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Abstract—Real-time prediction of free-surface elevation or wave
excitation force is necessary for a variety of applications, including
noncausal optimal control of wave energy converters and detection
of quiescent periods for offshore operations. Prediction methods
can use past measurements at the point of interest, treating the
wave elevation as a time series (looking backward). Alternatively,
wave elevation values can be recorded at a set of locations about the
point of interest and propagated in time and space through physi-
cal or statistical models (looking forward). In this paper, assuming
Gaussian waves, a unified framework is proposed, which treats any
combination of wave elevation values at various points in time and
space as a Gaussian vector and covers both “backward” and “for-
ward” approaches. It is shown that, using any given combination
of measurement points in time and space, the optimal predictor,
in a least mean square sense, is linear for any time horizon and
can be directly derived from the wave spectrum, provided that the
latter is known. The associated error can be readily calculated,
thus providing, based on the wave spectrum, an upper bound on
the predictability of the wave elevation process. In addition, the
applicability of the spectrum-based predictor to real-time wave
elevation forecasting is discussed.

Index Terms—Deterministic sea wave prediction, Gaussian pro-
cess, linear waves, real-time wave prediction, wave spectrum.

I. INTRODUCTION

R EAL-TIME prediction of sea surface elevation has re-
ceived significant interest in the past 20 years [1]. Possible

applications include the detection of quiescent periods for safe
marine operations [2], [3] and real-time optimal control of wave
energy converters (WECs) to improve power capture [4]–[6].

Two main types of approaches for short-term wave forecast-
ing are generally identified [7]: methods based on spatial predic-
tion of wave elevation, through physical or stochastic propaga-
tion models, using one or more observations in the vicinity of the
point of interest (“looking forward,” following the terminology
used in [2]), and methods using only past measurements at the
point of interest; thus treating the wave elevation as a time series
(“looking backward,” following [2]). While the authors believe
that the broad terminology of “forward/backward” is useful and
consistent with the previous work, the “forward” label can re-
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fer to both up-wave and down-wave measurements—though,
as will become apparent, up-wave data are significantly more
useful than down-wave data.

Typically, in the “looking forward” approach, signal process-
ing tools are employed to identify a set of wave components
with various frequencies, phases, and directions [1]. The identi-
fied components are subsequently propagated in space and time
using physical propagation equations. Therefore, such methods
are often termed deterministic sea wave prediction (DSWP), as
opposed to the traditional stochastic description of ocean waves
[8]. Accurate forecasts (≥80%) can typically be achieved for
prediction horizons of the order of 30 s [1], [9].

“Looking backward” techniques use measured data at the
point of interest, to identify, as a background task, the parameters
of a time-series model. The real-time prediction is performed by
propagating the model in time. Although accurate predictions
up to a few tens of seconds are reported in [7], those were
obtained after offline filtering of the wave data, and thus it
is yet unclear what can be achieved in real time by using a
“looking backward” perspective. Time-series approaches, such
as autoregressive (AR) models, have the advantage of simplicity,
and naturally provide an interesting probabilistic framework to
handle forecast uncertainties.

Deep-water ocean waves can be, in the vast majority of cases,
modeled accurately as a linear, Gaussian stochastic process [8],
which is entirely characterized by its energy spectrum [spectral
density function (SDF)] or, alternatively, by its autocovariance
function (ACVF). The Gaussian spectral representation charac-
terizes the statistical properties of the wave elevation time series.
Therefore, as highlighted in [6]

it may be expected that the ability to predict the excitation force,
by using a stochastic model, is related to properties of the sea state
(peak frequency and bandwidth) [...].

Furthermore, under the assumption of a stationary Gaussian
sea, all the statistical information, which characterizes the wave
elevation process, is contained within the wave SDF.

In this paper, the implications of the spectral wave representa-
tion, in terms of short-term wave forecasting, are investigated in
detail. Treating measured and predicted wave elevation values
as a Gaussian vector, a unified framework is proposed, which
encompasses both “looking forward” and “looking backward”
approaches. The proposed methodology relies on the linearity
and stationarity assumptions, within the temporal and spatial
scales considered. In particular, breaking, and rogue, waves are
excluded from the analysis. Using any combination of mea-
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surement points in time and space, it is shown that the optimal
predictor, in a mean square error sense and for any time horizon,
is linear, and that its coefficients can be derived directly from
the wave spectrum, provided that the latter is known. The error
associated with the optimal predictor is also easily provided.
The following two significant consequences are detailed in this
study.

1) First, under the assumption of stationary Gaussian waves,
any other predictor using the same combination of mea-
surement points (in space and time) is suboptimal, with
respect to the prediction law derived in this paper. For
any given combination of measurement points in time
and space, the spectrum-based predictor thus provides a
theoretical estimate of the wave elevation process pre-
dictability.

2) Second, from a practical point of view, assuming that
the wave elevation process is locally stationary, it could
be possible to use spectral information to improve the
forecasting process. Thus, instead of propagating physical
equations in time and space (which can be computation-
ally costly), or instead of identifying time-series models
from measured data, the focus could be shifted toward
estimating, in real time, the underlying wave spectrum,
possibly using a combination of local measurements and
outputs from real-time meteorological models. The opti-
mal predictor would then be directly calculated from the
spectrum, as in this paper. Overall, the short-term forecast-
ing problem would be reduced to determine the wave SDF
or ACVF, which reflect the physical processes underlying
the wave dynamics, and therefore evolve on a relatively
slow time scale, and present some degree of predictabil-
ity using information from physical wave models used by
meteorological agencies.1

Section II is a reminder of the Gaussian description of ocean
waves, and illustrates, through the wave covariance function,
how measurements at different locations contain usable sta-
tistical information. The optimal, spectrum-based predictor is
given in Section III, for any combination of measurements
taken at various spatial locations and points in the past. The
following sections provide various numerical illustrations of the
spectrum-based predictor performance: Waves measured solely
at the point of interest (“looking backward” approach) is the
subject of Section IV, whereas spatially distributed measure-
ments (“looking forward”) are considered in Section V for uni-
directional wave fields, and Section VI considered directional
wave fields. Finally, conclusions and discussions are presented
in Section VII.

II. GAUSSIAN DESCRIPTION OF OCEAN WAVES

A. Gaussian Waves

Ocean waves can be modeled as a zero-mean Gaussian field
in most conditions, i.e., as long as water depth is sufficient and
the wave condition is not too extreme [8]. Let us consider a small
duration with respect to the typical rate at which the sea con-

1See, for example, the European Centre for Medium-Range Weather Fore-
casts website https://www.ecmwf.int

dition evolves in time, and a relatively small area, with respect
to the typical distance over which the sea condition evolves in
space. Then, the wave elevation process can be considered as
being stationary, which, for a Gaussian process, reduces to time
invariance of the first- and second-order statistical moments [8],
and it can be considered to be homogeneous, i.e., its statistical
properties do not change over horizontal dimensions. Finally,
the sea surface Gaussian process is also considered to be er-
godic [8], which means that time averages of the process are
equal to ensemble averages.

Under such conditions, the wave statistical properties are
entirely characterized by the wave elevation spectrum [8] or,
equivalently, by the wave ACVF. If the wave elevation at only
one specific point is considered, (as in a “looking backward” ap-
proach), the wave elevation process is described as 1-D Gaussian
stochastic process. If several points in space have to be consid-
ered, the space–time statistical properties of the process must
be characterized.

B. Wave Elevation as a Point Gaussian Process

In the case of point measurements, the Gaussian wave field
reduces to a 1-D Gaussian process. Such a stationary, ergodic
Gaussian process is entirely characterized by its mean (η̄ = 0)
and its ACVF Rηη is defined as follows:

Rηη (τ) = lim
T→∞

1
2T

∫ T

−T
η(t)η(t+ τ)dt. (1)

The fact that Rηη only depends on τ stems from the pro-
cess stationarity. Furthermore, Rηη (τ) is an even function that
is maximum at τ = 0, with Rηη (0) representing the process
variance.

Due to the ergodicity property of the process, Rηη can also
be defined as follows:

Rηη (τ) = E[η(t)η(t+ τ)]. (2)

In addition, let us define the SDF Sηη (f) of the process as
follows:

Sηη (f) = lim
T→∞

1
T
|HT (f)|2 (3)

where HT (f) =
∫ T

−T η(t)e
−i2πf tdt.

The ACVF and the SDF of the weakly stationary sea surface
elevation process are a Fourier transform pair, according to the
Wiener–Khintchine theorem. As a consequence, the statistical
properties of the stationary, zero-mean Gaussian wave elevation
process are entirely described by its ACVF, or equivalently by
its SDF—see [8] for more details.

In practice, the SDF is more often available than the ACVF:
First, the wave spectrum can be easily estimated using Fourier
transforms of a recorded wave elevation signal. Second, a sea
state representation through an SDF is very informative since it
explicitly shows the wave frequency content, which is useful in
studying the mechanical response of ships or offshore structures.
Finally, meteorological models that include ocean wave condi-
tions also describe sea states by means of the wave SDF since
wave generation and propagation models describe the evolution
of wave energy at different frequencies.
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Fig. 1. SDF and ACVF for a JONSWAP spectrum with Hs = 2 m and Tp = 10 s.

As an example, a Joint North Sea Wave Project (JONSWAP)
SDF [10] withHs = 2 m and Tp = 10 s is represented in Fig. 1,
along with the associated ACVF. Typically, the ACVF of ocean
waves fades out to zero after a few dozen seconds.

Clearly, using solely measurement instants, which exhibit no
correlation with the prediction time of interest, cannot bring any
useful statistical information. For example, from Fig. 1, using
only points that are more than 100 s in the past is not statistically
informative to predict current wave elevation values.

However, if such distant points are used, in combination with
others that are correlated with the prediction instants, the dis-
tant points may still improve the prediction accuracy. In other
words, in relation to Fig. 1, measuring wave elevation values
beyond 100 s in the past may be beneficial, if more recent mea-
surements are also taken into account. Thus, the relationship
between the shape of the covariance function and the wave sig-
nal predictability using a given combination of measurements is
not a straightforward problem. A simple look at the covariance
function is not sufficient to accurately determine an appropriate
set of measurements. Using again the example of Fig. 1, it is yet
impossible to ascertain how many points in the past should be
used, for the prediction of present and future values, in spite of
the ACVF fading out to zero beyond 100 s.

C. Spatio-Temporal Properties of the Wave Field in
Unidirectional Wave Spectra

The properties of the wave field, both in time and space,
are now considered in the simplified case where all waves are

assumed to come from the same direction, say the x-axis �ux .
The wave dispersion equation defines how the frequency ω and
wave number k are related to each other. In the general case, for
intermediate water depths, the dispersion relation is written as
follows:

ω2 = gk tanh (hk) (4)

where g is the gravitational constant and h is the water depth.
In practice, (4) defines an implicit function k̃(ω), which can be
numerically evaluated for any arbitrary ω.

In deep water, (4) can be approximated by means of the
following explicit relationship:

k̃(ω) =
ω2

g
. (5)

Given the unidirectionality of the wave field following �ux ,
the free-surface elevation at a given point only depends on the
time considered and point spatial coordinate along the x-axis.

The space–time covariance Rηη only depends on the time
difference and relative position (projected onto the x-axis) be-
cause of the stationarity and homogeneity assumptions. Thus,
Rηη can be written as a function of ρ, which denotes the relative
x-coordinate, and τ , which denotes the relative measurement
time. Using the Wiener–Khintchine relation [8], the covariance
between the wave elevation measured at two points, with rela-
tive coordinate ρ along the x-axis, and at times separated by τ ,
can be computed as follows from the wave spectrum:

Rηη (ρ, τ) =
∫ ∞

0
Sηη (ω) cos

(
k̃(ω)ρ− ωτ

)
dω. (6)
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Fig. 2. Space–time ACVF (unidirectional JONSWAP spectrum with Hs = 2 m and Tp = 10 s).

Using (6), the space–time covariance function of the unidirec-
tional wave field can be computed for any ρ and τ . Fig. 2 shows
Rηη for a JONSWAP spectrum [10], with significant wave
height Hs = 2 m and peak wave period Tp = 10 s, in the water
depth h = 200 m. Rηη reaches its maximum at (ρ, τ) = (0, 0),
where its value ism0 = 0.25 m2 . The usual time-domain ACVF,
for point measurements [11], which can be read in the plane
defined by ρ = 0, is highlighted, as well as the space autoco-
variance, which is shown as a dotted line in the plane defined
by τ = 0.

Several other comments are appropriate, which are given as
follows.

1) The distance between the first two peaks, on the time-
domain autocovariance, is close to Tp = 10 s.

2) The distance between the first two peaks, on the spatial
domain autocovariance, is close to the typical wavelength,
i.e., λp = (g/2π)T 2

p ≈ 150 m.
3) The main ripples are parallel to a direction with a slope

close to the peak phase velocity, for waves with period
Tp : cφ ≈ (g/2π)Tp ≈ 15 m·s−1 .

4) The strongest peaks and troughs follow a direction with
a slope close to half the peak phase velocity, which
corresponds to the peak group speed cg in deep water.
This is a specific manifestation of the fact that wave
energy propagates at the wave group speed. This also
suggests that the time–distance predictability domain is
governed by the group speed rather than the phase veloc-
ity, and thus corroborates the conclusions of other stud-
ies, e.g., as in [12]. The relationship between the wave
group speed and predictability will be further examined in
Section V.

In Fig. 2, the half-plane with τ ≤ 0 (resp. τ ≥ 0) indicates the
covariance of the present free-surface elevation, with measure-
ments taken in the past (resp. in the future). The half-plane with
ρ ≤ 0 (resp. ρ ≥ 0) indicates the covariance of the free-surface
elevation at the point of interest, with measurements taken up-
wave (resp. down-wave). It can be seen that the main covariance
peaks and troughs are observed for past, up-wave measurements,

and future, down-wave measurements (obviously not available
in practice).

Therefore, it is statistically informative to use past measure-
ments at points located up-wave, to predict wave elevation val-
ues at the location of interest. For example, the wave elevation,
at the time and location of interest, presents a strong degree of
correlation with the measurement, taken 450-m up-wave, 60 s
into the past.

In contrast, down-wave measurement points are significantly
less informative. In particular, those which are located more
than one or two typical wavelengths down-wave do not provide
any relevant information for prediction purposes. However, and
perhaps not so intuitively, points which are located down-wave,
but reasonably close to the point of interest, do bring some
exploitable statistical information.2

D. Spatio-Temporal Properties of the Wave Field in
Directional Wave Spectra

Actual ocean waves are reasonably described as a superposi-
tion of wave fields coming from multiple directions; therefore,
a directional spectrum S(ω, θ) can be defined [8], where θ de-
notes an angle relative to, say, �ux . Then, the covariance of the
wave elevation field, between two points A and B with co-
ordinates (xA , yA , tA ) and (xB , yB , tB ), respectively, depends
on the relative coordinates of A and B and time lag tB − tA .
Denoting χ and ψ as the relative x and y coordinates, respec-
tively, the space–time covariance function can be derived from
the directional spectrum as follows [13]:

Rηη (χ, ψ, τ) =
∫ π

−π
d θ

∫ ∞

0
dωS(ω, θ) cos

× [k̃(ω)(χ cos θ + ψ sin θ) − ωτ ]. (7)

2A practical consequence is that, considering two measurement points A
and B , with A up-wave with respect to B , then (unsurprisingly) not only the
measurements taken atA can contribute to improving wave elevation forecasts at
B , but also (more surprisingly) the measurements taken atB can also, although
to a lesser extent, contribute to improving wave elevation forecasts at A.
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Fig. 3. Examples of the directional JONSWAP spectra with various directional spreading parameters s.

The directional spectrum is often described by means of a
parametric, directional spreading function D(ω, θ) such that

S(ω, θ) = D(ω, θ)S(ω) (8)

where S(ω) is the omnidirectional spectrum and, ∀ω∫ π

−π
D(ω, θ)dθ = 1. (9)

Several formulations exist for the spreading functionD(ω, θ),
such as the cosine-square, Mitsuyasu, Hasselmann, and
Borgman’s formulas [8].

In the numerical applications of this paper, the Mitsuyasu
formula is retained since it is widely used for engineering appli-
cations and is more realistic than the cosine-square formulation
[14]. Note, however, that the use of the Mitsuyasu formula and,
more generally, the assumption of a directional spectrum in the
form of (8) are not necessary for the application of (7), and hence
for the derivation of the theoretical results presented in this pa-
per. The Mitsuyasu formulation is rather chosen as a simple and
an easily tuneable example.

Denoting θp as the peak wave direction and ωp = 2π/Tp , the
Mitsuyasu directional spreading function is given as follows:

D(θ, ω) =
22s−1

π

Γ(s+ 1)2

Γ(2s+ 1)

∣∣∣∣cos
(
θ − θp

2

)∣∣∣∣
2s

(10)

where the parameter s is frequency-dependent as

s =

{
smax(ω/ωp)5 , for ω ≤ ωp

smax(ω/ωp)−2.5 , for ω > ωp.
(11)

smax depends on the nature of the wave system considered.
A large smax indicates that a spectrum sharply concentrated
around its mean direction. Values such as 10, 25, and 75 for
wind waves, swell with short decay distance, and swell with
long decay distance, respectively, [14] may be used.

Figure 3 shows two examples of the directional spectra, ob-
tained from the JONSWAP spectrum of Section II-B, with a
Mitsuyasu spreading function with smax = 25 and smax = 75.
The corresponding spatial covariance functions Rηη (χ, ψ, 0)
are shown below each spectrum.
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Fig. 4. Space–time covariance for different orientations of the two measurement points (directional JONSWAP spectrum with Mitsuyasu spreading function and
parameter smax = 25).

Similar to Section II-C, the space–time covariance properties
of the wave field may be analyzed. To this end, it is interest-
ing to consider two points forming an angle θ relative to �ux .
Then, the space–time covariance can be considered along the
direction formed by the two points, and depends on the time
lag τ and relative position ρ along the axis of angle θ. Fig. 4
shows the time–distance covariance function for the directional
spectrum of Fig. 3, with spreading parameter smax = 25, for two
measurement points forming angles of 0°, 45°, and 90°, respec-
tively, with mean wave direction θp . Unsurprisingly, it is in the
mean wave direction that the strongest covariance peaks and
troughs are found, which means that, for prediction purposes,
a measurement point located up-wave, in the mean wave di-
rection, is more informative than a measurement point forming
some nonzero angle with respect to θp .

III. OPTIMAL WAVE ELEVATION PREDICTOR

A. Treating Measurements As a Gaussian Vector

If the wave description, as a stationary, homogeneous, Gaus-
sian random field, is valid (which is the crucial assumption un-
derlying this paper), then following the definition of a Gaussian
random field, any finite, discrete combination of measurements,
taken at various points in time and space, form a multivariate,
Gaussian random vector.

Consider a discrete set of points in time and space. Some of
those points, indexed bym ∈ [[1;M ]], can be observed (because
they are “in the past” and at a location where the free-surface
elevation can be measured) and are termed measurement points,
whereas some other points, indexed by n ∈ [[1;N ]], have to be
predicted (prediction points) because they are “in the future”
and/or at a location where the free-surface elevation cannot be
observed. The M measurement points form a vector x ∈ RM

and the N prediction points form a vector y ∈ RN.
Altogether, the N +M points form a multivariate Gaussian

random vector v ∈ RM+N. Its mean is 0RM + N and its variance–
covariance matrix, noted Σvv , can be entirely derived from
the wave spectrum, i.e., from the wave covariance values be-
tween any pair of points in time and space, which depends

on the relative position and time of any pair of points, as in
(6) and (7).

Σvv can be written as follows:

Σvv =

(
Σyy Σyx

Σxy Σxx

)
(12)

where Σyx = ΣT
xy .

Using μx = μy = 0, the conditional distribution of y|x is a
multivariate Gaussian (see, for example, [15]) with mean

μy |x = ΣyxΣ−1
xxx (13)

and variance (assuming Σxx is nonsingular)

Σy |x = Σyy − ΣyxΣ−1
xxΣxy . (14)

Therefore, the best predictor of y, in a least mean square
sense, is given as

ŷ = μy |x = ΣyxΣ−1
xxx. (15)

The mean square prediction error, for each prediction point
in time and space, is given by the diagonal terms of Σy |x . For a
given choice of M measurement points in time and space, any
other forecasting method is suboptimal with respect to the law
derived in (15), to evaluate the N prediction points.

It is interesting to examine the behavior of the optimal pre-
dictor, when the prediction points are at large distances or time
lags from the measurement points. In such cases, the rows of
Σyx , which contain covariance values between measured and
predicted points, take values close to zero. Therefore, from (15),
the optimal predictor fades out to zero for predicted points lo-
cated at large distances from the measured points, or far ahead
in time. This is statistically consistent since, the wave field
being zero mean, the best possible guess, for free-surface ele-
vation values at large time horizons or large distances from the
observed points, is always zero. Other prediction methods do
not necessarily share this desirable property: for example, AR
model predictions, propagated ahead in time, do not generally
tend to zero; it is not the case either for physical wave propaga-
tion models since the sinusoidal terms do not fade out to zero
for large distances or time horizons.
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B. Discarding Statistically Redundant Information

Equation (15) holds, provided that Σxx is invertible. However,
it may happen that Σxx is singular or badly conditioned, which
means that the components of x are not statistically independent.
To discard the statistically redundant information contained inx,
the measured values can be transformed in a manner described
as follows.

Σxx is a variance–covariance matrix; it is therefore sym-
metric, positive semidefinite and can be diagonalized: Σxx =
QΛQT, where Λ is the diagonal matrix of positive eigenvalues
{λ1 , ..., λM } arranged in descending order, QT = Q−1 , and the
ith column of Q is the eigenvector qi .

Next, only M ′ nonzero eigenvalues3 are selected. Define
Λ∗, the diagonal matrix of the retained eigenvalues, and Q∗ ∈
RM×M ′

, composed of the eigenvectors qi∈[[1;M ′]] corresponding
to Λ∗. Define

A =

(
IRN ×N 0RN ×M

0RM ′×N Q∗T

)
. (16)

Define v′ := Av and x′ := Q∗T x. v′ is a Gaussian random
vector, and its variance–covariance matrix has the following
structure:

Σv ′v ′ = AΣvvA
T =

(
Σyy Σyx ′

Σx ′y Λ∗

)
(17)

where

Σyx ′ = ΣyxQ
∗ = ΣT

x ′y . (18)

Then, (14) and (15) can be safely applied to the new vector
v′. The best predictor is now given as

ŷ = Σyx ′Σ−1
x ′x ′x′ = ΣyxQ

∗Λ∗(−1)Q∗T x (19)

without any loss of accuracy since only statistically redundant
information has been eliminated in x.

In the following, the matrix P = ΣyxQ
∗Λ∗(−1)Q∗T will be

termed the prediction matrix as it is the matrix that linearly
transforms a set of measurements into a set of predictions.

IV. PERFORMANCE OF THE OPTIMAL PREDICTOR FOR POINT

MEASUREMENTS

In this section, the “looking backward” approach is consid-
ered from the spectrum-based optimal predictor perspective,
where the spatial location of measurement and prediction points
is identical. Measurement points simply consist of the past M
wave elevation values at the location of interest, and prediction
points are the next N wave elevation values.

The JONSWAP spectrum, shown in Fig. 1, is used as an exam-
ple. For different orders M , the optimal predictor is derived as
in (15), and the associated error e2(h) = E[(η̂(n+ h) − η(n+
h))2 ] is calculated for each time horizon between 0 and 60 s,
without requiring any simulation since the sequence e2(h) is
readily provided by the diagonal terms of Σy |x in (14). The

3Or eigenvalues larger than some small threshold.

Fig. 5. GoF of the optimal predictor for different time horizons and predictor
orders (JONSWAP spectrum with Hs = 2 m and Tp = 10 s).

goodness of fit (GoF) of the prediction defined as

G(h) = 1 −
√
e2(h)
E[η2 ]

(20)

is plotted in Fig. 5 for different orders M .
It can be seen in Fig. 5 that the GoF improves with the predic-

tor order. However, beyond some value of M , the improvement
achieved by increasing the order is not significant. Considering
the specific example of Fig. 5 using data for more than 120 s in
the past does not significantly improve the forecast accuracy.

The quality of the forecast decreases rapidly with the time
horizon considered. For a time horizon of 10 s, which corre-
sponds to one typical wave period for the spectrum considered,
the GoF is less than 50%, which means that the RMS error
committed is half the variance of the signal itself.

JONSWAP spectra are idealized spectra, with energy sharply
concentrated at low frequencies, which is beneficial in terms of
wave forecasts. It can be expected that with actual wave spec-
tra, which also include significant higher frequency content, the
optimal predictor would exhibit a smaller GoF. This is illus-
trated in Fig. 6 where, using 120 s of past data, the GoF of the
optimal predictor is shown for two different spectra: the JON-
SWAP spectrum of Fig. 1 and the same spectrum where higher
frequency components have been added. It can be seen that the
quality of the forecast is significantly affected by the presence
of high-frequency components.

In fact, the measured input may not be the wave elevation
itself but, say, the linear wave excitation force [5] acting on a
WEC. The SDF of such an input depends on the wave elevation
SDF, transformed depending on the mechanical properties of
the WEC system. Typically, high-frequency components may
be filtered out by the WEC natural dynamics, and therefore the
excitation force may have a better predictability than the wave
elevation itself.
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Fig. 6. GoF of the optimal predictor, using 120 s of past values, for two different spectra.

Considering Fig. 5, it is unlikely that accurate wave eleva-
tion forecasts can be achieved for prediction horizons of more
than a typical wave period, which is clearly not compatible with
applications such as quiescent period detection for maritime op-
erations (which require reasonably accurate forecasts more than
1 min ahead). The compatibility of such short time horizons
with real-time WEC control is also questionable since it is sug-
gested in [6] that wave elevation values up to three typical wave
periods into the future may be necessary for the controller to
perform optimally.

V. PERFORMANCE OF THE OPTIMAL PREDICTOR IN

UNIDIRECTIONAL WAVE SPECTRA

In this section, the JONSWAP unidirectional wave spectrum
studied in Section II-C is considered. The wave elevation is
predicted at one specific point A, for various time horizons,
using wave elevation values measured at a point B located at
various distances, up-wave or down-wave, with respect to A.
Thus, applying the terminology used in Section III, the vector
y consists of the wave elevation atA, for various time horizons,
and the vector x is composed of past measurements at location
B.

Fig. 7 shows the GoF of the prediction obtained in A, for
various locations ofB up-wave and down-wave, taking as input
(in the vector x) 300 s of past values measured at B. It appears
that the forecast time horizon can be arbitrarily increased by
measuring the waves at longer distances up-wave of A. Since
the full signal energy travels between B and A, measuring the

Fig. 7. GoF of the prediction at a point A using a measurement point B at
various relative positions along the wave direction (unidirectional JONSWAP,
Hs = 2 m, Tp = 10 s).

signal over a long enough period even allows for a determinis-
tic prediction over some duration. Unsurprisingly, down-wave
measurements are of little help in forecasting the wave elevation
at A; however, some usable statistical information is present in
the down-wave signal, as evidenced by the nonzero value of
the GoF for short time horizons, thus confirming what could be
expected from the analysis of Fig. 2.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
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Fig. 8. GoF of the prediction, using up-wave measurements, for various time
horizons and relative positions (unidirectional JONSWAP, Hs = 2 m, Tp =
10 s).

A slightly different perspective may be adopted by fixing
the measurement location B and the duration over which past
values are recorded and computing the GoF of the prediction for
various time horizons and down-wave locations. This is shown
in Fig. 8 for 300 s of measured values. A distinctive time–
distance “predictable zone” appears, where the wave prediction
error is approximately zero.

Early research on DSWP, as recalled in [1], indicated some
uncertainty as to whether the phase or group speed determines
the predictable zone. Using various prediction methods [1], [12],
it was proven, both through theoretical considerations and nu-
merical simulations, that the predictable zone is rather governed
by the wave group speeds. This latter result is clearly corrob-
orated by the joint examination, in Fig. 8, of the predictable
zone obtained with the optimal predictor and the frequency
content of the wave spectrum considered. Using the deep-water
dispersion relation, the lowest and highest group speeds (corre-
sponding to the highest and lowest frequencies, respectively) are

computed as

{
cmax
g ≈ g/(4π × 0.06) ≈ 13 m/s

cmin
g ≈ g/(4π × 0.5) ≈ 1.5 m/s

(21)

and are pictured on the contour plot in Fig. 8 by means of dashed
lines with slopes cmin

g and cmax
g .

VI. PERFORMANCE OF THE OPTIMAL PREDICTOR IN

DIRECTIONAL WAVE SPECTRA

In the idealized case of a unidirectional wave field as in
Section V, accurate forecasts can be achieved by using mea-
surements at only one up-wave location. In contrast, in a mul-
tidirectional wave field, energy travels in a multitude of direc-
tions, and therefore, using measurement points along only one
orientation may not be sufficient to capture enough statistical
information. The effect of spectrum directionality is illustrated
in Fig. 9, where waves at the prediction location are forecast
using 300 s of past measurements, taken at a point located at
different distances (100, 200, and 300 m) from the prediction
point, and forming angles of 0°, 45°, and 90°with respect to the
mean wave direction.

As can be observed in Fig. 9, the distance between measure-
ment and prediction points has an adverse effect on the forecast
quality. For example, when the measurement point is located as
little as 100 m behind the prediction point, in the mean wave
direction, the achievable GoF is barely higher than 50%. Similar
to the unidirectional case, a “plateau” can be identified, whose
length increases with the distance to the prediction point. But,
in contrast to the unidirectional case, the height of the plateau
is less than 100% and is negatively affected by the distance.
The effect of distance is a significant difference with respect to
a unidirectional wave model, whereby a deterministic forecast
can be achieved for any time horizon, by arbitrarily increasing
the distance to the up-wave measurement location.

When the direction formed by the measurement and predic-
tion points departs from the mean wave direction, the predictor
performance drops, as might be expected by observing Fig. 4,
which shows that measurements, taken off the mean wave di-
rection, provide less statistical information.

Given the poor quality of the achievable forecast using only
one measurement location, an array of measurement locations
is considered and illustrated in Fig. 10; the points are located at
regularly spaced angular positions (every 5°) along a semicircle
with the prediction point as its center facing the mean wave
direction.

Different values for the radius of the semicircle are investi-
gated, and the resulting GoFs are shown in Fig. 11. The GoF is
significantly improved with respect to the results obtained using
a single measurement location (see Fig. 9). However, the dis-
tance has, again, an adverse effect on the height of the plateau.

The effect of the spreading parameter smax is investigated in
Fig. 12. Unsurprisingly, spectra that are sharply concentrated
around their mean direction (larger smax) offer a more favorable
situation than those that have a broader directional distribution
(smaller smax).
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Fig. 9. GoF of the prediction using the one up-wave measurement points located at various distances from the prediction point and at various angles (0◦, 45◦, and
90◦) with respect to the mean wave direction (directional JONSWAP spectrum, using a Mitsuyasu spreading function with smax = 25). 300 s of past measurements
are used by the predictor.

Fig. 10. “Simple” angular layout.

It is possible to improve the measurement array configura-
tion with respect to the simple layout of Fig. 10, so as to cap-
ture more information in the directions where the spectrum is
concentrated. An improved measurement layout is proposed in
Fig. 13, where the angular spacing between two neighboring
measurement locations is made smaller close to the mean wave
direction. For comparability, the total number of measurement
locations in Fig. 13 is kept identical to the one shown in Fig. 10.

The improvement achieved by the new angular layout is
shown in Fig. 14. For the spectrum considered, and with a
600-m radius, a GoF close to 80% seems to be achievable, up
to time horizons of the order of 80s.

Finally, a significantly larger array of measurement points is
considered, as shown in Fig. 15, where measurements are taken

Fig. 11. Effect, on the predictor GoF, of the distance between the point of
interest and the measurement points (smax = 25, “simple” layout).

Fig. 12. Effect of the angular spreading on the predictor GoF (R = 600 m,
“simple” layout)—Higher smax values correspond to more concentrated spectra.
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Fig. 13. Improved angular layout (with the same number of points as in the
“simple” layout).

Fig. 14. Effect of the angular layout of measurement points on the predictor
GoF (smax = 25, R = 600 m).

in a triple array of points. The widest measurement array is
located along the circle of radius 300 m, with the prediction
point as its center. It is also assumed that the wave elevation can
be measured in real time at the prediction location and included
in the set of measurements.

The computation time to obtain the prediction matrix was of
the order of 5–10 min using a 3.50-GHz, 8-core Intel processor,
which is still compatible for an update rate consistent with the
evolution of sea conditions. The GoF obtained with the proposed
triple measurement layout is shown in Fig. 16. A prediction
accuracy higher than 90% seems achievable up to approximately
50 s into the future.

Fig. 15. Triple angular layout.

Fig. 16. GoF obtained from the triple angular layout using the last measured
250 s (smax = 25).

VII. CONCLUSION AND DISCUSSIONS

A. Theoretical Results

Assuming perfect knowledge of the wave field statistical char-
acterization, in the form of a directional spectrum, the measure-
ment and prediction values can be treated as a multidimensional
Gaussian vector with a known variance–covariance matrix. For
any combination of measurement and prediction points in time
and space, the optimal prediction law can thus be easily de-
rived. The prediction vector is obtained from the measurement
vector through multiplication by a prediction matrix. Without
requiring any numerical simulation, the prediction error can be
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immediately characterized as a Gaussian vector with a known
variance–covariance matrix.

The proposed Gaussian formalism encompasses both “look-
ing backward” (when prediction and measurement points have
the same location) and “looking forward” approaches (when
measurements are taken at some distance from the prediction
location).

Regarding the “looking backward” approach, a few numerical
examples based on the favorable case of a sharply concentrated,
unimodal wave spectrum suggest that no reasonably accurate
forecasts can be achieved as little as one typical wave period
into the future. However, other physical quantities, such as the
wave excitation forces acting on a mechanical structure, could
perhaps lend themselves better prediction, provided they can be
duly measured or estimated.

If the wave field can be described as unidirectional, determin-
istic forecasts can be achieved up to long time horizons (more
than 2 min) by using measurements at only one up-wave loca-
tion, over a sufficiently long period of time. Using the spectrum-
based predictor, the deterministic predictable zone is found to
be a function of the lowest and largest group speeds present in
the wave spectrum, which corroborates the results of previous
works [3], [12].

However, actual wave fields cannot be realistically assumed
to be unidirectional and must rather be described by means of
a multidirectional wave spectrum. Wave directionality makes
the prediction task significantly more complex, involving mea-
surements at numerous locations to achieve reasonably accurate
forecasts.

Many more possibilities of measurement layouts, than those
shown in this paper, could be investigated. The proposed the-
oretical framework will help in assessing the performance of
various measurement configurations. The required time hori-
zon and prediction accuracy depend on the practical application
considered.

B. Practical Applicability

In this section, the applicability of the spectrum-based predic-
tor to real-time wave forecasting is discussed. Several benefits
can be expected, which are as follows.

1) The forecasts provided are statistically consistent, in the
sense that they fade out to zero for large time horizons
and distances.

2) The prediction task itself is a simple matrix multiplica-
tion, which is not computationally demanding. The pre-
diction matrix must only be updated at regular time inter-
vals, consistent with the rate at which the wave conditions
evolve (e.g., every 30 min). The computational burden is
thus shifted from the prediction itself to a “preprocess-
ing” phase, which consists of computing the prediction
matrix.

3) For a given combination of measurement points, the pre-
dictor is optimal in a least mean square error sense, at
least within spatial and temporal scales compatible with
the stationarity and homogeneity of the wave process.

4) The wave spectrum, upon which the proposed predictor is
based, reflects physical processes (wave development un-
der the effect of wind, propagation, diffraction, etc.) that
can be, to some extent, understood and predicted by means
of physical representations. Sea state predictions are typ-
ically implemented through numerical models, which de-
scribe the physics of wave development and propagation
via an energy balance equation, numerically solved across
a geographical grid (see, for example, [16]). Such models
can allow for real-time wave spectrum estimation and/or
forecast in the geographical area of interest. The result-
ing estimated and/or forecast spectra can then be used to
compute the prediction matrix. Local measurements, if
available, can complement or replace the physical predic-
tions. Thus, the statistical information, corresponding to
the physical processes of wave generation and propaga-
tion, can be incorporated in the spectrum-based predictor,
whereas it is completely ignored in other DSWP tech-
niques.

However, considerable challenges remain, which are as fol-
lows.

1) As with other prediction approaches, the availability of
measurements surrounding the point of interest is crucial.
Measurements could be carried out using radars or wave
buoys. In the former case, many measurement locations
are available at the same time; however, the achievable
forecast quality will ultimately depend on the spatial and
temporal resolution of the radar. X-band radars seem to be
the most suitable technological choice (see, for example,
[17]). Irrespective of the technological choice, the pos-
sible presence of measurement noise must be taken into
account.

2) Estimates and/or forecasts of the directional spectrum in
the geographical area of interest need to be available in
real time and updated at a rate matching the evolution
of wave conditions. To this end, the use of both local
measurements and outputs from meteorological models
could be considered. The sensitivity of the predictor per-
formance to the accuracy of spectrum estimates should be
investigated. In particular, the properties of the technique
in nonstationary seas deserve attention.

3) The prediction matrix computation must be carried out
within a reasonable amount of time, which can be a chal-
lenging task if the number of measurement points is large;
indeed, the covariance for each pair of points must be com-
puted, and the eigenvalue decomposition of the covariance
matrix must be carried out (see Section III). In the heav-
iest numerical example of Section VI, involving a triple
array of measurement locations (see Fig. 15) and 250 s of
past values, the construction of the prediction matrix took
between 5 and 10 min using a 3.50-GHz, 8-core Intel pro-
cessor. This task, however, must be performed only once
every time the spectrum estimate is updated, for example,
every 30 min. If the spectrum evolution can be forecast to
some extent, the construction of the prediction matrix can
even be carried out in advance.
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4) In relation to the previous point, the covariance matrix may
be subject to numerical issues. In fact, if measurements at
all locations are taken at the same set of sampling instants,
it is easily shown that the covariance matrix is Hermitian,
positive definite block Toeplitz. Such matrices can become
ill-conditioned for large orders [18]. This issue, although
not significant for the cases considered in this paper, is
currently under close study by the authors.

5) Finally, optimization schemes could be investigated, to
determine an ideal set of measurement points, ensur-
ing accurate predictions while being computationally
tractable.

C. Comparison With DSWP Methods

The proposed predictor takes advantage of statistical in-
formation, to which DSWP techniques are blind. However,
as stressed in Section VII-B, the efficient computation of
the prediction matrix is a crucial question, especially in
comparison with other DSWP techniques, which do not re-
quire such heavy pre-computation. DSWP, which involves the
identification and propagation of a number of wave compo-
nents, can handle a large number of measurement points,
through efficient methods, such as 2-D fast Fourier trans-
form (FFT) [3], 3-D FFT [19], [20], or other signal process-
ing tools [1], [17]. In contrast, the construction and eigen-
value decomposition of the variance–covariance matrix, cor-
responding to the same amount of measurements, could be
computationally intractable within a sufficiently small time
window.

Therefore, it should be assessed whether a smaller number of
optimally used measurements can be preferable to a larger set
of measurements, exploited in a suboptimal way. This question
is analogous to the comparison, presented in [3], between the
so-called ‘multiple fixed points” method, which only uses a
few well-chosen measurement locations within the radar range,
with “2-D linear DSWP,” whereby measurements in the entire
surface covered by the radar are processed.

Another significant difference with respect to DSWP tech-
niques lies in the data assimilation process. In a typical DSWP
implementation, given wave data recorded within a certain
space or time interval, the sinusoidal functions, describing the
propagation of individual wave components, must be identi-
fied. However, the wave signal is nonperiodic over the finite
time or space support considered, which can induce spectral
leakage, and thus errors in the estimation of the Fourier co-
efficients of the propagating waves. To circumvent the issue
of nonperiodicity, various techniques are studied in [1]. Tra-
ditional signal processing windowing functions are found to
distort the spectral content of the measured wave, and therefore
do not constitute suitable options. Alternatives to windowing
functions exist, such as the end-matching technique and the so-
called data extension method, whereby the recorded signal is
extended so as to form a periodic signal while keeping a real-
istic frequency content. In [1], the latter technique shows the
best performance: the deterministic prediction zone of a unidi-

rectional wave field can be identified with good accuracy using
simulations.

In contrast, the predictor proposed in this paper does not ex-
plicitly represent individual wave components, and therefore
does not require any specific precaution at the stage of measure-
ment assimilation. The deterministic prediction zone can still be
correctly identified without resorting to any simulation.

Other limitations are not specific to the spectrum-based pre-
dictor, but rather apply to all methods based on the linear wave
theory, i.e., in particular, most DSWP techniques.

1) The predictor should be used within spatial and temporal
scales compatible with the assumptions of homogeneity
and stationarity. For a theoretically consistent implemen-
tation of the spectrum-based predictor, studying the prop-
erties of dynamically evolving Gaussian fields [21] could
be interesting.

2) The Gaussian sea assumption excludes shallow water and
extreme weather conditions [8], as well as breaking, and
rogue, waves.

Overall, although it is, as yet, impossible to ascertain whether
the proposed formulation can provide any practical benefit for
real-time implementation, the idea of incorporating available
information about the current wave spectrum certainly deserves
attention.
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