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Abstract—In order to extract as much energy as possible from
ocean waves, an optimal control must be implemented in a wave
energy converter (WEC), which requires the knowledge of the
future incident waves (η). One of the most used methods to
predict the future η, is to use a linear combination of past η
values. Several models can be found in the literature, but only
two of these models are compared in this paper, the autoregressive
(AR) and autoregressive moving average (ARMA) models. Real
wave data from different locations is used to determine which
model is the best and in which scenario. This comparison
addresses the discrepancies between [1], where the ARMA model
is discarded for showing no improvement against the AR, and
[2], which states that the ARMA model does improve the AR.
The present paper shows that the two models achieve a similar
performance for all the different conditions analysed.Thus, due
to the simplicity and the lower computational requirement, the
AR model is chosen as the best model for prediction.

Index Terms—Wave energy, free surface elevation forecasting,
autoregressive model, autoregressive moving average model, op-
timal control

I. INTRODUCTION

Maximising the extracted power is crucial in reducing the
cost of wave energy [3]. To maximise the extracted energy,
control can be inplemented in the wave energy converter
(WEC), where only optimal control ensures that all the possi-
ble energy has been harvested from ocean waves [4].

Some of the control algorithms for WECs avoid the need
for predicting the free surface elevation (η) or the excitation
force (Fex) [5]- [6]. However, due to the non-causality of the
optimal PTO force, knowledge of future η or Fex is necessary,
in general, to implement optimal control to the device [4]-
[7]- [8]. In the literature, Fex is usually used as input to the
controller of the WEC and, commonly, is computed linearly,
which makes it predictable. However, in the case where non-
linear Fex is included, it can not be predicted based on its
past values so the input to control the WEC should be η.
Thus, since η is the only variable that can always be used as
input to control the WEC in linear and non-linear systems,
this paper focuses on the prediction of η.

Two methods can be used to forecast the free surface
elevation. The first method reconstructs the free surface using
one or more measurements taken close to the device [3]-
[9]- [10], as shown in Fig. 1(a). Hence, to measure the free
surface elevation, more devices may be needed, which means
a higher structural cost and a more complex model that takes

into account the multi-directional waves [9], the radiated and
diffracted waves, and the non-linear propagation of the waves.
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Fig. 1. Two main methods to forecast free surface elevation: space recon-
struction of the free surface elevation using distant measurements (a) and
forecasting based on the measurements of a single point (b)

The second forecasting method, illustrated in Fig. 1(b), is
based on the measurements of a single point to forecast the
future values of the free surface elevation, treating the past
values as time series. This second method, does not need
additional devices to measure the free surface elevation and
does not have to take into account the radiated and diffracted
waves or multi-directional waves, which makes it simpler than
the first method.

A number of wave forecasting models have been developed
in the literature: The autoregressive (AR) [1]- [11], the autore-
gressive moving average (ARMA) [1]- [2]- [12], the Kautz
method [12], Neural Networks [1], etc. Among the mentioned
methods, AR is one of the simplest and, at the same time,
accurate [1] method. In particular for the prediction of the
low-frequency waves (swell), which are the most energetic
waves.

The ARMA model is tested in [1], and is discarded for
showing no improvement compared to the AR method. Con-
versely an ARMA model is developed in [2] where, compared
to an AR model, achieves better results. Given the inconsis-
tency of the results in the papers [1] and [2], the main purpose
of this paper is to compare the two different forecasting models
and determine the advantages and disadvantages of the two
models under some conditions. This study uses real wave data
from 3 different locations.



The remainder of the paper is organised as follows: in
Section II the considerations taken into account to make a
fair comparison are introduced. Section 2 describes the autore-
gressive model, while Section 10 presents the autoregressive
moving average model. Section V shows the data used in the
comparison. Finally, Section VI, compares the performances
of the two forecasting models, and conclusions are drawn in
Section VII.

II. COMMON FEATURES

Since the aim of this paper is to compare the AR and ARMA
models under the same conditions, a number of processes
must be carried out in the same way for the two models.
For example, the way the model coefficients are identified.
Different procedures can be found in the literature [13] such
as Yule-Walker, Burg, Hannan-Rissanen (HR), etc methods.
Unfortunately, no method can be used for both models. There-
fore, a least square (LS) method is used for the AR model and
a variation of the HR algorithm for the ARMA model in this
paper. Coefficients of the ARMA model cannot be identified
using LS, because the future values not only depend on past
measurable values of η, but also on unobserved values (i.e.
white noise). However, as shown in [2], it is possible to use
a variation of the HR method based on two LS problems.
Thus, coefficients are identified similarly for both models,
which enables a fair comparison, minimising the impact of
the identification method in the performance of the models.

Given that the coefficients are identified solving different
LS problems, which minimizing the quadratic error between
predicted and real values, the way to measure the accuracy of
the prediction should have the same criteria. Thus, a Goodness
of Fit (GoF ) is used to describe the accuracy of the models
where the quadratic error between the real value (η) and the
predicted one (η̂) is computed. Then, the error is normalised
against η and the accuracy is showed in percentage:

GoF =

1−

√√√√∑(
ηk+Th

− η̂k+Th|k
)2∑

(ηk+Th
)
2

 100 (1)

where Th is the prediction horizon and η̂k+Th|k the predicted
value of η at k + Th from the time instant k.

The wave data records used in this paper are shorter than 30
minutes. Therefore, sea states have been considered stationary
and, thus, the coefficients of the AR and ARMA models are
assumed constant.

III. AUTOREGRESSIVE MODEL

The AR model expresses the value of a new η value based
on past η, and is described as follows,

ηk =

p∑
i=1

(φiηk−i) + wk (2)

where ηk is the free surface elevation at time instant k, p the
number of past values the model is based on, φi the regression

coefficients and wk the white noise. Thus, in order to predict
a new value of η, Equation (2) can be rewritten as,

η̂k|k−1 = η∗k−1φ
∗ (3)

where η∗k−1 is a vector of previous η values as as follows,

η∗k−1 =
[
ηk−1 ηk−2 · · · ηk−p

]
(4)

and φ∗ a vector containing all the regression coefficients as,

φ∗ =
[
φ1 φ2 · · · φp

]T
(5)

The coefficients of the AR are identified minimizing the
following cost function,

Jφ∗ =

N∑
i=p+1

(ηi − η̂i|i−1)2 (6)

which, is a linear LS problem and where N is the number
of past η values available. Coefficients from Equation 6 are
identified as follows,

φ∗ = (ZT1,N−1Z1,N−1)−1(ZT1,N−1Kp+1,N ) (7)

where Z1,N−1 ∈ R(N−p−1)×p is defined as,

Z1,N−1 =


ηp ηp−1 · · · η2 η1
ηp+1 ηp · · · η3 η2

...
...

. . .
...

...
ηN−1 ηN−2 · · · ηN−p+1 ηN−p

 (8)

and Kp+1,N ∈ R(N−p−1)×1 as,

Kp+1,N =
[
ηp+1 ηp+2 · · · ηN−1 ηN

]T
(9)

As stated in Section II, the AR coefficients are constant.
However, for a longer data set, or the real life, a model
which updates the AR coefficients where sea state changes
must be implemented. In the literature several methods to
update the coefficients can be found. One possible method
is to vary slowly the parameters in each step with a Recursive
Least Squares (RLS) [14]. Alternatively, coefficients can be
recalculated every time the sea-state varies.

IV. AUTOREGRESSIVE MOVING AVERAGE MODEL

The ARMA model is not only based on past η values to
express a new η value, it also takes into account the past
values of the noise,

ηk =

p∑
i=1

φiηk−i +

q∑
i=1

θiwk−i + wk (10)

where q is the order of the moving average (MA) part and
θ the coefficients to combine the past noise values. As stated
in section II, ARMA coefficients can not be identified as a
simple LS problem because the noise (w) is not measurable.
However it is possible to identify the coefficients solving two
LS problems [2].

The first LS problem is the same as in Equation (7) of the
AR model. Since the coefficients obtained from this first LS
problem are a first estimation, coefficients are denoted as φ̂



and the order of the model is h. The order of the definitive
φ is defined as p. In [13], as part of the Hannnan-Rissanen
algorithm, the estimation of φ̂ is computed using the Yule-
Walker algorithm. However, as explained in section II, in order
to identify the parameters similarly in both models, the LS
problem of Equation (??) is solved to get φ̂. Once parameters
are determined, the noise w can be estimated as follows,

ŵk = ηk −
h∑
i=1

ηk−iφ̂i (11)

Once ŵ is estimated, the AR and MA parameters are
estimated with a second LS problem, minimising the following
cost function,

Jβ∗ =

N∑
i=r+1

(ηi − η̂i|i−1)2 (12)

where r = max(q, p). Thus, β∗, contains the parameters as,

β∗ =
[
φ1 · · · φp θ1 · · · θq

]T
(13)

and is given by,

β∗ = (XTX)−1(XTKh+r+1,N ) (14)

where X is a matrix which contains past η and ŵ values as,

X =

ηh+r · · · ηh+r−p+1 ŵh+r · · · ŵh+r−q+1

...
. . .

...
...

. . .
...

ηN−1 · · · ηN−p ŵN−1 · · · ŵN−q

 (15)

and Kh+r+1,N a column vector which contains values of η
from h+ r + 1 to N .

Finally, the Hannan-Rissanen estimation of the noise vari-
ance (Q̂) is obtained using the following expression,

Q̂ =
Jβ∗

N − h− r
(16)

In order to predict new η values, a steady state Kalman
Filter (KF) is used to obtain the values of the state (xk)Nk=1

[2]. The state space representation of the ARMA model is,

x̂k+1 = Ax̂k +Gwk+1

yk = Cx̂k
(17)

where A ∈ R
r×r is the matrix which contains the AR

coefficients, G ∈ Rr×1 the weighting matrix of the noise,
yk the output of the system and C ∈ R1×r the matrix which
contains the MA coefficients. A, G and C matrices are,

A =


φ1 φ2 · · · φr−1 φr
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 (18)

G =
[
1 0 · · · 0

]T
(19)

C =
[
1 θ1 θ2 · · · θn−1

]
(20)

where φi = 0 for i > p and θi = 0 for i > q. As in [2],
the error covariance P∞ and the Kalman gain L∞, which are
assumed constant, are obtained as follos,

P∞ = AP−∞A
T +GQGT −AP∞CT (CP∞C

T )−1CP∞A
T

L∞ = (P∞C
T )(CP∞C

T )−1

(21)
Thus, the KF Time Update (TU) and Measurement Update

(MU) are composed by two equations. First, in TU the state
estimated. Then, when a new measurement is available, the
state is updated using L∞ in MU as,

• Time update:

x̂−k = Ax̂k−1 (22)

• Measurement update:

x̂k = x̂−k−1 + L∞(yk − Cx̂−k−1) (23)

Once the state x̂ is determined, it is possible to recursively
predict future observations, η̄k+Th|k, as follows,

η̄k+Th|k = CATh x̂k (24)

V. WAVE DATA

Real sea data from three different locations have been used
in this paper:

• Pico plant, which is located in Pico island, approximately
in (38.56, -28.45), in the Azores. This data has been
recorded using an Aquadopp 1001 with a frequency of
2Hz. Data consist of 30 minutes sets recorded continually.

• Belmullet is located in the west coast of Ireland, ap-
proximately (54.27, -10.28). Data consist of 30 minutes
sets recorded continually with a Waverider buoy with a
1.28Hz frequency. This data has been obtained from the
Irish Marine Institute.

• Galway Bay, west coast of Ireland, data has been ob-
tained from the Irish Marine Institute. This data consist of
20-minute records for each hour measuring values with a
frequency of 2.56Hz recorder with a Waverider buoy. The
buoy is located at, approximately (53.23, -9.26), where
the water depth is, approximately, 20m.

The data fragments have been selected attempting to an
implementation of different sea states, for which Fig. 2 shows
the spectra. The spectra of Pico plant wave data are narrow
banded at low-frequencies, showing that is mainly swell wave,
with no high-frequency component. The spectra of the data
from Belmullet, are also narrow banded at low frequencies,
but they also have high-frequency component. Finally, Galway
Bay wave data is mostly composed by wind waves, which can
not be used to extract power by WECs, but has been selected
in order to try the models in different conditions.

To create the smoothed spectra showed in Fig. 2, the data
have been processed as explained in [15].
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Fig. 2. The spectra used for the comparison

VI. RESULTS

In [2], the prediction horizon (Th) is set to 4s, determined
to be half of the typical wave period of the used spectra.
However, as data with different spectra is used in this paper,
the typical wave period is not the same for all spectra, thus
the results are showed as a function of Th.
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Fig. 3. The variation of the GoF of the AR model for the third Pico plant
wave data set when the order of the model increases

To determine the order of the models, different combina-
tions are compared as in Fig. 3-4, where the accuracies of one
step ahead predictions are compared. Then, the model order
for the highest accuracy is selected.

In Fig. 3 it is shown how the one step ahead prediction’s
GoF of an AR model changes when the order of the model
increases. As explained in Equation (6), the coefficients are
identified minimising the error of the prediction in one step.
Thus, the model order has been chosen comparing one step
ahead predictions’ GoF , as illustrated in Fig. 3.

The impact of different combinations of p and q orders on
the GoF of the ARMA model is shown in Fig. 4. As explained
for the AR model, the order has been chosen comparing the
GoF of the one step ahead prediction of different p and q
order combinations. The order of the first AR estimation (h)
must be higher than the order of r [13], and it has been proven
that the variation of h does not affect the GoF (as long as it
is higher than r), so h = 110 have been used for all the data
sets.

Since just one LS problem is solved and the order of
the model is usually lower, the process of identifying the
parameters is faster in the AR model than in the ARMA
model. Furthermore, the prediction process of the AR model
is simpler because the regression coefficients can be directly
used on the past η values to predict new values while, in the
ARMA model, a KF is needed to obtain the state x in order to
predict new η values. In particular, for the first data set from
Pico plant, where the order is similar for both models (89 for
the AR and 58+29 for the ARMA), only 0.01s are needed by



Fig. 4. The variation of the GoF of the ARMA model for the third Pico
plant wave data set with different p and q order combinations

the AR to identify the parameters while, 0.25s are needed by
the ARMA. Once the regression coefficients and the state x
are identified, the ARMA model predicts a new η value using
just one equation (Equation (24)), while the AR model needs
a equation loop, whose size depends on Th. However, as it is
shown in Fig. 5, where the time needed to predict a new η
value is shown, the ARMA model is not faster than the AR.
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Fig. 5. The time needed for the prediction, for different Th

One can notice that, while the AR order only depends on
p, the ARMA model order depends on p and q which, as it
is shown in Fig. 4, makes the order selection more complex
than in the case of the AR model. As it can be concluded from
Table I, the AR model order is up to 100, while the ARMA
model order is between 1 and 60 for p and 1 and 40 for q.
Apart from the number of possible combinations, as explained
before in this section, the ARMA model needs more time to
identify the parameters, which need to be identified for each
different combination. Hence, while approximately 3 seconds
are required to generate a graph like Fig. 3, whose p goes from
1 to 100, around 12 minutes are needed to obtain a graph like

Fig. 4, whose p goes from 1 to 60 and q goes from 1 to 40.
The used AR and ARMA model orders and the one step

ahead GoF are shown in Table I, where the one step prediction
is shown to be always more accurate using AR than ARMA.

TABLE I
MODEL ORDER AND ONE STEP AHEAD PREDICTION GoF OF ALL DATA

SETS

AR ARMA
p GoF h p q GoF

Pi
co

1 89 94.94 110 58 29 93.47

2 40 92.86 110 14 21 90.42

3 40 88.92 110 49 37 85.44

B
el

m
ul

le
t 1 62 77.98 110 46 10 68.06

2 66 66.34 110 22 16 48.39

3 55 63.73 110 16 7 43.37

G
al

w
ay

1 7 67.76 110 7 4 63.21

2 38 80.25 110 7 16 76.92

3 41 77.16 110 28 37 72.05

4 42 73.40 110 19 25 71.87

5 26 77.12 110 19 16 72.32

6 31 71.21 110 16 13 66.24

Fig. 6 shows how the GoF of each data set changes when
Th increases. One can notice that the two models achieve a
similar performance. In the Pico plant data sets, both models
achieve the same performance when Th < 20s. However, for
Th > 20s, ARMA model achieves an slightly better GoF
comparing to the AR. In Belmullet data sets, AR achieves,
generally, a slightly better GoF than the ARMA model.
Finally, in the Galway Bay data sets, both models have a
similar performance, where the AR model achieves slightly
better predictions.

Generally, it is fair to say that both models achieve a similar
performance, which is not surprising due to the fact that the
ARMA model is a sum of AR model and a noise which is
estimated using another AR model.

VII. CONCLUSIONS

The main purpose of this paper is to solve the conflict
between [1], which discards the ARMA model for not showing
any improvement against AR, and [2], which states that the
ARMA model achieves a more accurate prediction than AR.
It has been deemed convenient to try the ARMA model
explained in [2], in case the process to obtain the regression
coefficients explained in [2] is better than the one used in [1].
Nevertheless, it has been demonstrated that the ARMA model
explained in [2] does not show any improvement comparing
to an AR model of similar characteristics.

The conclusion obtained in [2] is probably due to the fact
that the AR model coefficients are updated in time, which may
not be the best option due to the length of the used data sets.
In contrast, the ARMA model in [2] keeps the parameters
constant, so it is not fair to compare it to a model which
updates the coefficients. Therefore, in this paper both models
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Fig. 6. The GoF for diferent Th in all data sets

maintain the regression coefficients constant. To ensure that
the ARMA model is the same as in [2], the initial idea of this
paper was using the same data used in [2] and compare the
results but, unfortunately, that data was not available.

One can notice from Sections III and IV, that the ARMA
model is more complex than the AR, while Section VI shows
both obtain similar accuracies. Therefore, the conclusion
presented in [1], saying the ARMA does not provide any
improvement compared to the AR, is confirmed.
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