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ABSTRACT
We use the optimized skew-spectrum as well as the skew-spectra associated with the
Minkowski functionals to test the possibility of using the cross-correlation of the integrated
Sachs–Wolfe effect (ISW) and lensing of the cosmic microwave background (CMB) radiation
to detect deviations in the theory of gravity away from General Relativity (GR). We find
that the although both statistics can put constraints on modified gravity, the optimized skew-
spectra are especially sensitive to the parameter B0 that denotes the Compton wavelength of
the scalaron at the present epoch. We investigate three modified gravity theories, namely the
post-parametrized Friedmann formalism; the Hu–Sawicki model and the Bertschinger–Zukin
(BZ) formalism. Employing a likelihood analysis for an experimental setup similar to ESA’s
Planck mission, we find that, assuming GR to be the correct model, we expect the constraints
from the first two skew-spectra, S

(0)
� and S

(1)
� , to be the same: B0 < 0.45 at 95 per cent confi-

dence level (CL) and B0 < 0.67 at 99 per cent CL in the BZ model. The third skew-spectrum
does not give any meaningful constraint. We find that the optimal skew-spectrum provides
much more powerful constraint, giving B0 < 0.071 at 95 per cent CL and B0 < 0.15 at 99 per
cent CL, which is essentially identical to what can be achieved using the full bispectrum.

Key words: methods: analytical – methods: numerical – methods: statistical – dark energy.

1 IN T RO D U C T I O N

The observations of Type Ia supernovae imply that our Universe is undergoing a phase of accelerated expansion (Reiss et al. 1998; Perlmutter
et al. 1999). Cosmic acceleration can arise from either an exotic form of energy with negative pressure, referred to as ‘dark energy’, or a
modification of gravity manifesting on large scales. As shown by various authors (Bertschinger 2006; Song, Hu & Sawicki 2007a; Brax et al.
2008; Hu et al. 2013c), determining the cause of the acceleration is hampered by the fact that the background dynamics in dark energy and
modified gravity models are nearly indistinguishable. To lift this degeneracy, one can test the evolution of perturbations in these models. The
perturbative approach to growth of structure in modified gravity can, in principle, be classified in two different frameworks: parametric and
non-parametric, an example of the latter being principal component analysis (Zhao et al. 2009a,b, 2010; Hojjati et al. 2012a). In this paper,
we focus on the former.

There exist several phenomenological parametrizations of modified gravity including the Bertschinger–Zukin (Bertschinger & Zukin
2008) parametrization, and that of Starobinsky (2007). These parametrizations are suitable for the quasi-static regime, where the time evolution
of the gravitation potentials is negligible compared with their spatial gradient. Furthermore, if we focus on the linear fluctuation dynamics
for which the equations in Fourier space can be reduced to simple algebraic relations, these techniques allow us to perform some analytic
calculations which make the parametrization technically efficient. However, if we want to go further beyond the quasi-static scale, while
remaining in the linear perturbation framework, the parametrization of modified gravity becomes more complex. This is because on the largest
scales, especially the super- or near-horizon scales, the time evolution of the gravitational potentials is no longer negligible. In fact, the time
derivative terms dominate the dynamical equations, which means that we need to solve some temporal ordinary differential equations. All in
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all, the inclusion of time derivative terms makes the parametrization of modified gravity not so manifest anymore. Actually, there exists some
debate about the range of validity of the various parametrizations; on the one hand, as shown by Zuntz et al. (2012), using a parametrization
with insufficient freedom significantly tightens the apparent theoretical constraints. On the other hand, for some specific modified gravity
models, some phenomenological parametrizations work quite well; for instance, Hojjati et al. (2012b) recently demonstrated that for small
Compton wavelength in the f (R) model, the Bertschinger–Zukin parametrization is in practice good enough for current data analysis. This is
because, for small Compton wavelengths, the most significant modifications w.r.t. GR occur in the sub-horizon regime, while the modification
on the super-horizon scales are subdominant. In addition to the above explicit parametrizations, some quite generic frameworks have been
proposed, such as the parametrized post-Friedmann (PPF) formalism, including the Hu–Sawicki approach (Hu & Sawicki 2007b; Fang, Hu
& Lewis 2008), its calibration version (Lombriser, Yoo & Koyama 2013) and Baker–Ferreira–Skordis–Zuntz algorithm (Baker et al. 2011;
Baker, Fereira & Skordis 2013), and the effective field theory (EFT) formalism (Bloomfield et al. 2012; Gubitosi, Piazza & Vernizzi 2013;
Hu et al. 2013c). These formalisms are devoted to build up a ‘dictionary’ of modified gravity theories and their PPF or EFT correspondence.
Since the purpose of these generic formalisms is to construct a unified way to include all the modified gravity/dark energy models, they
contain more arbitrary functions/coefficients, which usually lead to looser constraints.

Besides the recent progress on the construction of parametrizations, many observational windows have recently been proposed, such
as the integrated Sachs–Wolfe (ISW) effect (Sachs & Wolfe 1967) in cosmic microwave background (CMB) anisotropies (Zhang 2006;
Song, Peiris & Hu 2007b; Ho et al. 2008), the power spectrum of luminous red galaxies (Yamamoto et al. 2010; He 2012; Abebe, de la
Cruz-Dombriz & Dunsby 2013), cluster abundance (Jain & Zhang 2008; Schmidt, Vikhlinin & Hu 2009; Ferraro, Schmidt & Hu 2011;
Lombriser et al. 2012), Coma cluster (Terukina et al. 2014), galaxy peculiar velocities (Li et al. 2013), redshift-space distortions (Jennings
et al. 2012; Raccanelli et al. 2013), weak lensing (Heavens, Kitching & Verde 2007; Zhang et al. 2007; Hirata et al. 2008; Daniel et al. 2010;
Reyes et al. 2010; Tereno, Semboloni & Schrabback 2011; Laszlo et al. 2012; Simpson et al. 2013), 21 cm observations (Hall, Bonvin &
Challinor 2013), matter bispectrum (Marin et al. 2011; Bartolo et al. 2013), etc. In addition, recently some N-body simulation algorithms in
modified gravity models have been developed (Li, Mota & Barrow 2011; Zhao, Li & Koyama 2011). As shown by Song et al. (2007b) and
Lombriser et al. (2012), with Wilkinson Microwave Anisotropy Probe (WMAP) resolution the modification effects on the CMB mainly come
from the ISW effect, which becomes prominent on the super-horizon scales. However, due to the unavoidable cosmic variance on large scales,
the constraints from these effects are not significant. On the other hand, since the typical modification scales are on sub-horizon scales, several
studies show that the most stringent constraints come from the large-scale structure data sets. For example, the strongest current constraint
on f (R) gravity [log10B0 < −4.07; 95 per cent confidence level (CL)] (Dossett, Hu & Parkinson 2014) is driven by the galaxy spectrum from
WiggleZ data sets (Parkinson et al. 2012). Various previous results show that the main constraint on modified gravity comes from galaxy or
cluster scales which corresponds to the multipole range � � 500 in CMB data, where lensing effects are no longer negligible. The recent
release of Planck data (Planck Collaboration 2013a) provides us with a fruitful late-time information both on ISW and lensing, which is
encoded in the CMB temperature power spectrum (Planck Collaboration 2013b), the lensing potential power spectrum (Planck Collaboration
2013c) and the CMB temperature ISW-lensing bispectrum (Planck Collaboration 2013d,e). The full-sky lensing potential map has been
constructed and the amplitude of the lensing potential power spectrum has been estimated at the 25σ level. The ISW–lensing bispectrum is
also detected with nearly 3σ CL. Although the ISW–lensing bispectrum data have not yet been released, forecasts of constraints on modified
gravity models through this novel observational statistic have been investigated (DiValentino 2012; Hu et al. 2013a). These studies show that
the ISW-lensing bispectrum is an effective tool to constrain modified gravity. Also notice that Hu et al. (2013b) analysed CMB temperature
power-spectrum data alone and improved the previous constraint from WMAP9’s B0 < 3.37 at 95 per cent CL to B0 < 0.91. Inclusion of the
lensing potential power spectrum improved it to B0 < 0.12. The lensing-ISW bispectrum is known to be uncorrelated to the power spectrum
and thus it can further tighten the constraint on B0.

Inspired by these results, in this paper, we use the recently introduced optimum skew-spectra and the skew-spectra associated with
the Minkowski functionalss (MFs) to constrain departures from GR. Since their introduction in cosmology by Mecke, Buchert & Wagner
(1994), MFs have been extensively developed as a statistical tool for non-Gaussianity in a cosmological setting for both two-dimensional (2D,
projected) and three-dimensional (redshift) surveys. Analytic results are known for certain properties of the MFs of a Gaussian random field
making them suitable for identifying non-Gaussianity. Examples of such studies include CMB data (Schmalzing & Górski 1998; Novikov,
Schmalzing & Mukhanov 2000; Hikage et al. 2008b; Natoli et al. 2010), weak lensing (Matsubara & Jain 2001; Sato et al. 2001; Taruya
et al. 2002; Munshi et al. 2012b), large-scale structure (Gott, Mellot & Dickinson 1986; Coles 1988; Gott et al. 1989, 1990; Melott 1990;
Gott et al. 1992; Moore et al. 1992; Canavezes et al. 1998; Sahni, Sathyaprakash & Shandarin 1998; Schmalzing & Diaferio 2000; Kerscher
et al. 2001; Hikage et al. 2002, 2008a; Park et al. 2005; Hikage, Komatsu & Matsubara 2006), 21 cm (Gleser et al. 2006), frequency-cleaned
Sunyaev–Zel’dovich (SZ) maps (Munshi et al. 2013b) and N-body simulations (Schmalzing & Diaferio 2000; Kerscher et al. 2001). The MFs
are spatially defined topological statistics and, by definition, contain statistical information of all orders in the moments. This makes them
complementary to the poly-spectra methods that are defined in Fourier space. It is also possible that the two approaches will be sensitive to
different aspects of non-Gaussianity and systematic effects, although in the weakly non-Gaussian limit it has been shown that the MFs reduce
to a weighted probe of the bispectrum (Hikage et al. 2006).

The skew-spectrum is a weighted statistic that can be tuned to a particular form of non-Gaussianity, such as that which may arise either
during inflation at an early stage or from structure formation at a later time. The skew-spectrum retains more information about the specific
form of non-Gaussianity than the (one-point) skewness parameter alone. This allows not only the exploration of primary and secondary
non-Gaussianity but also the residuals from galactic foreground and unresolved point sources (PS). The skew-spectrum is directly related
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Probing modified gravity theories 823

to the lowest order cumulant correlator and is also known as the two-to-one spectra in the literature (Cooray 2001). In a series of recent
publications, the concept of skew-spectra was generalized to analyse the morphological properties of cosmological data sets or in particular the
MFs (Munshi et al. 2012b, 2013b,c; Pratten & Munshi 2012). The first of these three spectra, in the context of secondary-lensing correlation
studies, was introduced by Munshi et al. (2011c) and was subsequently used to analyse data release from WMAP by Calabrese et al. (2010).

The layout of the paper is as follows. In Section 2, we briefly outline various models and parametrization of modified gravity. Next,
in Section 3, we review the non-Gaussianity, at the level of bispectrum, introduced by cross-correlaion of secondaries and lensing of CMB.
In Section 4, we introduce the skew-spectra associated with the MFs and compute them for various modified gravity scenarios. Section 5 is
devoted to likelihood analysis using MFs. In Section 6, we discuss our results. Finally, Section 7 is reserved for concluding remarks as well
as discussing the future prospects.

2 MO D I F I E D G R AV I T Y M O D E L S

Studies of modified gravity models can, in principle, be classified into two different frameworks (Bertschinger & Zukin 2008). The first is
a model-dependent method. One can start from a specific Lagrangian, investigating its dynamical behaviour to finally give its predictions.
Various viable modified gravity models have been proposed which fall into this category (Clifton et al. 2012). In this paper, we mainly focus
on f (R) models (see e.g. De Felice & Tsujikawa 2010, for a review), such as the Starobinsky (1980) model or the Hu–Sawicki model (Hu &
Sawicki 2007a).

The other method is inspired by the parametrized post-Newtonian approach to Solar system tests of gravity. In this case, one aims to
build a model-independent framework, in which many modified gravity models can be parametrized in a unified way. The simplest idea is
directly to generalize the Eddington parameter (γ ≡ �/�; Eddington 1922) to an unknown function of space and time γ (t, x) in a Friedmann
Universe. Many studies, such as Bertschinger & Zukin (2008), Zhao et al. (2009a,b), Hojjati, Pogosian & Zhao (2011) and Giannantonio
et al. (2010), show that this works quite well for large-scale structure data. This is because these parametrizations are mainly suitable for the
quasi-static regime where the time evolution of the gravitational potentials are negligible compared with spatial gradients. Furthermore, if we
focus on the linear analysis in the Fourier domain, then the dynamical equations can be reduced to simple algebraic relations. These allow
us to perform some analytic calculations, which make the parametrization technically efficient. However, if we want to go further, beyond
the quasi-static scale, even though still in the linear regime, the parametrization of modified gravity is more non-trivial. This is because at the
larger scales, especially the super- or near-horizon scales, the time evolution of gravitational potentials is no longer negligible and we need
to solve temporal ordinary differential equations.

Besides the above explicit parametrizations, some quite generic frameworks have been proposed, such as the Hu–Sawicki PPF formalism
(Hu & Sawicki 2007b; Fang et al. 2008; Hu 2008) and its calibration version (Lombriser et al. 2013). The Hu–Sawicki PPF parametrization
is defined by three functions: g(ln a, kH), f ζ (ln a), f G(ln a) and a single parameter c	 . They correspond to the metric ratio, the super-horizon
relationship between the metric and density, the deviation of Newton’s constant on super-horizon scale from that on quasi-static scales, and
the relationship between the transition scale and the Hubble scale (Hu & Sawicki 2007b). Of course, this formalism is quite generic. However,
in order to obtain the explicit parametrization form of these arbitrary functions, one needs to solve the exact equation of motion obtained
from the original Lagrangian of the modified gravity theory and fit the above three functions with the exact solution. Up to now, only a few
models, such as f (R) and Dvali–Gabadadze–Porrati models, have been successfully implemented in the Hu–Sawicki PPF formalism. Even
though, this formalism still has a great advantage for numerical purposes, since it provides a unified form to write down all the modified
equations. Besides that mentioned above, there exist many other parametrizations (Linder 2005; Amendola, Kunz & Sapone 2008; Bean &
Tangmatitham 2010; Baker et al. 2011, 2013; Bertacca, Bartolo & Matarrese 2011; Bloomfield et al. 2012; Branx et al. 2012; Gubitosi et al.
2013).

2.1 Hu–Sawicki f (R) model

As an example of a model-dependent method, the Lagrangian of Hu–Sawicki model (hereafter HS) reads

f (R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
; m2 ≡ H 2

0 
m = (8315 Mpc)−2

(

mh2

0.13

)
. (1)

As shown by Hu & Sawicki (2007a), this model can pass the local Solar system tests. The non-linear terms in f (R) introduce fourth-order
derivatives into this theory, rather than the more familiar second-order derivatives. Fortunately, we can reduce the derivatives to second order
by defining an extra scalar field χ ≡ (df /dR), namely the ‘scalaron’, which absorbs the higher derivatives. The Compton wavelength of the
scalaron is defined as

B = fRR

1 + fR

R′ H

H ′ , (2)

with f R = df /dR, fRR = d2f /dR2 and ′ ≡ d/d ln a. In the high-curvature regime, equation (1) can be expanded w.r.t. (m2/R) as

lim
(m2/R)→0

f (R) ≈ − c1

c2
m2 + c1

c2
2

m2

(
m2

R

)n

+ · · · . (3)
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824 D. Munshi et al.

From equation (3), we can see that the first and second terms represent a cosmological term and a deviation from it, respectively. In order
to mimic � cold dark matter (�CDM) evolution on the background, the value of (c1/c2) can be fixed (Hu & Sawicki 2007a) such that
(c1/c2) = 6(
�/
m). By using this relation the number of free parameters can be reduced to two. From the above analysis, we can see that,
strictly speaking, due to the appearances of correction terms to the cosmological constant, the HS model cannot exactly mimic �CDM. Since
(m2/R) increases very fast with time, the largest value (at the present epoch) is (m2/R) ∼ 0.03, the largest deviation to the �CDM background
happens when n = 1, with 1 per cent errors, corresponding to (m2/R)c2 ∼ 0.01 in equation (3). For larger n values, such as n = 4, 6, we can
safely neglect this theoretical error. As shown by Hu et al. (2013a), for n = 1, this 1 per cent deviation from �CDM brings a 10 per cent error
in the variance of the parameter B0, while for n = 4, 6, our results are not affected.

Without loss of generality, we can choose the two free parameters to be (n, c2). However, for more general f (R) models, the �CDM
evolution of the background can be reproduced exactly by only introducing one free parameter (Song et al. 2007a). This means that there
exists some degeneracy between the two parameters. Usually General Relativity (GR) is recovered when B0 = 0. As demonstrated by Hu
et al. (2013a), no matter what value n takes, we are always allowed to set B0 = 0 by adjusting c2. Furthermore, in order to mimic �CDM
on the background, c2 and n need to satisfy one constraint: the first term in the denominator of equation (1) should be much larger than the
second. This condition gives

Bmax
0 =

⎧⎪⎪⎨
⎪⎪⎩

0.1, (n = 1) ,

1.2, (n = 4) ,

4.0, (n = 6) .

(4)

Hu et al. (2013a) forecast that Planck1 is expected to reduce the error bars on the modified gravity parameter B0 by at least one order of
magnitude compared to WMAP. The spectrum–bispectrum joint analysis can further improve the results by a factor ranging from 1.14 to 5.32
depending on the value of n.

2.2 Hu–Sawicki PPF formalism

In contrast to the above subsection, in what follows, we will consider all possibilities in f (R) gravity which can mimic the �CDM background
in the Hu–Sawicki PPF formalism (hereafter PPF). The logic of the PPF formalism is the following: first, considering two limits in the linear
fluctuation regimes, the super-horizon and quasi-static regimes. In the former, the time derivatives are much more important than the spatial
derivatives and in the latter limit the vice versa; then, derive and solve the gravitational equations in these limits. Given the knowledge of
these two limits, one can propose two modified gravitational equations which recover the above results in the super-horizon and quasi-static
limits, respectively. Finally, we integrate all the linear scales using the proposed equations.

For the metric scalar fluctuations, in principle, we have only two degrees of freedom, such as � (Newtonian potential) and � (curvature
potential) in the conformal Newtonian gauge, which means we only need two dynamical equations. For PPF, these two master equations are
the modified Poisson equation and the equation for 	:

k2[�− + 	] = 4πGa2ρm�m ; �− = � − � (5)

(
1 + c2

	k2
H

)
[	′ + 	 + c2

	k2
H (	 − fG�−)] = S, (6)

where the source term S is given by

S = −
[

1

g + 1

H ′

H
+ 3

2

H 2
m

H 2a3
(1 + fζ )

]
Vm

kH

+
[

g′ − 2g

g + 1

]
�− . (7)

Vm here is the scalar velocity fluctuation of the matter in both the comoving and Newtonian gauge and Hm is the contribution to Hubble
parameter from the matter component; see Hu & Sawicki (2007b) for more details.

In equation (6), the coefficient c	 represents the relationship between the transition scale and the Hubble scale, and the function f ζ gives
the relationship between the metric and the density perturbation. For f (R) models, we have c	 = 1, f ζ = cζ g and the function g(ln a, k) can
be expressed as follows.

g(ln a, k) = gSH + gQS(cgkH )ng

1 + (cgkH )ng
, gQS = −1/3 , ng = 2 , cg = 0.71

√
B(t) . (8)

The above descriptions have been implemented in the publicy available PPF module (Fang et al. 2008) of CAMB2 (Lewis, Challinor & Lasenby
2000). The current constraints on general f (R) models within the PPF are B0 < 0.42 (95 per cent CL) by using CMB and ISW–galaxy

1 http://sci.esa.int/science-e/www/area/index.cfm?fareaid=17
2 http://camb.info/
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Probing modified gravity theories 825

correlation data, and a strong constraint B0 < 1.1 × 10−3 at 95 per cent CL (Lombriser et al. 2012). using a larger set of data, such as
WMAP5,3 ACBAR,4 CBI,5 VSA, Union,6 SHOES and BAO data.

2.3 Bertschinger–Zukin formalism

Another popular phenomenological parametrization was proposed by Bertschinger & Zukin (2008, hereafter BZ) and implemented in
the Einstein–Boltzmann solver MGCAMB7 (Zhao et al. 2009a; Hojjati et al. 2011). The logic of this parametrization is to re-write the two
gravitational potentials in terms of two observation-related variables, the time- and scale-dependent Newton constant Gμ(a, k) and the
so-called gravitational slip γ (a, k):

k2� = −4πGa2μ(a, k)ρ�;
�

�
= γ (a, k). (9)

G is the Newton constant in the laboratory. Furthermore, in the quasi-static regime, Bertschinger and Zukin propose a quite efficient
parametrizations for these two quantities (see also Zhao et al. 2009a):

μ(a, k) = 1 + 4
3 λ2

1k
2a4

1 + λ2
1k

2a4
; γ (a, k) = 1 + 2

3 λ2
1k

2a4

1 + 4
3 λ2

1k
2a4

. (10)

The above parametrization was refined to take the ISW effect into account through an empirical formula (Giannantonio et al. 2010)

μ(a, k) = 1

1 − 1.4 × 10−8|λ1|2a3

[
1 + 4

3 λ2
1k

2a4

1 + λ2
1k

2a4

]
. (11)

Compared with PPF, one can easily see the physical meaning of parameter λ1, as the present Compton wavelength λ2
1 = B0c

2/(2H 2
0 ). Besides

that, we can also see that BZ is much more efficient than the former, because in BZ one only needs to solve an algebraic relation, equation
(9) or equivalently equation (11), while in PPF, we have to integrate differential equations, equations (5) and (6). The price BZ pays is that
it might not account for the ISW effect properly in the super-horizon regime. However, recently it was shown (Hojjati et al. 2012b) that for
all practical purposes BZ for f (R) model with small B0 is good enough even if one considers the near-horizon scale: the maximum error is
O(2 per cent). Recently, it was shown by (Hu et al. 2013a) that the temperature and lensing power-spectrum data from Planck alone can give
an upper bound on B0 < 0.91 at 95 per cent CL.

3 ISW-LENSING CROSS-SPECTRA A S A PROBE O F MODI FI ED G RAVI TY THEORI ES

We will be dealing with the secondary bispectra involving the lensing of both primary anisotropies and other secondaries. Following Spergel
& Goldberg (1999), Goldberg & Spergel (1999) and Cooray & Hu (2000), we start by expanding the observed temperature anisotropy
�(
̂) = δT (
̂)/T in terms of the primary contribution �P(
̂), the secondary contribution �S(
̂) and lensing of the primary �L(
̂):

�(
̂) = �P(
̂) + �L(
̂) + �S(
̂) + · · · . (12)

Here, 
̂ = (θ, φ) is the angular position on the surface of the sky. Expanding the respective contributions in terms of spherical harmonics
Ylm(
̂) we can write

�P(
̂) ≡
∑
�m

(�p)�mY�m(
̂); �L(
̂) ≡
∑
�m

[∇ψ(
̂) · ∇�P(
̂)]�m Y�m(
̂); �S(
̂) ≡
∑
�m

(�S)�mY�m(
̂). (13)

Here, ψ(
̂) is the projected lensing potential (Goldberg & Spergel 1999; Spergel & Goldberg 1999). The secondary bispectrum for the CMB
takes contributions from products of P, L and S terms with varying order. The bispectrum BPLS

�1�2�3
is defined as follows (see Bartolo et al. 2004

for generic discussion of the bispectrum and its symmetry properties).

BPLS
�1�2�3

≡
∑

m1m2m3

(
�1 �2 �3

m1 m2 m3

) ∫ 〈
�P(
̂1)�L(
̂2)�S(
̂3)

〉
Y ∗

�1m1
(
̂1)Y ∗

�2m2
(
̂2)Y ∗

�3m3
(
̂3)d
̂1 d
̂2 d
̂3;

≡
∑

m1m2m3

(
�1 �2 �3

m1 m2 m3

)
〈(�P)�1m1 (�L)�2m2 (�S)�3m3 〉. (14)

3 http://map.gsfc.nasa.gov/
4 http://cosmology.berkeley.edu/group/swlh/acbar/
5 http://www.astro.caltech.edu/~tjp/CBI/
6 http://supernova.lbl.gov/Union/
7 http://www.sfu.ca/~aha25/MGCAMB.html
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The angular brackets represent ensemble averages. The matrices denote 3J symbols (Edmonds 1968) and the asterisks denote complex
conjugation. It is possible to invert the relation assuming isotropy of the background Universe:

〈(�P)�1m1 (�L)�2m2 (�S)l3m3 〉 =
(

�1 �2 �3

m1 m2 m3

)
BPLS

�1�2�3
. (15)

Finally, the bispectrum BPLS
�1�2�3

is expressed in terms of the unlensed primary power spectrum CTT
� = 〈(�P)lm(�∗

P)�m〉 and the cross-spectra

CφT
� (to be defined below) as follows.

BPLS
�1�2�3

≡ bISW-len
�1�2�3

I�1�2�3 ; (16)

bISW−lens
�1�2�3

= −1

2

[
CφT

�3
CTT

�1
(��2 − ��1 − ��3 ) + cyc.perm.

]
; (17)

I�1�2�3 ≡
√

��1��2��3

4π

(
�1 �2 �3

0 0 0

)
; (18)

�� = �(� + 1); �� = (2� + 1). (19)

See Spergel & Goldberg (1999) and Goldberg & Spergel (1999) for a derivation. The long-wavelength modes of ISW couple with the
short-wavelength modes of fluctuations generated due to lensing, hence, the non-zero cross-spectrum CφT

� . The reduced bispectrum above is
denoted as bISW-lens

�1�2�3
. To simplify the notation for the rest of this paper, we henceforth drop the superscript PLS from the bispectrum B�1�2�3 .

The cross-spectrum CφT
� introduced above represents the cross-correlation between the projected lensing potential ψ(
̂) and the secondary

contribution �S(
̂):

〈ψ(
̂)�S(
̂′)〉 = 1

4π

�max∑
�=2

�� CφT
� P�(
̂ · 
̂′), (20)

where P� are Legendre polynomials. The cross-spectrum CφT
� takes different forms for ISW-lensing, Rees–Sciama (RS)-lensing or SZ-lensing

correlations and we assume zero primordial non-Gaussianity. The reduced bispectrum b�1�2�3 defined above using the notation I�1�2�3 is useful
in separating the angular dependence from the dependence on the power spectra CφT

� and CφT
� . We will use this to express the topological

properties of the CMB maps. The CφT
� parameters for lensing secondary correlations are displayed in Fig. 2.

The beam b�(θb) and the noise of a specific experiment are characterized by the parameters σ beam and σ rms as

b�(θb) = exp[−�σ 2
beam]; σbeam = θb√

8 ln(2)
; n� = σ 2

rms
pix; 
pix = 4π

Npix
, (21)

where σ rms is the rms noise per pixel, which depends on the full width at half-maximum or FWHM of the beam, θb. The number of pixels
Npix required to cover the sky determines the size of the pixels 
pix. To incorporate the effect of experimental noise and the beam, we replace
C� → C�b

2
�(θb) + n�, and the normalization of the skew-spectra that we will introduce later will be affected by the experimental beam and

noise. The computation of the scatter will also depend on these parameters.
The reduced bispectrum for the unresolved PS can be characterized by a constant amplitude bPS, i.e. the angular-averaged bispectrum

BPS
�1�2�3

for PS is given by BPS
�1�2�3

= bPSI�1�2�3 ; for our numerical results, we will take bPS = 10−29.
The optimal estimators for lensing-secondary mode-coupling bispectrum have been recently discussed by Munshi et al. (2011c). The

estimators that we propose here are relevant in the context of constructing the MFs.

3.1 Computation of CTT
� , CφT

� and Cφφ
�

The ISW effect and lensing potential φ can both be expressed in terms of the Weyl potential � − � as

δT (
̂)

T

∣∣∣∣
ISW

=
∫

dr
d

dτ
(� − �); φ(
̂) = −

∫ rs

0
dr

rs − r

rrs

(� − �). (22)

Assuming a flat Universe, we can express the cross-spectra C
φT
� , the ISW contribution CTT

� to the power spectrum and the lensing potential
spectrum C

φφ
� as follows (Hu 2000)

C
φT
� = 2π2

�3

∫ rs

0
dr r W ISW(r)W Len(r)�2

�(k, 0)

∣∣∣∣
k=�

H0
r

; (23)

CTT
� = 2π2

�3

∫ rs

0
dr r W ISW(r)W ISW(r)�2

�(k, 0)

∣∣∣∣
k=�

H0
r

; (24)
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Probing modified gravity theories 827

C
φφ
� = 2π2

�3

∫ rs

0
dr r W Len(r)W Len(r)�2

�(k, 0)

∣∣∣∣
k=�

H0
r

, (25)

where rs is the comoving distance and r(z) = ∫ z

0 [H0/H (z′)]dz′. We can express the gravitational potential power spectrum �2
�(k, z) by using

the transfer function T(k) and the growth factor [f (z)/(1 + z)]:

�2
�(k, z) = 9

4

2

mδ2
H F (z)T 2(k)

(
k

H0

)n−1

; (26)

with δH denoting the amplitude of matter density fluctuation at the present Hubble scale. The window functions W ISW(r) and W Len(r) used
above in equations (23)–(25) are expressed as follows.

W ISW(r) = − d

dr
[(1 + γ )F ] , W Len(r) = −(1 + γ )F (r)

(rs − r)

r rs

. (27)

This is the expression used in equation (19) to construct the bispectrum which was used to compute the optimized skew-spectra of
equation (35) and the sub-optimal versions in equations (29)–(31) to be introduced in Section 4 later.

4 MFs AND ASSOCIATED POWER SPECTRA

The study of non-Gaussianity is usually primarily focused on the bispectrum, as this saturates the Cramér–Rao bound (Babich 2005;
Kamionkowski, Smith & Heavens 2011) and is therefore in a sense optimal. However, in practice, it is difficult to probe the entire
configuration dependence using noisy data (Munshi & Heavens 2010). An alternative is to use cumulant correlators, which are multipoint
correlators collapsed to encode two-point statistics. These were introduced into galaxy clustering by Szapudi & Szalay (1999), and were later
found to be useful for analysing projected surveys such as the APM galaxy survey (Munshi, Melott & Coles 2000). Being two-point statistics,
they can be analysed in multipole space by defining an associated power spectrum (Cooray 2001). Recent studies by Cooray, Li & Melchiorri
(2008) have demonstrated their wider applicability including, e.g. in 21 cm studies. In more recent studies, the skew- and kurt-spectra were
found to be useful for analysing temperature (Munshi & Heavens 2010) as well as polarization maps (Munshi et al. 2011a) and maps of
secondaries from CMB experiments (Munshi et al. 2012a; Munshi, Coles & Heavens 2013a) and in weak lensing studies (Munshi et al.
2012b). The MFs are well-known morphological descriptors which are used in the study of random fields. Morphological properties are the
properties that remain invariant under rotation and translation (see Hadwiger 1959 for a more formal introduction). They are defined over an
excursion set � for a given threshold ν. The three MFs that are defined for 2D studies can be expressed as (Pratten & Munshi 2012)

V0(ν) =
∫

�

da; V1(ν) = 1

4

∫
∂�

dl; V2(ν) = 1

2π

∫
∂�

κdl. (28)

Here da, dl are the elements for the excursion set � and its boundary ∂�. The MFs Vk(ν) correspond, respectively, to the area of the excursion
set �, the length of its boundary ∂� and the integral curvature along its boundary (which is also related to the genus g and hence the Euler
characteristics χ ).

Following earlier studies (Munshi et al. 2012b, 2013a,b), we introduce three different skew-spectra associated with MFs for an arbitrary
cosmological projected field �:

S
(0)
� ≡ 1

N0
S

(�2,�)
� ≡ 1

N0

1

��

∑
m

Real([�]�m[�2]∗�m) = 1

N0

∑
�1�2

B��1l2J��1�2 ; (29)

S
(1)
� ≡ 1

N1
S

(�2,∇�)
� ≡ 1

N1

1

��

∑
m

Real([∇2�]�m[�2]∗�m) = 1

N1

∑
�1�2

[�� + ��1 + ��2 ]B��1�2J��1�2 ; (30)

S
(2)
� ≡ 1

N2
S

(∇�·∇�,∇2�)
� ≡ 1

N2

1

��

∑
m

Real([∇� · ∇�]�m[∇2�]∗lm)

= 1

N2

∑
�1�2

1

2
[[�� + ��1 − ��2 ]��2 + cyc.perm.]B��1�2J��1�2 ; (31)

J�1�2�3 ≡ I�1�2�3

��1

=
√

��2��3

��1 4π

(
�1 �2 �3

0 0 0

)
; (32)

S(i) =
∑

�

��S
(i)
� ; (33)

N0 = 12πσ 4
0 ; N1 = 16πσ 2

0 σ 2
1 ; N2 = 8πσ 4

1 . (34)
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In contrast to these MF-based quantities, the optimized skew-spectra S
opt
� for two different types of non-Gaussianity is defined by the

following expression:

S
opt
� (X, Y ) = 1

6

∑
�1�2

BX
��1�2

BY
��1�2

Ctot
� Ctot

�1
Ctot

�2

; Sopt(X, Y ) =
∑

�

S
opt
� (X, Y ). (35)

The three skew-spectra associated with MFs, defined in equations (29)–(31), for various theories of modified gravity are shown in Fig. 4 as
a function of harmonic � for PPF, BZ and HS models. Clearly, the one-point estimator defined in equation (34) will have nearly vanishing
amplitude due to cancellation originating from the oscillatory pattern seen in all three skew-spectra associated with MFs. The FWHM is fixed
at θb = 5′. The noise level is chosen to match the Planck 143 GHz channel. It is interesting to note that the extrema of �3S

(0)
� for all models

occurs roughly at similar � values. We display four different values of B0 for each models B0 = 10−3 (solid), 10−2 (short dashed), 10−1 (long
dashed) and 1 (dot–dashed), respectively. For HS models, we choose two different values for B0, i.e. B0 = 10−3 and 10−2. In agreement with
what we found for optimized estimators, the skew-spectra for the HS models with low n values show a greater degree of sensitivity to B0

compared to their high-n counterparts, which roughly mimic their PPF or BZ counterparts.

5 LI K E L I H O O D A NA LY S I S U S I N G SK E W-S P E C T R A

In this section, we construct the joint covariance matrices for skew-spectra and ordinary spectra and provide results of a likelihood analysis
forecast for the parameter B0.

The Gaussian contributions to the covariance matrix can be expressed in terms of the total power spectrum Ctot
� alone, which in terms of

beam b� and the noise power spectrum n� takes the form Ctot
� = CTT

� b2
� + n�:

S (ij )
��′ = 〈δS(i)

� δS
(j )
�′ 〉 = 〈S(i)

� S
(j )
�′ 〉 − 〈S(i)

� 〉〈S(j )
�′ 〉

= 1

N(i)

1

N(j )
Ctot

�

∑
�1�2

Ctot
�1
Ctot

�2
J

(i)
��1�2

[ (
J

(j )
�′�1�2

+ J
(j )
�′�2� + J

(j )
�′��1

)
+ (−1)�+�1+�2

(
J

(j )
�′�2�1

+ J
(j )
�′��2

+ J
(j )
�′�1�

) ]
; (36)

J
(0)
�1�2�3

= J�1�2�3 ; J
(1)
�1�2�3

= (
��1 + ��2 + ��3

)
J�1�2�3

; J
(2)
�1�2�3

= (
(��1 + ��2 − ��3 )��3 + cyc.perm.

)
J�1�2�3

. (37)

We use the following expression in our derivation (Bartolo et al. 2004):

〈B�1�2�3B�′
1�′

2�′
3
〉 = Ctot

�1
Ctot

�2
Ctot

�3

[(
δ

�′
1�′

2�′
3

�1�2�3
+ δ

�′
3�′

1�′
2

�1�2�3
+ δ

�′
2�′

3�′
1

�1�2�3
+ (−1)�1+�2+�3

(
δ

�′
1�′

3�′
2

�1�2�3
+ δ

�′
2�′

1�′
3

�1�2�3
+ δ

�′
3�′

2�′
1

�1�2�3

) ]
;

δ
�′

1�′
2�′

3
�1�2�3

= δ�1�′
1
δ�2�′

2
δ�3�′

3
. (38)

Note that the 3J symbols involved in the definitions of S
(i)
� all have the azimuthal quantum numbers mi = 0 in which case we have non-zero

3J symbols only when (� + �1 + �2) = even, thus, (−1)�+�1+�2 = 1. Thus, we notice that J
(i)
��1�2

is symmetric under the exchange of the last
two indices, i.e. �1 and �2. Using these facts, after a straightforward but tedious calculation, we can further simplify equation (36) to

S
(ij )
��′ ≡ S (ij )

��′ = 〈δS(i)
� δS

(j )
�′ 〉 = 1

N(i)

1

N(j )

[
2 δ��′ Ctot

�

∑
�1�2

Ctot
�1
Ctot

�2
J

(i)
��1�2

J
(j )
��1�2

+ 4 Ctot
� Ctot

�′
∑
�1

C�1 J
(i)
��′�1

J
(j )
�′��1

]
. (39)

The first term contributes only to diagonal entries of the covariance matrix while the second term contributes also to the off-diagonal terms.
This is the expression we have used in our numerical computations. The covariance matrix involving the bispectrum derived above is generic
but depends on the assumption that the non-Gaussianity is weak, i.e. 〈B�1�2�3 〉 
 0 and can also be used for likelihood calculations of
primordial non-Gaussianity using MFs (Munshi et al. 2013c).

For the one-point estimators introduced previously, S(i) = ∑
� ��S

(i)
� , the covariance matrix S (ij ) takes the following form:

S (ij ) = 〈δS(i)δS(j )〉 =
∑
��′

����′S (ij )
��′ = 1

N(i)

1

N(j )

∑
�1≥�2≥�3

Ctot
�1
Ctot

�2
Ctot

�3
I

(i)
�1�2�3

I
(j )
�1�2�3

. (40)

Finally, the covariance of the optimum estimator S
opt
� defined in equation (35) is given by the following expression:

〈δSopt
� δS

opt
�′ 〉 = 1

18
δ��′

∑
�a�b

B2
��a�b

Ctot
� Ctot

�a
Ctot

�b

+ 1

9

∑
la

B2
��′�a

Ctot
� Ctot

�′ Ctot
�a

= 1

3
δ��′S

opt
� + 1

9

∑
la

B2
��′�a

Ctot
� Ctot

�′ Ctot
�a

. (41)

S
opt ≡ 〈δSoptδSopt〉 =

∑
�

S
opt
� = Sopt. (42)

This result agrees with the previous calculation of Munshi & Heavens (2010), using Fisher matrices in the limit of all-sky coverage. The
results given there include additional correction terms (termed ‘β’), related to the so-called linear, and cubic (‘α’) terms, due to partial-sky
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Probing modified gravity theories 829

coverage. The likelihoods for the MFs and the optimal skew-CLs are

LS = exp(−χ2
S/2); χ2

S =
∑

ij

∑
��′

[
δS

(i)
� [S(ij )]−1

��′ δS
(i)
�′

]
; (43)

Lopt = exp(−χ2
opt/2); χ2

S =
∑
��′

[
δS

opt
� [Sopt]−1

��′ δS
opt
�′

]
. (44)

For corresponding one-point estimators, we have LS = exp(−[δSopt]2/2S) and similarly for joint analysis using all one-point MFs LS =
exp(−[δS(i)][S(ij )]−1[δS(j )]/2).

Bayesian recovery of B0: in recent works, Hikage et al. (2008a) and Ducout et al. (2013) adopted a Bayesian approach in their analysis
of primordial non-Gaussianity in CMB maps using MFs. We can similarly use Bayes’ theorem to write the posterior probability for B0,
P (B0|S) given the one-point MFs as the data vector S:

P (B0|S) = LS(S|B0)P (B0)∫ LS(V |B0)P (B0)dB0
; S = (S(0), S(1), S(2)). (45)

Here, P(B0) is the prior, assumed flat. Similarly, we can also use the optimized skewness as the data vector instead of the MFs by replacing S
by Sopt and the likelihood function by Lopt(S|B0). The likelihood function in such studies is typically assumed to be Gaussian, or determined
using Monte Carlo simulations. We find that the likelihood for B0 has an extended non-Gaussian tail. Thus, the analytical covariance and the
corresponding likelihood derived here will be useful in providing independent estimates and related error bars for sanity checks of results
derived through Monte Carlo simulations.

6 R ESULTS

We have introduced three different MFs in this study and compared their performance against the optimum estimator. The aim is to use
CMB data to constrain the departure of modified gravity theories from GR as parametrized by the parameter B0 that denotes the Compton
wavelength of the scalaron at the present epoch. The underlying bispectrum that we probe is the one generated by correlation between ISW
and lensing of the CMB. The bispectrum is constructed from CTT

� (Fig. 1) and CT φ
� (Fig. 2). The corresponding optimum spectrum is given in

Fig. 3.
The set three skew-spectra associated with MFs or the first Minkowski Spectra �3S

(0)
� , defined in equations (29)–(31), for various

theories of modified gravity are displayed in Figs 4–6 as a function of the harmonic �. The top-left and top-middle panels in these figures
corresponds to predictions from PPF and BZ, respectively. The General Relativistic prediction correspond to B0 = 0 and is shown in the
top-left panel (dot and long dashed line). The bottom panels correspond to the results from the HS model, for n = 1, 4, 6, respectively. It is
interesting to note that the one-point estimator defined in equation (34) will have nearly vanishing amplitude due to cancellation originating
from the oscillatory pattern seen in all three skew-spectra associated with MFs – which is one of the motivation for studying the associated

Figure 1. The ISW contribution to the (dimensionless) temperature power spectrum �(� + 1)CTT
� /2π is depicted as a function of the parameter B0 of the PPF

formalism. The General Relativistic predictions correspond to B0 = 0 (top-left panel). The top-left and top-right panels correspond to PPF (top-left) and BZ
(top-right) formalism. For the PPF we chose B0 = 1, 10−1, 10−2, 10−3. The bottom panels correspond to the predictions from HS (Hu & Sawicki 2007a) with
n = 1 (bottom-left), 4 (bottom-middle) and 6 (bottom-right). The values of B0 in these plots are B0 = 10−2 and 10−3.
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830 D. Munshi et al.

Figure 2. Same as previous plot but for the ISW-lensing cross-spectra �(� + 1)CφT
� /2π defined in equation (20) as a function of the harmonic � for various

values of the parameter B0. The line styles used for various models are same as that of Fig. 1.

Figure 3. The optimized skew-spectra �3S
(opt)
� , introduced in equation (35), for various theories of modified gravity are displayed as a function of harmonic

�. The General Relativistic prediction corresponds to B0 = 0. The top-left and top-middle panels correspond to the predictions from PPF and BZ, respectively.
The bottom panels correspond to HS with n = 1 (bottom-left), 4 (bottom-middle) and 6 (bottom-right). The values of B0 in these plots are B0 = 10−2 and
10−3. We have used �max = 2500 and a Gaussian beam with FWHM θb = 5 arcmin for the numerical evaluation of S

(opt)
� . The line styles used for various

models are same as that of Fig. 1.

power spectra. The FWHM is fixed at θb = 5′. The noise level is chosen to match the Planck 143 GHz channel. It is interesting to note
that the extrema of �3S

(0)
� for all models occurs roughly at similar � values and thus are relatively insensitive to the change in parameter

B0. We display four different values of B0 for each model: B0 = 10−3 (solid), 10−2 (short dashed), 10−1 (long dashed) and 1 (dot–dashed),
respectively. For HS models, we choose two different values for B0 i.e. B0 = 10−3 and 10−2. In agreement with what we found for optimized
estimators, the skew-spectra for HS models with low n values show greater degree of sensitivity to B0 compared to their higher n counterparts,
which roughly mimic their PPF or BZ counterparts. By construction, the optimum skew-spectra are positive definite. The peak structure of
the optimum estimator for a given model is different from its MFs counterparts. The odd-numbered peaks of the optimum estimator are much
more pronounced compared to their even-numbered counterparts. Increasing the value of B0 suppresses the amplitude of oscillations for both
Minkowski Spectra and the optimum skew-spectra.
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Probing modified gravity theories 831

Figure 4. The first skew-spectra associated with MFs, or the first Minkowski Spectra �3S
(0)
� , defined in equation (29), for various theories of modified gravity,

displayed as a function of the harmonic �. The top-left and top-middle panels correspond to PPF and BZ, respectively. The General Relativistic prediction
corresponds to B0 = 0 and is shown in the top-left panel (dot and long dashed line). The bottom panels correspond to HS for n = 1, 4, 6, respectively. The line
styles used for various models are same as Fig. 1.

Figure 5. Same as previous figure but for the second Minkowski Spectra, i.e. �3S
(1)
� defined in equation (30). The line styles used for various models are same

as Fig. 1.

We have derived the covariance of the Minkowski Spectra and optimum skew-spectra. The covariance of Minkowski Spectra depends
only on the ordinary temperature power spectrum and are independent of the bispectrum as they are derived in the limiting case of vanishing
bispectrum. The covariance of the optimum skew-spectrum depends on the target bispectrum used for the construction of weights. Both set of
covariance matrices are well conditioned. The analytical covariance matrices were derived using an all-sky approximation. The mode–mode
coupling despite the all-sky approximation is related to the fact that these statistics are inherently non-Gaussian. The covariance matrices
for the MFs are displayed in Fig. 7 and for the optimum skew-spectra they are displayed in Fig. 8. A comparison with results presented in
Munshi & Heavens (2010) shows that we recover the terms designated as ‘α’ term there. The lack of corresponding ‘β’ terms in the current
study is simply due to all-sky coverage assumed here for simplicity.

Finally, we use these covariance matrices to compute the likelihood functions. The results are obtained by using a fiducial value B0 = 0.
The likelihood functions of B0 for MFs are shown in Fig. 9. The analytical covariance matrix for the optimum estimators is described in
equation (35). These expression was used in association with equation (44) to compute the likelihood function presented in Fig. 10. In this
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832 D. Munshi et al.

Figure 6. Same as the previous figure but for the third Minkowski Spectra �3S
(2)
� defined in equation (31). The line styles used for various models are same

as that of Fig. 1.

Figure 7. The all-sky covariance matrix S
(00)
��′ for the estimator S

(0)
� is being plotted in the left-hand panel. In middle panel, we depict S

(11)
��′ and the right-hand

panel corresponds to S
(22)
��′ . The analytical expressions for the covariance matrices are given in equation (39). For the computation of these covariance matrices,

we assume B0 = 0 (GR).

case, we use equation (39) for the expression of covariance matrices and in equation (43) for the expression of likelihood function. We find
B0 < 0.67 and B0 < 0.45 for both S

(0)
� and S

(1)
� at 99 and 95 per cent CL, respectively. For S

(opt)
� , the numbers are 0.071 (99 per cent CL)

and 0.15 (95 per cent CL), respectively. It is important to realize that the likelihood functions are not Gaussian as the covariance matrices
depend on B0 in a non-trivial manner through their dependence on the CMB temperature power spectrum CTT

� and the lensing-temperature
cross-spectrum CφT

� .

7 D I S C U S S I O N A N D C O N C L U S I O N S

The correlation between ISW and lensing of the CMB generates a specific signature in the CMB bispectrum. Analysis of first-year data from
the Planck satellite has detected this signature with a moderate level of signal-to-noise (S/N, 2.6σ ). The ISW-lensing bispectrum is unique as
it depends on the CMB power spectrum generated at recombination and cross-spectra of the lensing potential and the ISW effect generated at
late times. Both ISW and lensing are sensitive to the underlying model of gravity, and thus the resulting bispectrum provides an opportunity
to constrain any departure from GR. We consider various formulations of the modified gravity models which include HS, BZ and PPF models
to compute the bispectrum.
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Probing modified gravity theories 833

Figure 8. The all-sky covariance matrix S
opt
��′ defined in equation (41) for the optimal estimator S

opt
� is shown. The experimental set up corresponds to Planck

143 GHz channel with �max = 2000. The mode–mode coupling, even in the case of all-sky coverage, seen here in the covariance matrix is a result of the facet
that skew-spectrum is a non-Gaussian statistics. In the notation of Munshi & Heavens (2010), the covariance matrix presented here comprise of only the ‘α’
terms. Additional mode coupling is expected as pointed out in Munshi & Heavens (2010). The resulting ‘β’ terms are subdominant for near all-sky coverage.
We assumed a homogeneous uncorrelated noise distribution in our calculation, see Munshi & Heavens (2010) for a complete treatment. We also assumed
B0 = 0 (GR) background for our computation.

Figure 9. The likelihood functions LS defined in equation (43) for estimators S
(0)
� (left-hand panel), S(1)

� (middle panel) and S
(2)
� (right-hand panel) are plotted

as a function of B0. The parametrization used in our computation is that of BZ; primarily due to its higher speed compared to other parametrization in numerical
implementation.

Figure 10. Likelihood for optimal estimator S
opt
� is plotted as a function of B0 using the covariance matrix S

opt
��′ defined in equation (41). The parametrization

used in this computation is that of BZ.
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834 D. Munshi et al.

Figure 11. The confusion from unresolved PS is plotted for determination of optimum ISW-lensing skew-spectrum. The normalization for PS is fixed at
bPS = 10−29. The line styles used for various models are same as that of Fig. 1.

Topological estimators: the non-Gaussianity in CMB maps are often studied using moment-based approaches or alternatively using their
harmonic counterparts, namely the multispectra. Extending previous results, we have studied how topological descriptors such as the MFs can
provide a complementary role, paying special attention to Planck-type experiments. The MFs are interesting as they have different responses to
various systematics. We have considered the three MFs that are used for describing the topological properties of CMB temperature maps. We
compute analytically the covariance associated with the skew-spectra associated with the MFs, and our results also include cross-covariance
among different skew-spectra. In agreement with previous results, we find that the skew-spectra are highly correlated. Constructing the MFs
for Planck-type experiments (143 GHz), we find that the constraints are tighter for the first two MFs S

(0)
� and S

(1)
� , which both give B0 <

0.67 at 95 per cent CL. We do not get any meaningful constraints using S
(2)
� . The constraints can be further improved by considering Wiener

filtering instead of Gaussian smoothing. We provide simple analytical results for the three different Wiener filtering techniques that have been
considered previously in the literature. We also incorporate the optimum estimator and its covariance for construction of the corresponding
likelihood. The MFs do not fare particularly well in comparison with the optimal estimators, which are predicted to give much tighter
constraints: B0 < 0.071 at 95 per cent CL and B0 < 0.15 at 99 per cent CL. These are very close to the predictions from the full bispectrum
(Hu et al. 2013b), showing their optimal nature. We have not considered the possibility of combining results from different channels which
can further improve the constraints.

Contamination from PS and Galactic foregrounds: Galactic contamination are a major source of concern which can affect any study
involving the CMB. They are usually dealt with masking or by using component separation techniques (Leach et al. 2008). The residual bias
in the estimation of primordial non-Gaussianity was found to be small (Hikage et al. 2008a; Komatsu et al. 2011). However, other studies
were more conservative in interpreting the results (Chiang et al. 2003). Techniques also exist that involve marginalizing over foregrounds
(Komatsu et al. 2002, 2011). PS are an additional source of contamination for any study involving MFs. The resolved PS with sufficient S/N
can be removed by application of an appropriate mask, but there will be low-flux, unresolved and unsubtracted sources, comprising radio
galaxies and active galactic nuclei, that emit in radio frequencies through the synchrotron process, and dusty starburst galaxies which emit
thermally. However, integrated emission from the cosmic infrared background has recently been detected by Planck Collaboration using
the skew-spectrum (Planck Collaboration 2013e). Any contamination from unresolved PS can be estimated using equation (35). Some of
the issues involving mask and inhomogeneous noise can be dealt with by computing the cumulant correlators that represent MFs in the
real-space or in the needlet basis (Munshi et al. 2013c). The contamination from unresolved PS can be estimated using equation (35) with
X = ISW-lensing and Y = Pointsources. The contamination is shown in Fig. 11. For normalization bPS = 10−29 the contamination is several
orders of magnitude lower compared to the optimum skew-spectrum depicted in Fig. 3. We have ignored the contamination from primordial
non-Gaussianity which is expected to be negligible.

RS-lensing and tSZ-lensing skew-spectrum: the ISW-lensing cross-correlation at the level of bispectrum has been the focus of our study in
this article. The same techniques can in principle be used to analyse skew-spectra associated with the RS-lensing or thermal SZ (tSZ)-lensing
bispectrum to constrain B0. However, the tSZ-lensing bispectrum depends on detailed modelling of underlying ‘gastrophysics’ and the S/N
of RS-lensing skew-spectrum is below the detection threshold for ongoing surveys such as the Planck.

Beyond the bispectrum: the results that we have derived here are based on MFs and the optimum skew-spectrum. Going beyond
third-order correlation functions, it is possible to incorporate the power spectrum of the lensing potential Cφφ

� in constraining B0. Optimized
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Probing modified gravity theories 835

kurt-spectrum introduced in Munshi et al. (2011b) and later used to analyse 7-year data released by WMAP team (Smidt et al. 2011) can be
valuable for studies in this direction. These results when combined with results from power-spectrum data alone can improve the constraints
by an order of magnitude. The possibility of using polarized CMB maps will be explored elsewhere.

Constraints on B0 from other cosmological data sets: constraints from CMB can provide independent confirmations of constraints derived
from studies of BAOs, studies of galaxy clusters or that from weak lensing studies, though constraints from galaxy power spectrum can be
significantly tighter compared to the constraints derived here, log10B0 < −4.07. The scales and redshift probed by galaxy surveys and CMB
observations are very different and are affected by different set of observational systematics. Hence, these observations play complimentary
roles in constraining B0.

Wiener and Wiener-like filtering and MFs: Wiener and Wiener-like filtering are generally used for analysing realistic data to confront
issues related to component separation, PS and galactic masks (Ducout et al. 2013). The expressions for MFs in equations (29)–(31) can be
modified by replacing the bispectrum by B̃�1�2�3 = B�1�2�3W�1W�2W�3 . Various forms of the filters W � that were found useful in analysing
realistic data are W

(M)
� = C�b

2
�/Ctot

� ; W
(D1)
� = √

�(� + 1)C�b
2
�/Ctot

� ; W
(D2)
� = �(� + 1)C�b

2
�/Ctot

� . They correspond to Wiener filtering (M) and
Wiener-like filtering using first (D1) and second derivatives (D2) of the map. The expression for the covariance can be derived by replacing the
power spectrum by the filtered power spectrum C̃� = W 2

� C� in equation (39). By definition, the optimum estimator includes inverse covariance
weighting and its performance cannot be improved by filtering – inclusion of weights in the definition of optimum estimator in the numerator
and denominator cancel out. As a final remark, the information content of the skew-spectrum is independent of the power spectrum, as at the
lowest order the resulting cross-correlation will involve five-point spectra which vanish for a Gaussian CMB map.
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