
address the estimation of dynamical systems using
analog forwarding of measurements. In particular,
we consider the problem of state estimation of
discrete-time linear systems using multiple sensors.
As is well known, optimal state estimation of a linear
system can be achieved using a Kalman filter. Other
work on Kalman filtering in sensor networks includes
studies of optimal sensor data quantization [31],
Kalman filtering using one-bit quantized observations
[32] where performance is shown to lie within a
constant factor of the standard Kalman filter, and
estimation of random fields with reduced-order
Kalman filters [14]. Another related area with a rich
history is that of distributed Kalman filtering, where
the main objectives include doing local processing at
the individual sensor level to reduce the computations
required at the fusion center [33, 34] or forming
estimates at each of the individual sensors in a
completely decentralized fashion without any fusion
center [35]. However in our work we assume that
computational resources available at the sensors are
limited so that they will only take measurements and
then transmit them to the fusion center for further
processing, using uncoded analog forwarding.
In this paper we mainly focus on estimation

of scalar linear dynamical systems1 using multiple
sensors, as the vector case introduces additional
difficulties such that only partial results can be
obtained. We are interested in deriving the asymptotic
behaviour of the error covariance with respect to
the number of sensors for these schemes, as well as
optimal transmission power allocation to the sensors
under a constraint on the error covariance at the
fusion center or a sum power constraint at the sensor
transmitters. We consider both static and fading
channels, and in the context of fading channels, we
consider various levels of availability of channel state
information (CSI) at the transmitters and the fusion
center. More specifically, we make the following key
contributions.

1) We show that (for static channels with full CSI)
for the multi-access scheme, the asymptotic estimation
error covariance can be driven to the process noise
covariance (which is the minimum attainable error)
as the number of sensors M goes to infinity, even
when the transmitted signals from each sensor are
scaled by 1=

p
M (which implies that total transmission

power across all sensors remains bounded while each
sensor’s transmission power goes to zero). This is a
particularly attractive result since sensor networks
operate in an energy-limited environment. For the
orthogonal access scheme, this result holds when the
transmitted signals are unscaled, but does not hold
when the transmitted signals are scaled by 1=

p
M.

1By scalar linear system we mean that both the states and individual

sensor measurements are scalar.

2) The convergence rate of these asymptotic

results (when they hold) is shown to be 1=M although

it is seen via simulation results that the asymptotic

approximations are quite accurate even for M = 20 to

30 sensors.

3) In the case of a small to moderate number

of sensors, we derive a comprehensive set of

optimal sensor transmit power allocation schemes

for multi-access and orthogonal medium access

schemes over both static and fading channels. For

static channels, we minimize total transmission

power at the sensors subject to a constraint on the

steady-state Kalman estimation error covariance,

and also solve a corresponding converse problem:

minimizing steady-state error covariance subject to

a sum power constraint at the sensor transmitters.

For fading channels (with full CSI), we solve

similar optimization problems, except that the error

covariance (either in the objective function or the

constraint) is considered at a per-time-instant basis

since there is no well-defined steady-state error

covariance in this case. For the fading channel case

with no CSI (either amplitude or phase), the results

are derived for the best linear estimator, which relies

on channel statistics information and can be applied

to non-zero mean fading channels. It is shown that

these optimization problems can be posed as convex

optimization problems. Moreover, the optimization

problems will turn out to be very similar to problems

previously studied in the literature (albeit in the

context of distributed estimation of a static random

source), namely, [23, 24], and can actually be solved

in closed form.

4) Numerical results demonstrate that for static

channels, optimal power allocation results in more

benefit for the orthogonal medium access scheme

compared with the multi-access scheme, whereas

for fading channels, it is seen that having full CSI

is clearly beneficial for both schemes although

the performance improvement via the optimal

power allocation scheme is more substantial for the

orthogonal scheme than for the multi-access scheme.

The rest of the paper is organized as follows.

Section II specifies our scalar models and

preliminaries, and gives a number of examples

between multi-access and orthogonal access schemes,

which show that in general one scheme does not

always perform better than the other. We investigate

the asymptotic behaviour for a large number of

sensors M in Section III. Power allocation is

considered in Section IV, where we formulate and

solve optimization problems for 1) an error covariance

constraint, and 2) a sum power constraint. We first

do this for static channels, before focusing on fading

channels. In the case where we have CSI we use

a greedy approach by performing the optimization

at each time step. When we don’t have CSI, we
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derive a suboptimal linear estimator similar to
[36]—[38], which can be used for non-zero mean
fading. Numerical studies are presented in Section V.
Extensions of our model to vector and multiple-input,
multiple-output (MIMO) systems is considered in
Section VI, where we formulate the models and
optimization problems and outline some of the
difficulties involved.

II. MODELS AND PRELIMINARIES

Throughout this paper, i represents the sensor
index and k represents the time index. Let the scalar
linear system be

xk+1 = axk +wk

with the M sensors each observing

yi,k = cixk + vi,k, i= 1, : : : ,M

with wk and vi,k being zero-mean Gaussians having

variances ¾2w and ¾
2
i , respectively, with the vi,ks

being independent between sensors. Note that the
sensors can have different observation matrices ci
and measurement noise variances ¾2i , and we allow
a and ci to take on both positive and negative values.
It is assumed that the parameters a, ci, ¾

2
w and ¾

2
i are

known.2 Furthermore, we assume that the system is
stable, i.e., jaj< 1.

A. Multi-Access Scheme

In the (nonorthogonal) multi-access scheme, the
fusion center receives the sum

z̃k =

MX
i=1

®̃i,kh̃i,kyi,k + ñk (1)

where ñk is zero-mean complex Gaussian with

variance 2¾2n , h̃i,k are the complex-valued channel
gains, and ®̃i,k are the complex-valued multiplicative
amplification factors in an amplify and forward
scheme. We assume that all transmitters have access
to their complex CSI,3 and the amplification factors
have the form

®̃i,k = ®i,k
h̃¤i,k
jh̃i,kj

where ®i,k is real-valued, i.e., we assume distributed

transmitter beamforming. Defining hi,k ´ jh̃i,kj, zk ´
<[z̃k], nk ´<[ñk], we then have

zk =

MX
i=1

®i,khi,kyi,k + nk: (2)

2We assume that these parameters are static or very slowly time

varying, and hence can be accurately determined beforehand using

appropriate parameter estimation/system identification algorithms.
3The case where the channel gains are unknown but channel

statistics are available is addressed in Section IVE. This can also

be used to model the situation where perfect phase synchronization

cannot be achieved [25].

Note that the assumption of CSI at the transmitters

is important in order for the signals to add up

coherently in (2). In principle, it can be achieved by

the distributed synchronization schemes described

in, e.g., [39], [40], but may not be feasible for

large sensor networks. However, in studies such as

[16], [39], it has been shown in slightly different

contexts that for moderate amounts of phase error,

much of the potential performance gains can still be

achieved.

Continuing further, we may write

zk =

MX
i=1

®i,khi,kcixk +

MX
i=1

®i,khi,kvi,k + nk = c̄kxk + v̄k

where c̄k ´
PM
i=1®i,khi,kci and v̄k ´

PM
i=1®i,khi,kvi,k +nk.

Hence we have the following linear system:

xk+1 = axk +wk, zk = c̄kxk + v̄k (3)

with v̄k having variance r̄k ´
PM
i=1®

2
i,kh

2
i,k¾

2
i +¾

2
n .

Define the state estimate and error covariance as

x̂k+1jk = E[xk+1 j fz0, : : : ,zkg]
Pk+1jk = E[(xk+1¡ x̂k+1jk)2 j fz0, : : : ,zkg]

where again Pk+1jk is scalar. Then it is well known that
optimal estimation of the state xk in the minimum

mean squared error (MMSE) sense can be achieved

using a (in general time-varying) Kalman filter [41].

Using the shorthand notation Pk+1 = Pk+1jk, the error
covariance satisfies the recursion

Pk+1 = a
2Pk ¡

a2P2k c̄
2
k

c̄2kPk + r̄k
+¾2w =

a2Pkr̄k
c̄2kPk + r̄k

+¾2w:

(4)
We also remark that even if the noises are

non-Gaussian, the Kalman filter is still the best linear

estimator.

B. Orthogonal Access Scheme

In the orthogonal access scheme each sensor

transmits its measurement to the fusion center via

orthogonal channels (e.g., using FDMA or CDMA),

so that the fusion center receives

z̃i,k = ®̃i,kh̃i,kyi,k + ñi,k, i= 1, : : : ,M

with the ñi,ks being independent, zero-mean complex

Gaussian with variance 2¾2n , 8i. We again assume CSI
at the transmitters and use ®̃i,k = ®i,kh̃

¤
i,k=jh̃i,kj with

®i,k 2 R. Let hi,k ´ jh̃i,kj, zi,k ´<[z̃i,k], ni,k ´<[ñi,k]. The
situation is then equivalent to the linear system (using

the superscript “o” to distinguish some quantities

in the orthogonal scheme from the multi-access

scheme):

xk+1 = axk +wk, zok = C̄
o
kxk + v̄

o
k
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where

zok ´

2664
z1,k

...

zM,k

3775

C̄ok ´

2664
®1,kh1,kc1

...

®M,khM,kcM

3775

v̄ok ´

2664
®1,kh1,kv1,k + n1,k

...

®M,khM,kvM,k + nM,k

3775
with the covariance of v̄ok being

R̄ok ´

2666664
®21,kh

2
1,k¾

2
1 +¾

2
n 0 ¢ ¢ ¢ 0

0 ®22,kh
2
2,k¾

2
2 +¾

2
n ¢ ¢ ¢ 0

...
...

. . .
...

0 0 ¢ ¢ ¢ ®2M,kh
2
M,k¾

2
M +¾

2
n

3777775 :

The state estimate and error covariance are now
defined as

x̂ok+1jk = E[xk+1 j fzo0, : : : ,zokg]
Pok+1jk = E[(xk+1¡ x̂ok+1jk)2 j fzo0, : : : ,zokg]:

Optimal estimation of xk in the orthogonal access
scheme can also be achieved using a Kalman filter,
with the error covariance now satisfying the recursion

Pok+1 = a
2Pok ¡ a2(Pok )2C̄o

T

k (C̄
o
kP

o
k C̄

oT

k + R̄
o
k )
¡1C̄ok +¾

2
w

where C̄ok and R̄
o
k as defined above are, respectively, a

vector and a matrix. To simplify the expressions, note
that

C̄o
T

k (C̄
o
kP

o
k C̄

oT

k + R̄
o
k)
¡1C̄ok =

C̄o
T

k R̄
o¡1
k C̄ok

1+Pok C̄
oT

k R̄
o¡1
k C̄ok

which can be shown using the matrix inversion
lemma. Hence

Pok+1 =
a2Pok

1+Pok C̄
oT

k R̄
o¡1
k C̄ok

+¾2w (5)

where one can also easily compute C̄o
T

k R̄
o¡1
k C̄ok =PM

i=1®
2
i,kh

2
i,kc

2
i =(®

2
i,kh

2
i,k¾

2
i +¾

2
n). The advantage of the

orthogonal scheme is that we do not need carrier-level
synchronization among all sensors, but only require
synchronization between each individual sensor and
the fusion center [24].

C. Transmit Powers

The power °i,k used at time k by the ith sensor in
transmitting its measurement to the fusion center is
defined as °i,k = ®

2
i,kE[y2i,k]. For stable scalar systems,

it is well known that if fxkg is stationary, we have
E[x2k ] = ¾2w=(1¡ a2), 8k. In both the multi-access
and orthogonal schemes, the transmit powers are

then

°i,k = ®
2
i,k

μ
c2i

¾2w
1¡ a2 +¾

2
i

¶
:

D. Steady-State Error Covariance

In this and the next few sections, we let h̃i,k = h̃i
(and hence hi,k = hi), 8k be time invariant, deferring
the discussion of time-varying channels until

Section IVD. We also assume in this case that ®i,k =

®i, 8k, i.e., the amplification factors don’t vary with
time, and we drop the subscript k from quantities such

as c̄k and r̄k.

From Kalman filtering theory, we know that the

steady-state (as k!1) error covariance P1 (provided

it exists) in the multi-access scheme satisfies (cf. (4))

P1 =
a2P1r̄
c̄2P1+ r̄

+¾2w (6)

where r̄ and c̄ are the time-invariant versions of r̄k
and c̄k.

4 For stable systems, it is known that the

steady-state error covariance always exists [41, p. 77].

For c̄ 6= 0, the solution to this can be easily shown to
be

P1 =
(a2¡1)r̄+ c̄2¾2w+

p
((a2¡ 1)r̄+ c̄2¾2w)2 +4c̄2¾2wr̄
2c̄2

:

(7)

In the “degenerate” case where c̄= 0, we have P1 =
¾2w=(1¡ a2). It is also usful to write (7) as

P1 =
a2¡ 1+¾2wS+

p
(a2¡ 1+¾2wS)2 +4¾2wS
2S

(8)

with S ´ c̄2=r̄ regarded as a signal-to-noise ratio
(SNR). We have the following property.

LEMMA 1 P1 as defined by (8) is a decreasing
function of S.

PROOF See the Appendix.

4The assumption of time invariance is important. For time-varying

r̄k and c̄k , the error covariance usually will not converge to a

steady-state value.
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Similarly, in the orthogonal access scheme, the

steady-state error covariance Po1 satisfies (cf. (5))

Po1 =
a2Po1

1+Po1C̄o
T
R̄o

¡1
C̄o
+¾2w (9)

where R̄o and C̄o are the time-invariant versions of

R̄ok and C̄
o
k . We can easily compute C̄

oTR̄o
¡1
C̄o =PM

i=1®
2
i h
2
i c
2
i =(®

2
i h
2
i ¾
2
i +¾

2
n) with S

o ´ C̄oTR̄o¡1C̄o
regarded as an SNR. The solution to (9) can then be

found as

Po1 =
a2¡ 1+¾2wSo+

p
(a2¡ 1+¾2wSo)2 +4¾2wSo
2So

:

(10)

LEMMA 2 Po1 as defined by (10) is a decreasing

function of So.

The proof is the same as that of Lemma 1 in the

Appendix.

Comparing (8) and (10), we see that the functions

for P1 and Po1 are of the same form, except that in the

multi-access scheme we have

S ´ c̄
2

r̄
=

³PM
i=1®ihici

´2
PM
i=1®

2
i h
2
i ¾
2
i +¾

2
n

and in the orthogonal scheme we have

So ´ C̄oTR̄o¡1C̄o =
MX
i=1

®2i h
2
i c
2
i

®2i h
2
i ¾
2
i +¾

2
n

:

E. Some Examples of Multi-Access versus Orthogonal
Access

A natural question to ask is whether one scheme

always performs better than the other, e.g., whether

S ¸ So given the same values for ®i, hi, ci, ¾2i , ¾2n are
used in both expressions. We present below a number

of examples to illustrate that in general this is not true.

Assume for simplicity that the ®is are chosen such

®ici are positive for all i= 1, : : : ,M.

1) Consider first the case when ¾2n = 0. Then we

have the inequality

MX
i=1

®2i h
2
i c
2
i

®2i h
2
i ¾
2
i

¸
³PM

i=1®ihici

´2
PM
i=1®

2
i h
2
i ¾
2
i

which can be shown by applying Theorem 65 of [42].

So when ¾2n = 0, S
o ¸ S and consequently Po1 will be

smaller than P1. The intuitive explanation for this is
that if there is no noise introduced at the fusion center,

then receiving the individual measurements from the

sensors is better than receiving a linear combination of

the measurements; see also [43].

2) Next we consider the case when the noise

variance ¾2n is large. We can express S¡ So as
1

(
PM

i=1
®2i h

2
i ¾

2
i +¾

2
n)
QM

i=1
(®2i h

2
i ¾

2
i +¾

2
n)

£

0@Ã MX
i=1

®ihici

!2
MY
i=1

(®2i h
2
i ¾

2
i +¾

2
n)

¡®21h21c21
Ã

MX
i=1

®2i h
2
i ¾

2
i +¾

2
n

!Y
i:i 6=1
(®2i h

2
i ¾

2
i +¾

2
n)¡ ¢¢ ¢

¡®2Mh2Mc2M
Ã

MX
i=1

®2i h
2
i ¾

2
i +¾

2
n

!Y
i:i 6=M

(®2i h
2
i ¾

2
i +¾

2
n)

!
:

The coefficient of the (¾2n)
M term in the numerator is

(
PM
i=1®ihici)

2¡®21h21c21¡¢¢ ¢¡®2Mh2Mc2M > 0. When ¾2n
is sufficiently large, this term will dominate, hence

S > So and the multi-access scheme will now have

smaller error covariance than the orthogonal scheme.

3) Now we consider the “symmetric” situation

where ®i = ®, ci = c, ¾
2
i = ¾

2
v , hi = h, 8i. Then we have

S =
M2®2h2c2

M®2h2¾2v +¾
2
n

=
M®2h2c2

®2h2¾2v +¾
2
n=M

and

So =
M®2h2c2

®2h2¾2v +¾
2
n

:

Hence S ¸ So, with equality only when ¾2n = 0 (or
M = 1). Thus in the symmetric case, the multi-access

scheme outperforms the orthogonal access scheme.

4) Suppose ¾2n 6= 0. We wish to know whether it
is always the case that S > So for M sufficiently large.

The following counterexample shows that in general

this assertion is false. Let ®i = 1, hi = 1, ¾
2
i = 1, 8i.

Let M=2 of the sensors have ci = 1 and the other M=2

sensors have ci = 2. We find that

S =
(M=2+M)2

M +¾2n
=
9

4

M

1+¾2n=M

and

So =
M

2

1+4

1+¾2n
=
5

2

M

1+¾2n
:

If, e.g., ¾2n = 1=8, then it may be verified that S
o > S

for M < 10, So = S for M = 10, and S > So for

M > 10, so eventually the multi-access scheme

outperforms the orthogonal scheme. On the other

hand, if 5=(2(1+¾2n))> 9=4 or ¾
2
n < 1=9, we will have

So > S no matter how large M is.

III. ASYMPTOTIC BEHAVIOUR

Since P1 is a decreasing function of S (similar

comments apply for the orthogonal scheme),

increasing S will provide an improvement in

performance. As S!1, we can see from (8) that
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P1 ! ¾2w, the process noise variance. Note that unlike,

e.g., [15], [24], where the mean squared error (MSE)

can be driven to zero in situations such as when there

are a large number of sensors, here the lower bound

¾2w on performance is always strictly greater than zero.

When the number of sensors is fixed, then it is not

too difficult to show that S will be bounded no matter

how large (or small) one makes the ®is, so getting

arbitrarily close to ¾2w is not possible. On the other

hand, if instead the number of sensors M is allowed to

increase, then P1 ! ¾2w as M!1 can be achieved in

many situations, as shown in the following. Moreover

we are interested in the rate at which this convergence

occurs.

In this section we will first investigate two simple

strategies, 1) ®i = 1, 8i, and 2) ®i = 1=
p
M, 8i.5 For

the “symmetric” case (i.e., the parameters are the

same for each sensor), we obtain explicit asymptotic

expressions. We then use these results to bound

the performance in the general asymmetric case

in Section IIIC. Finally, we also investigate the

asymptotic performance of a simple equal-power

allocation scheme in Section IIID. We note that

the results in this section assume that large M

is possible, e.g., ability to synchronize a large

number of sensors in the multi-access scheme, or

the availability of a large number of orthogonal

channels in the orthogonal scheme, which may

not always be the case in practice. On the other

hand, in numerical investigations we have found

that the results derived in this section are quite

accurate even for 20—30 sensors, see Figs. 1 and 2

in Section V.

A. No Scaling: ®i = 1, 8i
Let ®i = 1, 8i, so measurements are forwarded to

the fusion center without any scaling. Assume for

simplicity the symmetric case, where ci = c, ¾
2
i = ¾

2
v ,

hi = h, 8i.
In the multi-access scheme, c̄=Mhc, and

v̄k has variance r̄ =Mh
2¾2v +¾

2
n , so that S =

M2h2c2=(Mh2¾2v +¾
2
n). Since S!1 as M!1, we

have by the previous discussion that P1 ! ¾2w. The

rate of convergence is given by the following:

LEMMA 3 In the symmetric multi-access scheme with

®i = 1, 8i,
P1 = ¾

2
w+

a2¾2v
c2

1

M
+O

μ
1

M2

¶
(11)

as M!1.
PROOF See the Appendix.

5These strategies are similar to the case of “equal power constraint”

and “total power constraint” in [44] (also [16]), and various

versions have also been considered in the work of [15], [23]—[25],

in the context of estimation of IID processes.

Thus the steady-state error covariance for the

multi-access scheme converges to the process noise

variance ¾2w at a rate of 1=M. This result matches the

rate of 1=M achieved for estimation of IID processes

using multi-access schemes, e.g., [15, 44].

In the orthogonal scheme we have So =

Mh2c2=(h2¾2v +¾
2
n), so S

o!1 as M!1 also. By

calculations similar to the proof of Lemma 3 we find

that as M!1,

Po1 = ¾
2
w+

a2(h2¾2v +¾
2
n)

h2c2
1

M
+O

μ
1

M2

¶
= ¾2w+

a2(¾2v +¾
2
n=h

2)

c2
1

M
+O

μ
1

M2

¶
: (12)

Therefore, the steady-state error covariance again

converges to ¾2w at a rate of 1=M, but the constant

a2(¾2v +¾
2
n=h

2)=c2 in front is larger. This agrees with

example 3 of Section IIE that, in the symmetric

situation, the multi-access scheme will perform better

than the orthogonal scheme.

B. Scaling ®i = 1=
p
M, 8i

In the previous case with ®i = 1, 8i, the power
received at the fusion center will grow unbounded

as M!1. Suppose instead we let ®i = 1=
p
M,

8i, which will keep the power received at the
fusion center bounded (and is constant in the

symmetric case), while the transmit power used

by each sensor will tend to zero as M!1. Again
assume for simplicity that ci = c, ¾

2
i = ¾

2
v , hi = h,

8i.
In the multi-access scheme, we now have S =

Mh2c2=(h2¾2v +¾
2
n), so that as M!1,

P1 = ¾
2
w+

a2(¾2v +¾
2
n=h

2)

c2
1

M
+O

μ
1

M2

¶
: (13)

Thus we again have the steady-state error covariance

converging to the process noise variance ¾2w at a

rate of 1=M. In fact, we see that this is the same

expression as (12) in the orthogonal scheme, but

there we were using ®i = 1, 8i. The difference
here is that this performance can be achieved

even when the transmit power used by each

individual sensor will decrease to zero as the

number of sensors increases, which can be quite

desirable in power-constrained environments such

as wireless sensor networks. For IID processes,

this somewhat surprising behaviour when the total

received power is bounded has also been observed

[25, 44].

In the orthogonal scheme we have So =

h2c2=(h2¾2v =M +¾2n), and we note that now S
o is

bounded even as M!1, so Po1 cannot converge to

¾2w as M!1. For a more precise expression, we
can show by similar computations to the proof of
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Lemma 3 that for large M,

Po1 =
(a2¡ 1)¾2n +h2c2¾2w+

p
(a2¡1)2¾4n +2(a2 +1)¾2nh2c2¾2w+ h4c4¾4w

2h2c2

+

"
(a2¡ 1)¾2v
2c2

+
(a2 +1)h4¾2v c

2¾2w+(a
2¡1)2¾2nh2¾2v

2h2c2
p
(a2¡ 1)2¾4n +2(a2 +1)¾2nh2c2¾2w+ h4c4¾4w

#
1

M
+O

μ
1

M2

¶
: (14)

Noting that

(a2¡ 1)¾2n + h2c2¾2w+
p
(a2¡ 1)2¾4n +2(a2 +1)¾2nh2c2¾2w+ h4c4¾4w

2h2c2
> ¾2w

the steady-state error covariance will converge as

M!1 to a value strictly greater than ¾2w, though

the convergence is still at a rate 1=M . Analogously

for IID processes, it has been shown that in the

orthogonal scheme the MSE does not go to zero as

M!1 when the total power used is bounded [24].

C. General Parameters

The behaviour shown in the two previous cases

can still hold under more general conditions on ci, ¾
2
i ,

and hi. Suppose for instance that they can be bounded

from both above and below, i.e., 0< cmin · jcij ·
cmax <1, 0< ¾2min · ¾2i · ¾2max <1, 0< hmin · hi ·
hmax <1, 8i. We have the following:
LEMMA 4 In the general multi-access scheme, as

M!1, using either no scaling of measurements, or
scaling of measurements by 1=

p
M, results in

P1 = ¾
2
w+O

μ
1

M

¶
:

In the general orthogonal scheme, using no scaling of

measurements results in

Po1 = ¾
2
w+O

μ
1

M

¶
as M!1, but Po1 does not converge to a limit (in
general) as M!1 when measurements are scaled by

1=
p
M.

PROOF See the Appendix.

D. Asymptotic Behaviour under Equal-Power
Allocation

When the parameters are asymmetric, the above

rules will in general allocate different powers to the

individual sensors. Another simple alternative is to use

equal-power allocation. Recall that the transmit power

used by each sensor is °i = ®
2
i (c

2
i ¾
2
w=(1¡ a2)+¾2i ).

If we allocate power ° to each sensor, i.e., °i = °, 8i,
then

®i =

s
°(1¡ a2)

c2i ¾
2
w+¾

2
i (1¡ a2)

: (15)

If instead the total power °total is to be shared equally

amongst sensors, then °i = °total=M, 8i, and

®i =

s
°total(1¡ a2)

M(c2i ¾
2
w+¾

2
i (1¡ a2))

: (16)

Asymptotic results under equal-power allocation are

quite similar to Section IIIC, namely,

LEMMA 5 In the general multi-access scheme, as

M!1, using the equal-power allocation (15) or (16)
results in

P1 = ¾
2
w+O

μ
1

M

¶
:

In the general orthogonal scheme, using the

equal-power allocation (15) results in

Po1 = ¾
2
w+O

μ
1

M

¶
as M!1, but Po1 does not converge to a limit as

M!1 when using the power allocation (16).

PROOF See the Appendix.

E. Remarks

1) Most of the previous policies in this section

give a convergence rate of 1=M. We might wonder

whether one can achieve an even better rate (e.g.,

1=M2) using other choices for ®i, though the answer

turns out to be no. To see this, following [15],

consider the “ideal” case where sensor measurements

are received perfectly at the fusion center, and which

mathematically corresponds to the orthogonal scheme

with ¾2n = 0, ®i = 1, hi = 1, 8i. This idealized situation
provides a lower bound on the achievable error

covariance. We will have So =
PM

i=1 c
2
i =¾

2
i , which

can then be used to show that Po1 converges to ¾2w at

the rate 1=M. Hence 1=M is the best rate that can be

achieved with any coded/uncoded scheme.

2) In the previous derivations we have not actually

used the assumption that jaj< 1, so the results in
Sections IIIA—IIIC will hold even when the system

is unstable (assuming C̄ 6= 0). However for unstable
systems, E[x2k ] becomes unbounded as k!1, so
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if the ®i,ks are time invariant, then more and more

power is used by the sensors as time passes. If the

application is a wireless sensor network where power

is limited, then the question is whether one can

choose these ®i,ks such that both the power used

by the sensors and the error covariances will be

bounded for all times. Now if there is no noise at the

fusion center, i.e., nk = 0, then a simple scaling of the

measurements at the individual sensors will work. But

when nk 6= 0, as will usually be the case in analog
forwarding, we have not been able to find a scheme

that can achieve this. Note however that for unstable

systems, asymptotic results are of mathematical

interest only. In practice (in most cases) we will be

interested in finite horizon results for unstable systems

where the system states and measurements can take

on large values but are still bounded. In such finite

horizon situations, one can perform optimum power

allocation at each time step similar to the process

presented in Section IVD but for a finite number of

time steps. One can also use a finite horizon dynamic

programming approach similar to Section IVD4.

However these problems not addressed in the current

paper.

IV. OPTIMAL POWER ALLOCATION

When there are a large number of sensors,

one can use simple strategies such as ®i = 1=
p
M ,

8i or the equal power allocation (16), which will
both give a convergence of the steady-state error

covariance to ¾2w at a rate of 1=M in the multi-access

scheme, while bounding the total power used by

all the sensors. However when the number of

sensors is small, one may perhaps do better with

different choices of the ®is. In this section we

study some relevant power allocation problems.

These are considered first for static channels

in the multi-access and orthogonal schemes in

Sections IVA and IVB, respectively. Some features

of the solutions to these optimization problems are

discussed in Section IVC. These results are then

extended to fading channels with CSI and fading

channels without CSI in Sections IVD and IVE,

respectively.

A. Optimization Problems for Multi-Access Scheme

1) Minimizing Sum Power: One possible

formulation is to minimize the sum of transmit powers

used by the sensors subject to a bound D on the

steady-state error covariance. More formally, the

problem is

min

MX
i=1

°i =

MX
i=1

®2i

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶
subject to P1 ·D

with P1 given by (7). Some straightforward

manipulations show that the constraint can be

simplified to

r̄(a2D+¾2w¡D)+ c̄2D(¾2w¡D)· 0 (17)

i.e., Ã
MX
i=1

®2i h
2
i ¾
2
i +¾

2
n

!
(a2D+¾2w¡D)

+

Ã
MX
i=1

®ihici

!2
D(¾2w¡D)· 0:

Now define s= h1c1®1 + ¢ ¢ ¢+ hMcM®M . Then the
optimization problem becomes

min
®1,:::,®M ,s

MX
i=1

®2i

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶

subject to

Ã
MX
i=1

®2i h
2
i ¾
2
i +¾

2
n

!
(a2D+¾2w¡D)

· s2D(D¡¾2w) and s=

MX
i=1

hici®i: (18)

Before continuing further, let us first determine some

upper and lower bounds on D. From Section III, a

lower bound is D ¸ ¾2w, the process noise variance.
For an upper bound, suppose c̄= 0 so we don’t have

any information about xk. Since we are assuming

the system is stable, one can still achieve an error

covariance of ¾2w=(1¡ a2) (e.g., just let x̂k = 0, 8k), so
D · ¾2w=(1¡ a2). Hence in problem (18) both D¡¾2w
and a2D+¾2w¡D are positive quantities.

To reduce the amount of repetition in later

sections, consider the slightly more general problem

min
®1,:::,®M ,s

MX
i=1

®2i ·i

(19)

subject to

Ã
MX
i=1

®2i ¿i+¾
2
n

!
x· s2y and s=

MX
i=1

®i½i

where x > 0, y > 0, ·i > 0, ½i 2R, ¿i > 0, i= 1, : : : ,M
are constants. In the context of (18), x= a2D+

¾2w¡D, y =D(D¡¾2w), ½i = hici, ¿i = h2i ¾2i and ·i =
c2i ¾

2
w=(1¡ a2)+¾2i for i = 1, : : : ,M.
The objective function of problem (19) is clearly

convex. Noting that ¿i, ¾
2
n , x and y are all positive,

the set of points satisfying (
PM
i=1 ¿i®

2
i +¾

2
n)x= ys

2

is then a quadric surface that consists of two pieces,

corresponding to s > 0 and s < 0.6 Furthermore, the

set of points satisfying (
PM
i=1 ¿i®

2
i +¾

2
n)x· ys2 and s >

0, and the set of points satisfying (
PM
i=1 ¿i®

2
i +¾

2
n)x·

6In three dimensions this surface corresponds to a “hyperboloid of

two sheets.”
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ys2 and s < 0, are both known to be convex sets, see

e.g., Proposition 15.4.7 of [45]. Hence the parts of the

feasible region corresponding to s > 0 and s < 0 are

both convex, and the global solution can be efficiently

obtained numerically. Furthermore, following similar

steps to [23], a solution in (mostly) closed form can

actually be obtained. We omit the derivations but

summarise what is required.

One first solves numerically for ¸ the equation

MX
i=1

¸½2i
·i+¸¿ix

=
1

y
:

Since the left-hand side is increasing with ¸, solutions

to this equation will be unique provided it exists.

Taking limits as ¸!1, we see that a solution exists
if and only if

MX
i=1

½2i
¿i
>
x

y
: (20)

Equation (20) thus provides a feasibility check for the

optimization problem (19). In the context of (18), one

can easily derive that (20) implies

MX
i=1

c2i
¾2i
>
a2D+¾2w¡D
D(D¡¾2w)

which indicates that the sum of the sensor SNRs must

be greater than a threshold (dependent on the error

covariance threshold D) for the optimization problem

(18) to be feasible. Next, we compute ¹ from

¹2 = ¾2nx

Ã
MX
i=1

½2i ·i
4¸(·i+¸¿ix)

2

!¡1
:

Finally we obtain the optimal ®is (denoted by ®
¤
i )

®¤i =
¹½i

2(·i+¸¿ix)
, i= 1, : : : ,M (21)

with the resulting powers

°i = ®
¤2
i ·i = ®

¤2
i

μ
c2i

¾2w
1¡ a2 +¾

2
i

¶
, i= 1, : : : ,M:

Note that depending on whether we choose ¹ to be

positive or negative, two different sets of ®¤i s are
obtained, one of which is the negative of the other,

though the °is and hence the optimal value of the

objective function remains the same.

Another interesting relation that can be shown (see

[23]) is that the optimal sum power satisfies

°¤total =
MX
i=1

®¤2i ·i = ¸¾
2
nx: (22)

This relation is useful in obtaining an analytic solution

to problem (23) next.

2) Minimizing Error Covariance: A related

problem is to minimize the steady-state error

covariance subject to a sum power constraint °total.

Formally, this is

minP1

subject to

MX
i=1

®2i

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶
· °total

with P1 again given by (7). For this problem, the

feasible region is clearly convex, but the objective

function is complicated. To simplify the objective,

recall from Lemma 1 that P1 is a decreasing function

of S = c̄2=r̄. Thus maximizing c̄2=r̄ (or minimizing

r̄=c̄2) is equivalent to minimizing P1, which can be
interpreted as maximizing the SNR minimizes P1.
Hence the problem is equivalent to

min
®1,:::,®M ,s

PM
i=1®

2
i h
2
i ¾
2
i +¾

2
n

s2

subject to

MX
i=1

®2i

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶
· °total

and s=

MX
i=1

hici®i:

We again introduce a more general problem:

min
®1,:::,®M ,s

PM
i=1®

2
i ¿i+¾

2
n

s2

subject to

MX
i=1

®2i ·i · °total and s=

MX
i=1

®i½i

(23)

with x > 0, y > 0, ·i > 0, ½i 2 R, ¿i > 0, i= 1, : : : ,M
being constants. The objective function is still

nonconvex; however by making use of the properties

of the analytical solution to problem (19), such as the

relation (22), an analytical solution to problem (23)

can also be obtained. The optimal ®is can be shown to

satisfy

®¤2i = °total

0BBB@
MX
j=1

½2jμ
·j + °total

¿j

¾2n

¶2·j
1CCCA
¡1

£ ½2iμ
·i+ °total

¿i
¾2n

¶2 ·i: (24)

The details on obtaining this solution are similar to

those in [23] and are omitted.

B. Optimization Problems for Orthogonal Access
Scheme

1) Minimizing Sum Power: The corresponding

problem of minimizing the sum power in the
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orthogonal scheme is

min

MX
i=1

°i =

MX
i=1

®2i

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶
subject to Po1 ·D

with Po1 now given by (10). By a rearrangement of the

constraint, this can be shown to be equivalent to

min
®2
1
,:::,®2

M

MX
i=1

®2i

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶

subject to

MX
i=1

®2i h
2
i c
2
i

®2i h
2
i ¾
2
i +¾

2
n

¸ a
2D+¾2w¡D
D(D¡¾2w)

:

(25)

Note that in contrast to the multi-access scheme, we

now write the minimization over ®2i rather than ®i.

Since each of the functions

¡®2i h2i c2i
®2i h

2
i ¾
2
i +¾

2
n

=
¡c2i
¾2i

+
¾2nc

2
i =¾

2
i

®2i h
2
i ¾
2
i +¾

2
n

is convex in ®2i , the problem is a convex optimization

problem in (®21, : : : ,®
2
M). Note that without further

restrictions on ®i, we get 2
M solutions with the same

values of the objective function corresponding to the

different choices of positive and negative signs on

the ®is. This is in contrast to the multi-access scheme

where there were two sets of solutions. For simplicity

we can take the solution corresponding to all ®i ¸ 0.7
An analytical solution can also be obtained. To

reduce repetition in later sections, consider the more

general problem

min
®2
1
,:::,®2

M

MX
i=1

®2i ·i

subject to

MX
i=1

®2i ½
2
i

®2i ¿i+¾
2
n

¸ x

y

(26)

where x > 0, y > 0, ·i > 0, ½i 2R, ¿i > 0, i= 1, : : : ,M
are constants and have similar interpretations as in

Section IVA1. Since the derivation of the analytical

solution is similar to that found in [24] (though what

they regard as ®k is ®
2
i here), it is omitted, and we

only present the solution.

Firstly the problem will be feasible if and only if

MX
i=1

½2i
¿i
>
x

y
:

Interestingly this is the same as the feasibility

condition (20) for problem (19) in the multi-access

scheme, indicating that the total SNR for the sensor

7In general this is not possible in the multi-access scheme. For

instance, if we have two sensors with c1 being positive and c2
negative, the optimal solution will involve ®1 being positive and

®2 negative or vice versa. Restricting both ®is to be positive in the

multi-access scheme will result in a suboptimal solution.

measurements must be greater than a certain threshold

(dependent on D). The optimal ®is satisfy

®¤2i =
1

¿i

0@s¸½2i ¾2n
·i

¡¾2n

1A+

(27)

where (x)+ is the function that is equal to x when x

is positive, and zero otherwise. To determine ¸, now

assume that the sensors are ordered such that

½21
·1
¸ ¢¢ ¢ ¸ ½2M

·M
:

Note that in the context of problem (25),

½2i
·i
=

h2i
¾2w=(1¡ a2)+¾2i =c2i

:

Clearly, this ordering favours the sensors with better

channels and higher measurement quality. Then the

optimal values of ®2i (and hence ®
¤
i ) can also be

expressed as

®¤2i =

8><>:
1

¿i

Ãs
¸½2i ¾

2
n

·i
¡¾2n

!
, i·M1

0, otherwise

where

p
¸=

PM1
i=1

j½ij
¿i

p
·i¾

2
nPM1

i=1

½2i
¿i
¡ x
y

and the number of sensors which are active, M1
(which can be shown to be unique [6]), satisfies

M1X
i=1

½2i
¿i
¡ x
y
¸ 0,

PM1
i=1

j½ij
¿i

p
·i¾

2
nPM1

i=1

½2i
¿i
¡ x
y

s
½2M1¾

2
n

·M1
¡¾2n > 0

and PM1+1
i=1

j½ij
¿i

p
·i¾

2
nPM1+1

i=1

½2i
¿i
¡ x
y

s
½2M1+1¾

2
n

·M1+1
¡¾2n · 0:

2) Minimizing Error Covariance: The

corresponding problem of minimizing the error

covariance in the orthogonal scheme is equivalent to

min
®2
1
,:::,®2

M

¡
MX
i=1

®2i h
2
i c
2
i

®2i h
2
i ¾
2
i +¾

2
n

subject to

MX
i=1

®2i

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶
· °total

which is again a convex problem in (®21, : : : ,®
2
M). For

an analytical solution [24], consider a more general
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problem:

min
®2
1
,:::,®2

M

¡
MX
i=1

®2i ½
2
i

®2i ¿i+¾
2
n

subject to

MX
i=1

®2i ·i · °total

(28)

where x > 0, y > 0, ·i > 0, ½i 2R, ¿i > 0, i= 1, : : : ,M
are constants. Then the optimal ®is satisfy

®¤2i =
1

¿i

0@s½2i ¾2n
¸·i

¡¾2n

1A+

: (29)

Assuming that the sensors are ordered so that

½21
·1
¸ ¢¢ ¢ ¸ ½2M

·M

the optimal values of ®2i for problem (28) can also be
expressed as

®¤2i =

8><>:
1

¿i

Ãs
½2i ¾

2
n

¸·i
¡¾2n

!
, i·M1

0, otherwise

where

1p
¸
=

°total +
PM1
i=1

·i
¿i
¾2nPM1

i=1

j½ij
¿i

p
·i¾

2
n

and the number of sensors which are active, M1
(which is again unique), satisfies

°total +
PM1
i=1

·i
¿i
¾2nPM1

i=1

j½ij
¿i

p
·i¾

2
n

s
½2M1¾

2
n

·M1
¡¾2n > 0

and

°total +
PM1+1

i=1

·i
¿i
¾2nPM1+1

i=1

j½ij
¿i

p
·i¾

2
n

s
½2M1+1¾

2
n

·M1+1
¡¾2n · 0:

C. Remarks

1) In the orthogonal scheme, the solutions of
the optimization problems (26) and (28) take the
form (27) and (29), respectively. These expressions
are reminiscent of the “water-filling” solutions in
wireless communications, where only sensors of
sufficiently high-quality measurements are allocated
power, while sensors with lower quality measurements
are turned off. On the other hand, the solutions for
problems (19) and (23) have the form (21) and (24),
respectively, which indicates that all sensors get
allocated some non-zero power when we perform the
optimization. The intuition behind this is that in the
multi-access scheme, some “averaging” can be done
when measurements are added together, which can
reduce the effects of noise and improve performance,

while this can’t be done in the orthogonal scheme so
that turning off low quality sensors will save power.
2) The four optimization problems we consider

(problems (19), (23), (26), and (28)) have analytical
solutions, and can admit distributed implementations,
which may be important in large sensor networks.
For problem (19) the fusion center can calculate the
values ¸ and ¹ and broadcast them to all sensors, and
for problem (23) the fusion center can calculate and
broadcast the quantity0@ MX

j=1

½2j

(·j + °total¿j=¾
2
n)
2
·j

1A¡1

to all sensors. The sensors can then use these
quantities and their local information to compute the
optimal ®is; see [23]. For problems (26) and (28),
the fusion center can compute and broadcast the
quantity ¸ to all sensors, which can then determine
their optimal ®is using ¸ and their local information;
see [24].

D. Fading Channels with CSI

We now consider channel gains that are randomly

time varying. In this section we let both the sensors

and fusion center have CSI so that the hi,ks are known,

while Section IVE considers fading channels without

CSI. We now also allow the amplification factors ®i,k
to be time varying.

1) Multi-Access: Recall from (4) that the Kalman

filter recursion for the error covariances is

Pk+1 =
a2Pkr̄k
c̄2kPk + r̄k

+¾2w

where c̄k ´
PM
i=1®i,khi,kci and r̄k ´

PM
i=1®

2
i,kh

2
i,k¾

2
i +¾

2
n .

One way in which we can formulate an

optimization problem is to minimize the sum of

powers used at each time instant, subject to Pk+1jk ·D
at all time instances k. That is, for all k, we want to

solve

min

MX
i=1

°i,k =

MX
i=1

®2i,k

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶

subject to Pk+1 =
a2Pkr̄k
c̄2kPk + r̄k

+¾2w ·D:
(30)

The constraint can be rearranged to be equivalent to

r̄k(a
2Pk +¾

2
w¡D) + c̄2kPk(¾2w¡D)· 0

which looks rather similar to (17). In fact, once

we’ve solved the problem (30) at an initial time

instance, e.g., k = 1, then P2 =D is satisfied so that

further problems become essentially identical to

what was solved in Section IVA1. Therefore, the

only slight difference is in the initial optimization

problem, though this is also covered by the general

problem (19).
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Another possible optimization problem is to
minimize Pk+1jk at each time instant subject to a sum
power constraint °total at each time k, i.e.,

minPk+1 =
a2Pkr̄k
c̄2kPk + r̄k

+¾2w

subject to

MX
i=1

®2i,k

μ
c2i ¾

2
w

1¡ a2 +¾
2
i

¶
· °total:

(31)

As we can rewrite the objective as

a2Pkr̄k=c̄
2
k

Pk + r̄k=c̄
2
k

+¾2w

it is clear that minimizing the objective function is
equivalent to minimizing r̄k=c̄

2
k . So at each time step,

we essentially solve the same problem (23) considered
in Section IVA2 while updating the value of Pk+1
every time.
2) Orthogonal Access: Recall from (5) that in the

orthogonal scheme, the Kalman filter recursion for the
error covariance is

Pok+1 =
a2Pok

1+Pok C̄
oT

k R̄
o¡1
k C̄ok

+¾2w:

If we wish to minimize the sum power while
keeping Pok+1 ·D at all time instances, the constraint
becomes

C̄o
T

k R̄
o¡1
k C̄ok =

MX
i=1

®2i,kh
2
i,kc

2
i

®2i,kh
2
i,k¾

2
i +¾

2
n

¸ a
2Pok +¾

2
w¡D

Pok (D¡¾2w)
:

If we wish to minimize Pok+1 at each time instance
subject to a sum power constraint at all times k, then
this is the same as maximizing

C̄o
T

k R̄
o¡1
k C̄ok =

MX
i=1

®2i,kh
2
i,kc

2
i

®2i,kh
2
i,k¾

2
i +¾

2
n

:

In both cases, the resulting optimization problems
which are to be solved at each time instant are
variants of problems (26) and (28), and can be
handled using the same techniques.
3) Remarks: As discussed in Section IVC, these

problems can be solved in a distributed manner, with
the fusion center broadcasting some global constants
that can then be used by the individual sensors to
compute their optimal power allocation. The main
issue with running these optimizations at every time
step is the cost of obtaining CSI. If the channels
don’t vary too quickly, one might be able to use the
same values for the channel gains over a number of
different time steps. However if the channels vary
quickly, then estimating the channels at each time
step may not be feasible or practical. In this case we
propose one possible alternative, which is the use of
a linear estimator that depends only on the channel
statistics and which is derived in Section IVE.
4) A Dynamic Programming Formulation: The

optimization problems we have formulated in this

section follow a “greedy” approach where we have
constraints that must be satisfied at each time step,
which allows us to use the same techniques as in
Sections IVA and IVB. An alternative formulation
is to consider constraints on the long term averages
of the estimation error and transmission powers. For
instance, instead of problem (31), one might consider
the infinite horizon problem:

min lim
T!1

1

T

TX
k=1

E[Pk+1]

subject to lim
T!1

1

T

TX
k=1

E

"
MX
i=1

°i,k

#
· °total

where we wish to determine policies that will
minimize the expected error covariance subject to
the average sum power being less than a threshold
°total. Solving such problems will require dynamic
programming techniques, as well as discretization
of the optimization variables similar to [46], where
optimal quantizers were designed for hidden
Markov model (HMM) state estimation over
bandwidth constrained channels using a stochastic
control approach. This approach is however highly
computationally demanding. A thorough study of
these problems is beyond the scope of this paper and
is currently under investigation.

E. Fading Channels without CSI

Suppose now that CSI is not available at either the
sensors or the fusion center, though channel statistics
are available.8 The optimal filters in this case will
be nonlinear and highly complex, see e.g., [47]. An
alternative is to consider the best linear estimator in
the MMSE sense based on [37]. In our notation, the
situation considered in [37] would be applicable to
the model xk+1 = axk +wk, zk = ®khkcxk + vk. While
this is not quite the same as the situations that we
are considering in this paper, these techniques can be
suitably extended.
1) Multi-Access Scheme: Since we do not have

CSI, we cannot do transmitter beamforming and must
return to the full complex model (1). We also restrict
®̃i,k = ®̃i, 8k to be time invariant. The main difference
from [37] is that the innovations are now defined as

·<[z̃k]
=[z̃k]

¸
¡

266664
MX
i=1

E[<[®̃ih̃i]]ci
MX
i=1

E[=[®̃ih̃i]]ci

377775 x̂kjk¡1:

Assuming that the processes fh̃i,kg, i= 1, : : : ,M are
IID over time with real and imaginary components

independent of each other and fh̃i,kg independent
of fwkg and fvi,kg, i= 1, : : : ,M, the linear MMSE

8We note that this can also be used to model the situation where the

sensors are not perfectly synchronized [25].
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estimator for scalar systems can then be derived
following the methods of [37] (also see [48]) as
follows:

x̂k+1jk = ax̂kjk

Pk+1jk = a
2Pkjk

x̂k+1jk+1 = x̂k+1jk +Pk+1jk
¯̄
C
T

(
¯̄
CPk+1jk

¯̄
C
T

+
¯̄
R)¡1

£ ((<[z̃k+1],=[z̃k+1])T¡
¯̄
Cx̂k+1jk)

Pk+1jk+1 = Pk+1jk ¡P2k+1jk
¯̄
C
T

(
¯̄
CPk+1jk

¯̄
C
T

+
¯̄
R)¡1

(32)

where

¯̄
C´

"
MX
i=1

E[<[®̃ih̃i]]ci
MX
i=1

E[=[®̃ih̃i]]ci
#T

and

¯̄
R´

266664
MX
i=1

μ
Var[<[®̃ih̃i]]

c2i ¾
2
w

1¡ a2 +E[<
2[®̃ih̃i]]¾

2
i

¶
+¾2n]

MX
i=1

E[<[®̃ih̃i]]E[=[®̃ih̃i]]¾2i
MX
i=1

E[<[®̃ih̃i]]E[=[®̃ih̃i]]¾2i
MX
i=1

μ
Var[=[®̃ih̃i]]

c2i ¾
2
w

1¡ a2 +E[=
2[®̃ih̃i]]¾

2
i

¶
+¾2n

377775

using the shorthand <2[X] = (<[X])2 and =2[X] =
(=[X])2.
These equations look like the Kalman filter

equations but with different C and R matrices,
so much of our previous analysis will apply.9

For instance, since the estimator is not using the
instantaneous time-varying channel gains, but only the
channel statistics (which are assumed to be constant),
there will be a steady-state error covariance given by

P1 =
(a2¡ 1)+¾2wS+

p
(a2¡ 1+¾2wS)2 +4¾2wS
2S

with S ´ ¯̄
C
T ¯̄
R
¡1 ¯̄
C. Note that for circularly symmetric

fading channels, e.g., Rayleigh, we have
¯̄
C= [0 0],

and estimates obtained using this estimator will
not be useful.10 Thus we now restrict ourselves
to non-zero mean fading processes. Motivated by
transmitter beamforming in the case with CSI, let us
use amplification factors of the form

®̃i = ®i
(E[h̃i])¤

jE[h̃i]j

9In fact one can regard it as an “equivalent” linear system (with a

stable dynamics and stationary noise processes) along the lines of

[48].
10Other work where there are difficulties with circularly symmetric

fading include [9], [25], [44]. A possible scheme for estimation of

IID processes and zero-mean channels which can achieve a 1= logM

scaling has been proposed in [44].

with ®i 2 R. Then S simplifies to

S =

³PM

i=1
E[<[®̃ih̃i]]ci

´2
PM

i=1

μ
Var[<[®̃ih̃i]]c2i

¾2w
1¡ a2 +E[<

2[®̃ih̃i]]¾
2
i

¶
+¾2n

where we can find

E[<[®̃ih̃i]] = ®ijE[h̃i]j

Var[<[®̃ih̃i]] =
®2i

jE[h̃i]j2
(E2[<h̃i]Var[<h̃i]

+E2[=h̃i]Var[=h̃i]) (33)

E[<2[®̃ih̃i]] =
®2i

jE[h̃i]j2
(E2[<h̃i]E[<2h̃i]

+2E2[<h̃i]E2[=h̃i]
+E2[=h̃i]E[=2h̃i])

using the shorthand E2[X] = (E[X])2, <2[X] = (<[X])2
and =2[X] = (=[X])2. If the real and imaginary
parts are identically distributed, we have the further

simplifications Var[<[®̃ih̃i]] = ®2iVar[<h̃i] and
E[<2[®̃ih̃i]] = ®2i (E[<2h̃i] +E2[<h̃i]).
Power allocation using this suboptimal estimator

can then be developed, and the resulting optimization

problems (which are omitted for brevity) will be

variants of problems (19) and (23). We note however

that the optimization problems will only need to be

run once since
¯̄
C and

¯̄
R are time-invariant quantities,

rather than at each time instance as in the case with

CSI.

Since we have a steady-state error covariance

using this estimator, asymptotic behaviour can also

be analyzed using the techniques in Sections III. The

details are omitted for brevity.

2) Orthogonal Access Scheme: For orthogonal

access and no CSI, the equations for the linear MMSE

can also be similarly derived and are of the form

(32), substituting
¯̄
C
o

in place of
¯̄
C,

¯̄
R
o

in place of
¯̄
R, etc. We have

¯̄
C
o

´ [E[<[®̃1h̃1]]c1 E[=[®̃1h̃1]]c1 ¢ ¢ ¢
E[<[®̃Mh̃M]]cM E[=[®̃Mh̃M]]cM]T and

¯̄
R
o

´

26664
¯̄
R
o

11 ¢ ¢ ¢ 0

...
. . .

...

0 ¢ ¢ ¢ ¯̄
R
o

MM

37775
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with each
¯̄
R
o

ii being a block matrix

¯̄
R
o

ii ´

2664Var[<[®̃ih̃i]]c
2
i

¾2w
1¡ a2 +E[<

2[®̃ih̃i]]¾
2
i +¾

2
n E[<[®̃ih̃i]]E[=[®̃ih̃i]]¾2i

E[<[®̃ih̃i]]E[=[®̃ih̃i]]¾2i Var[=[®̃ih̃i]]c2i
¾2w
1¡ a2 +E[=

2[®̃ih̃i]]¾
2
i +¾

2
n

3775 :

There will be a steady-state error covariance given by

Po1 =
(a2¡ 1)+¾2wSo+

p
(a2¡ 1+¾2wSo)2 +4¾2wSo
2So

with So =
¯̄
C
oT ¯̄
R
o¡1 ¯̄
C
o

. If we choose ®̃i =

®i(E[h̃i])¤=jE[h̃i]j, then So can be shown to be

So =

MX
i=1

(E[<[®̃ih̃i]]ci)2μ
Var[<[®̃ih̃i]]c2i

¾2w
1¡ a2 +E[<

2[®̃ih̃i]]¾
2
i

¶
+¾2n

where we also refer to (33) for further simplifications
of these quantities.
Asymptotic behaviour and optimal power

allocation can also be analyzed using the techniques
in Sections III and IVB, respectively, and the details
are omitted for brevity.

V. NUMERICAL STUDIES

A. Static Channels

First we show some plots for the asymptotic
results of Section III. In Fig. 1(a), we plot P1 versus
M in the multi-access scheme for the symmetric
situation with ®i = 1=

p
M and a= 0:8, ¾2w = 1:5,

¾2n = 1, c= 1, ¾
2
v = 1, h= 0:8. We compare this with

the asymptotic expression

¾2w+
a2(¾2v +¾

2
n=h

2)

c2
1

M

from (13). Fig. 1(b) plots the difference between
P1¡¾2w, and compares this with the term

a2(¾2v +¾
2
n=h

2)

c2
1

M
:

We can see that P1 is well approximated by the
asymptotic expression even for 20—30 sensors.
In Fig. 2 we plot P1 versus M in the multi-access

scheme with ®i = 1=
p
M, a= 0:9, ¾2w = 1, ¾

2
n = 1

and values for ci, ¾
2
i , hi chosen from the range 0:5·

Ci · 1, 0:5· Ri · 1, 0:5· hi · 1. We also plot the
(asymptotic) lower and upper bounds (37) from the
proof of Lemma 4,

¾2w+
a2(h2min¾

2
min +¾

2
n)

h2maxc
2
max

1

M

and

¾2w+
a2(h2max¾

2
max +¾

2
n)

h2minc
2
min

1

M
:

It can be seen that P1 does indeed lie between the

two bounds, both of which converge to ¾2w at the

rate 1=M.

Next we look at the numerical results for optimal

power allocation. In Fig. 3 we compare between

using optimal power allocation and equal power

allocation for the multi-access scheme. We use a=

0:9, ¾2n = 10
¡9, ¾2w = 1, ci = 1, 8i. The sensor noise

variances ¾2i are drawn from a Â2(1) distribution to

model the differences in sensor measurement quality.

The channel gains hi are modelled as d
¡2
i , with di

representing the distance of sensor i to the fusion

center. We use distances uniformly drawn between

20 m and 100 m. In Fig. 3(a) we keep D = 2, while

in Fig. 3(b) we keep °total = 10
¡3. Each of the data

points represent the average over 1000 realisations

of the sensor parameters (i.e., ci, ¾
2
i , di). In Fig. 4

the comparison using the same parameters and

parameter distributions is shown for the orthogonal

scheme. What can be observed is that as the number

of sensors M increases, there is a general trend

downwards for both graphs, though optimal power

allocation seems to provide more benefits in the

orthogonal access scheme than the multi-access

scheme.

B. Fading Channels

In Fig. 5 we compare between the full CSI and

no CSI situations for the multi-access scheme using

a= 0:9, ¾2n = 10
¡9, ¾2w = 1, ci = 1, 8i, and ¾2i drawn

from a Â2(1) distribution. The complex channel gains

h̃i,ks are chosen to be Rician distributed with distance

dependence. Specifically, the real and imaginary parts

of h̃i,k are chosen to be distributed as d
¡2
i £N(¹i,1),

with di uniform between 20 and 100, and ¹i uniform

between 1/2 and 1. In Fig. 5(a) we keep D = 2, and

in Fig. 5(b) we keep °total = 10
¡3. In the full CSI

case, the values are averaged over 1000 time steps

for each set of sensor parameters (i.e., ci, ¾
2
i , di,

¹i), and in the no CSI case they are the steady-state

values using the linear MMSE estimator (32). The

results are then repeated and further averaged over

100 realisations of the sensor parameters. In Fig. 6,

we make the same comparison for the orthogonal

scheme. We can see in Fig. 5 that for the multi-access

scheme the performance loss in the case without CSI

is not too great when compared with the case with
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Fig. 1. Comparison between P1 and asymptotic expression: multi-access scheme with ®i = 1=
p
M .

Fig. 2. P1 with general parameters and bounds: multi-access scheme with ®i = 1=
p
M .

full CSI. Thus even if one has full CSI, but doesn’t

want to perform power allocation at every time step,

using the linear MMSE estimator (32) instead could

be an attractive alternative. On the other hand,

for the orthogonal scheme in Fig. 6 there is a more

significant performance loss in the situation with

no CSI.

VI. EXTENSION TO VECTOR STATES AND MIMO

In Section VIA we formulate a possible extension

of our work to vector state linear systems. We outline

some of the differences and difficulties that will be

encountered when compared with the scalar case.

In Section VIB we consider a situation similar to a

MIMO system, where the fusion center has multiple

receive antennas (and each sensor operating with a

single transmit antenna), and we show how these

situations can be expressed as an equivalent vector

linear system.

A. Vector States

We consider a general vector model

xk+1 =Axk +wk

with x 2Rn, A 2 Rn£n, and wk 2 Rn being Gaussian
with zero-mean and covariance matrix Q. For a stable
system, all the eigenvalues of the matrix A will have a
magnitude of less than 1. The M sensors each
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Fig. 3. Multi-access. Comparison between optimal and equal power allocation schemes with (a) error covariance constraint and (b) sum

power constraint.

Fig. 4. Orthogonal access. Comparison between optimal and equal power allocation schemes with (a) error covariance constraint and

(b) sum power constraint.

observe

yi,k =Cixk + vi,k, i= 1, : : : ,M

with yi,k 2Rm, Ci 2 Rm£n, and vi,k 2Rm being
Gaussian with zero-mean and covariance matrix Ri.

We assume that each of the individual components

of the measurement vectors yi,k are amplified and
forwarded to a fusion center via separate orthogonal

channels.11 We consider real channel gains for

simplicity.

11Another possibility is to apply compression on the measured

signal [7, 23], so that the dimensionality of the signal that the

sensor transmits is smaller than the dimension of the measurement

vector, but for simplicity we do not consider this here.

In the multi-access scheme, the fusion center then
receives

zk =

MX
i=1

Hi,k®i,kyi,k +nk

where ®i,k 2 Rm£m is a matrix of amplification factors,
Hi,k 2 Rm£m a matrix of channel gains, and nk 2 Rm
is Gaussian with zero-mean and covariance matrix N.
We can express the situation as

xk+1 =Axk +wk, zk = C̄kxk + v̄k

where C̄k ´
PM
i=1Hi,k®i,kCi, v̄k ´

PM
i=1Hi,k®i,kvi,k +

nk, with v̄k having covariance matrix R̄k ´PM
i=1Hi,k®i,kRi®

T
i,kH

T
i,k +N. The error covariance
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Fig. 5. Multi-access. Comparison between full CSI and no CSI situations with (a) error covariance constraint and (b) sum power

constraint.

Fig. 6. Orthogonal access. Comparison between full CSI and no CSI situations with (a) error covariance constraint and (b) sum power

constraint.

updates as follows:

Pk+1 =APkA
T¡APkC̄Tk (C̄kPkC̄Tk + R̄k)¡1C̄kPkAT+Q:

The transmit power of sensor i at time k is

°i,k = Tr(®i,kE[yky
T
k ]®

T
i,k)

= Tr(®i,k(CiE[xkx
T
k ]C

T
i +Ri)®

T
i,k)

where Tr(¢) denotes the trace, and E[xkxTk ] satisfies
(see [41, p. 71])

E[xkx
T
k ]¡AE[xkxTk ]AT =Q:

In the static channel case, the steady-state error

covariance P1 satisfies

P1 =AP1A
T¡AP1C̄T(C̄P1C̄T+ R̄)¡1C̄P1AT+Q:

However, unlike the scalar case where the

closed-form expression (7) exists, in the vector

case no such formula for P1 is available, and

thus asymptotic analysis is difficult to develop.

For time-varying channels, we can pose similar

optimization problems as considered in Section IV.

For instance, minimization of the error covariance

subject to a sum power constraint can be written
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as

min
®1,k ,:::,®M ,k

Tr(Pk+1)
(34)

subject to

MX
i=1

(®i,k(CiE[xkx
T
k ]C

T
i +Ri)®

T
i,k)· °total:

This problem is nonconvex and, unlike the scalar

case, does not appear to be able to be reformulated

into a convex problem. Similar problems have been

considered previously in the context of parameter

estimation, and suboptimal solutions were presented

using techniques such as deriving bounds on the error

covariance [27] and convex relaxation techniques [23].

In the orthogonal-access scheme the fusion center

receives

zi,k =Hi,k®i,kyi,k +ni,k, i= 1, : : : ,M:

We can express the situation as

xk+1 =Axk +wk, zok = C̄
o
kxk + v̄

o
k

by defining

zok ´

2664
z1,k

...

zM,k

3775

C̄ok ´

2664
H1,k®1,kC1

...

HM ,k®M ,kCM

3775

v̄ok ´

2664
H1,k®1,kv1,k +n1,k

...

HM ,k®M ,kvM,k +nM,k

3775
with the covariance of v̄ok being

R̄ok ´

2666664
H1,k®1,kR1®

T
1,kH

T
1,k +N 0 ¢ ¢ ¢ 0

0 H2,k®2,kR2®
T
2,kH

T
2,k +N ¢ ¢ ¢ 0

...
...

. . .
...

0 0 ¢ ¢ ¢ HM,k®M,kRM®
T
M,kH

T
M,k +N

3777775 :

The error covariance updates as follows:

Pok+1 =AP
o
kA

T¡APokC̄o
T

k (C̄
o
kP

o
kC̄

oT

k + R̄
o
k)
¡1C̄okP

o
kA

T +Q:

The term C̄o
T

k (C̄
o
kP

o
kC̄

oT

k + R̄
o
k )
¡1C̄ok can be rewritten

using the matrix inversion lemma as

C̄o
T

k (C̄
o
kP

o
kC̄

oT

k + R̄
o
k)
¡1C̄ok

=Co
T

k R̄
o¡1
k C̄o

T

k ¡Co
T

k R̄
o¡1
k C̄o

T

k (P
o¡1
k +Co

T

k R̄
o¡1
k C̄o

T

k )
¡1

£CoTk R̄o
¡1
k C̄o

T

k

where we have the simplification

Co
T

k R̄
o¡1
k C̄o

T

k

=

MX
i=1

(Hi,k®i,kCi)
T(Hi,k®i,kRi®

T
i,kH

T
i,k +N)

¡1(Hi,k®i,kCi):

Minimization of the error covariance subject to a sum

power constraint can be written as

min
®1,k ,:::,®M,k

Tr(Pok+1)
(35)

subject to

MX
i=1

(®i,k(CiE[xkx
T
k ]C

T
i +Ri)®

T
i,k)· °total:

This problem is nonconvex and also does not appear

to be able to be reformulated into a convex problem.

In the context of parameter estimation with sensors

communicating to a fusion center via orthogonal

channels, a similar problem was considered in [49],

and was in fact shown to be NP-hard, although

suboptimal methods for solving that problem were

later studied in [7].

As the techniques involved are quite different from

what has currently been presented, a comprehensive

study of optimization problems such as (34) and (35)

is beyond the scope of this paper.

B. MIMO Situation

One could also consider a situation resembling the

MIMO systems in wireless communications with the

different sensors (each with a single transmit antenna)

representing the multiple transmitters and multiple

receive antennas at the fusion center. It turns out that

these situations can be expressed as equivalent vector

linear systems. We show how this is done for a simple

case. Consider the vector state, scalar measurement

system

xk+1 =Axk +wk, yi,k = cixk + vi,k, i= 1, : : : ,M

where ci, 8i are 1£ n vectors. We look at the
orthogonal access scheme, but now with L receive

antennas at the fusion center. The fusion center then

receives from each sensor

zi,k = [h
1
i,k®i,kyi,k + n

1
i,k, : : : ,h

L
i,k®i,kyi,k + n

L
i,k]

T,

i= 1, : : : ,M
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where h
j
i,k is the channel gain from the ith sensor to

the jth antenna. Defining

zk ´

2664
z1,k

...

zM ,k

3775
C̄k ´ [h11,k®1,kcT1 j ¢ ¢ ¢ j hL1,k®1,kcT1 j ¢ ¢ ¢ ¢ ¢ ¢ j h1M,k®M ,kcTM j

¢ ¢ ¢ j hLM,k®M,kcTM]T

v̄k ´ [h11,k®1,kv1,k + n11,k, : : : ,hL1,k®1,kv1,k + nL1,k, : : : , : : : ,
h1M ,k®M,kvm,k +n

1
M ,k, : : : ,h

L
M,k®m,kvm,k + n

L
M,k]

T

we may then write the situation as the vector system:

xk+1 =Axk +wk, zk = C̄kxk + v̄k:

Other variations of the MIMO setup, e.g., vector

sensor measurements, can be similarly transformed

into equivalent vector linear systems. Note that for

scalar state and scalar measurements per sensor,

one could use similar techniques to Section IIB for

problem formulation and those of Sections IVB

and IVD for the optimal power allocation results.

However, as described in Section VIA, difficulties in

analyzing general vector systems still remain.

VII. CONCLUSION

This paper has investigated the use of analog

amplify and forwarding in the distributed estimation

of stable scalar linear systems. We have shown a 1=M

scaling behaviour of the error covariance in a number

of different situations and formulated and solved some

optimal power allocation problems for both static and

fading channels. We have also outlined extensions to

vector linear systems and MIMO systems. Further

study of these extensions and related problems will

form the topics of future investigations.

APPENDIX

A. Proof of Lemma 1

Rewrite (8) as

P1 =
(a2¡ 1)
2

1

S
+
¾2w
2

+

r
(a2¡ 1)2

4

1

S2
+
(a2 +1)¾2w

2

1

S
+
¾4w
4
:

Taking the derivative with respect to S we get

dP1
dS

=¡a
2¡ 1
2

1

S2
¡

(a2¡ 1)2 1
S3
+ (a2 + 1)¾2w

1

S2

4

r
(a2¡ 1)2

4

1

S2
+
(a2 + 1)¾2w

2

1

S
+
¾4w
4

:

To show that dP1=dS · 0, it is sufficient to show that0BB@ (a2¡ 1)2 1
S3
+ (a2 +1)¾2w

1

S2

4

r
(a2¡ 1)2

4

1

S2
+
(a2 +1)¾2w

2

1

S
+
¾4w
4

1CCA
2

¸
μ
a2¡ 1
2

1

S2

¶2
:

Expanding and rearranging, this is equivalent to

(a2¡1)4 1
S6
+2(a2¡1)2(a2 +1)¾2w

1

S5
+ (a2 +1)2¾4w

1

S4

¸ (a2¡1)4 1
S6
+2(a2¡1)2(a2 +1)¾2w

1

S5

+ (a2¡ 1)2¾4w
1

S4

or (a2 +1)2¾4w ¸ (a2¡ 1)2¾4w, which is certainly true.

B. Proof of Lemma 3

We first substitute the simplified expressions for c̄

and r̄ into (7):

P1 =
(a2¡ 1)(Mh2¾2v +¾2n)+M2h2c2¾2w

2M2h2c2
+

p
((a2¡ 1)(Mh2¾2v +¾2n)+M2h2c2¾2w)

2 +4M2h2c2¾2w(Mh
2¾2v +¾

2
n)

2M2h2c2
:

Regarded as a function of M, we are interested in the behaviour of P1 as M!1. Nowq
((a2¡ 1)(Mh2¾2v +¾2n)+M2h2c2¾2w)

2 +4M2h2c2¾2w(Mh
2¾2v +¾

2
n)

= (h4c4¾4wM
4 +2(a2¡1)¾2v h4c2¾2wM3 +4h4c2¾2w¾

2
vM

3 +O(M2))1=2

= h2c2¾2wM
2

μ
1+

2(a2 +1)¾2v
c2¾2wM

+O

μ
1

M2

¶¶1=2
= h2c2¾2wM

2

μ
1+

1

2

2(a2 +1)¾2v
c2¾2wM

+O

μ
1

M2

¶¶
= h2c2¾2wM

2 + (a2 +1)h2¾2vM +O(1) (36)
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where we have used the expansion (1+ x)1=2 = 1+

x=2+O(x2) for jxj< 1 [50, p. 15], which is valid
when M is sufficiently large. Hence

P1 = ¾
2
w+

a2¾2v
c2

1

M
+O

μ
1

M2

¶
:

C. Proof of Lemma 4

We first prove the statements for the multi-access

scheme. We have Mhmincmin ·
PM
i=1 hici ·Mhmaxcmax

and Mh2min¾
2
min ·

PM
i=1 h

2
i ¾
2
i ·Mh2max¾2max. Recall from

Lemma 1 that P1 is a decreasing function of S = c̄2=r̄.

If we choose ®i 2 f+1,¡1g such that ®ici is positive
for all i, we have

Mh2min¾
2
min +¾

2
n

M2h2maxc
2
max

· r̄

c̄2
· Mh

2
max¾

2
max +¾

2
n

M2h2minc
2
min

and by a similar calculation to (36) we can show that

as M!1,

¾2w+
a2h2min¾

2
min

h2maxc
2
max

1

M
+O

μ
1

M2

¶

· P1 · ¾2w+
a2h2max¾

2
max

h2minc
2
min

1

M
+O

μ
1

M2

¶
:

If instead we choose ®i 2 f1=
p
M,¡1=pMg such that

®ici is positive for all i, we can similarly show that as

M!1,

¾2w+
a2(h2min¾

2
min +¾

2
n)

h2maxc
2
max

1

M
+O

μ
1

M2

¶
· P1

· ¾2w+
a2(h2max¾

2
max +¾

2
n)

h2minc
2
min

1

M
+O

μ
1

M2

¶
:

(37)

In either case, as the upper and lower bounds both

converge to ¾2w at a rate of 1=M, P1 itself will also

do so.

For the orthogonal scheme, a similar argument to

the above shows that choosing ®i 2 f+1,¡1g gives
convergence of Po1 to ¾2w at the rate 1=M for general

parameters.

To show that Po1 in general does not converge to a

limit as M!1, when using the scaling 1=pM in the

orthogonal scheme, consider the following example.

Suppose there are two distinct sets of “symmetric”

parameters with behaviour as in (14), such that if all

the sensors had the first set of parameters, the error

covariance would converge to Po1,1, and if all the
sensors had the second set of parameters, the error

covariance would converge to Po1,2, with P
o
1,2 6= Po1,1.

Then let the first M1 sensors have the first set of

parameters, the next M2 (with M2ÀM1) sensors the

second set, the next M3 (with M3ÀM2) sensors the

first set, the next M4 (with M4ÀM3) sensors the

second set, etc. : : : . Then Po1 will alternate between

approaching Po1,1 and P
o
1,2 and will not converge to a

limit as M!1.

D. Proof of Lemma 5

With the multi-access scheme and the allocation

(15), by defining

®2max =
°(1¡ a2)

c2min¾
2
w+¾

2
min(1¡ a2)

and

®2min =
°(1¡ a2)

c2max¾
2
w+¾

2
max(1¡ a2)

we can show, similar to the proof of Lemma 4, that

M®2minh
2
min¾

2
min +¾

2
n

M2®2maxh
2
maxc

2
max

· r̄

c̄2
· M®

2
maxh

2
max¾

2
max +¾

2
n

M2®2minh
2
minc

2
min

:

Hence as M!1 we have

¾2w+
a2®2minh

2
min¾

2
min

®2maxh
2
maxc

2
max

1

M
+O

μ
1

M2

¶

· P1 · ¾2w+
a2®2maxh

2
max¾

2
max

®2minh
2
minc

2
min

1

M
+O

μ
1

M2

¶
:

The other cases can be treated similarly as in the

proof of Lemma 4.
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