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Abstract: In this work, we explore and study the implication of having more than one output on a genetic programming (GP)

graph-representation. This approach, called multiple interactive outputs in a single tree (MIOST), is based on two ideas. First, we

defined an approach, called interactivity within an individual (IWI), which is based on a graph-GP representation. Second, we add

to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As a

first step, we analyze the effects of IWI by using only mutations and analyze its implications (i.e., presence of neutrality). Then, we

continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally, we

tested the effectiveness of MIOST by using mutations and crossover and conducted extensive empirical results on different evolvable

problems of different complexity taken from the literature. The results reported in this paper indicate that the proposed approach has

a better overall performance in terms of consistency reaching feasible solutions.

Keywords: Interactivity within an individual (IWI), multiple interactive outputs in a single tree (MIOST), neutrality, evolvable

hardware, genetic programming (GP).

1 Introduction

Genetic programming (GP)[1] is a heuristic search tech-

nique that has its inspiration from the theories of genetic

inheritance and natural selection. This technique has been

proved to be a suitable tool for solving problems in many

applications. Usually, in GP, programs are expressed as

syntax trees. Despite the vast number of good results re-

ported when using GP[1], there are some researchers that

have proposed different types of representations or additions

to the traditional form of GP, i.e., tree-like structures.

For example, Koza[2] proposed automatically defined

functions (ADFs). ADF is a function (subprogram, pro-

cedure or module) that is dynamically evolved during a run

of a GP. Typically, the ADFs process one or more dummy

arguments. The problem with this approach is discovering

good ADFs. ADFs behave differently in different parts of

a program when they have different arguments. Thus, to

discover if an ADF is good, GP has to spend computation

time to discover with which parameters the ADF can be

used properly.

Angeline and Pollack[3] proposed a method called evolu-

tionary module acquisition (EMA). The idea of this method

is to build and evolves modules (which are the reuse of code)

during the evolution process. To identify appropriate mod-

ule(s) in the evolving individuals, the authors add two oper-

ators to the reproduction process. The first operator, called

compress, selects a portion of the offspring to preserve for

future manipulation. The second operator, called expand,

is the opposite to the former operator. Because there is no

general method of identifying what portions of the individ-
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ual should be compressed, the composition of each module

is selected randomly. The same authors extended this work

in [4]. In this work, the authors referred to the method as

genetic library builder (GLiB). This library is a collection

of all created modules and serves only as reference sym-

bol for GLiB. During either a genotype′s execution or the

expansion of the compressed module, GLiB retrieves the

definitions of symbols from the genetic library.

Montana[5] proposed a variation of GP called strongly

typed genetic programming (STGP). He started from the

definition of closure (which means that all elements, func-

tions and terminals, take arguments of a single data type

and return values of the same data type). Koza[1] described

a way to relax this constraint of closure with the concept of

constrained syntactic structures. He used tree generation

routines which only generate legal trees, and used operator

which maintains legal syntactic structures. However, the

main characteristic of STGP is to build an individual as a

parse tree and the data type of the nodes not necessarily

should be the same type.

Teller and Veloso[6] were one of the first researchers to

use a graph-based GP. Their method, parallel algorithm

discovery and orchestration (PADO), is a combination of

GP and linear discriminator which was used to obtain par-

allel classification programs for signals and images.

Poli[7] proposed an approach called parallel distributed

genetic programming (PDGP). Poli stated that PDGP can

be considered as a generalization of GP. However, PDGP

has more complex representations and evolves finite state

automata, neural networks and more. PDGP is based on

a graph-like representation for parallel programs which is

manipulated by crossover and mutation operators and guar-

antee the syntactic correctness of the offsprings. Poli′s ap-

proach was inspired by the parallel distributing processing

performed in neural networks.
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Angeline[8] proposed a representation called multiple in-

teracting programs (MIPs). This representation is a gener-

alization of a recurrent neural network that can model any

type of dynamic system. Each program in a given set is

unique and stored in the form of a parse tree. Using this

technique, an individual is virtually equivalent to a neural

network where the computation performed at each unit is

replaced with an independent evolved equation.

Miller and Thomson[9] proposed the Cartesian genetic

programming (CGP). This technique was called Cartesian

in the sense that the method considers a grid of nodes that

are addressed in a Cartesian coordinate system. In CGP,

the genotype is represented as a list of integers that are

mapped to directed graphs rather than trees. CGP had its

original motivation from the effectiveness of the approach

in learning Boolean functions[10].

Kantschik and Banzhaf[11] proposed a different represen-

tation of GP named linear-tree. The main idea was to give

flexibility to a program to choose different execution paths

for different inputs. In this method, each program is rep-

resented as a tree. Each node in the tree has two parts, a

linear program and a branching node. The linear program

can be executed when the node is reached during the in-

terpretation of the program. The branching node indicates

the possible program flow. The authors claimed that their

representations have better performance than with the tree-

based representation. Later on, the same authors proposed

a representation called linear-graph[12]. They argued that

graphs come one step nearer to the control flow of a hand-

written program. In their approach, they have shown that

this method is better than the linear-tree representation.

As can be seen from the previous summaries, many and

diverse ideas have been raised in evolutionary computation

systems (ECs), specifically in the paradigm of GP to make

it more powerful and efficient.

The main purpose of the present work is to present a new

GP technique, called multiple interactive outputs in a single

tree (MIOST), which allows evolving graph-like structures

and it allows to have more than one output in an individual

structure. To study this form of GP, we have sub-divided

our study in two different steps:

• First, we explore the idea of a graph-GP representation

by introducing pointers in the individuals.

• Second, we add to the above representation, as many

outputs as the user requires.

In this paper, we will use evolvable hardware problems

to test MIOST.

2 Approach

Our approach, called MIOST, is the result of two main

ideas:

1) Using a rich graph-GP representation by allowing

pointers in individuals.

2) Defining in an individual as many outputs as the user

requires.

To verify the efficiency of our approach, we study it in

two stages. That is, we first study the impact of having

pointers within the individuals, which we call this interac-

tivity within an individual (IWI). Once we have studied the

implications of allowing pointers in the individuals (IWI),

we add multiple outputs to the individuals (MIOST).

2.1 Interactivity within an individual
(IWI)

Terminal and function set

The representation used in our work is a tree-like struc-

ture as suggested in [1]. The terminal set consists of the

inputs of the circuit (i.e., T = {a, b, c, · · · }). The function

set is composed by the typical operators used in these types

of problems (i.e., AND, OR, NOT, etc.). The function set

includes also a special function p. By using the p symbol,

we have taken inspiration from graph-GP representations.

We decided to use and explore the possibility of represent-

ing programs as graphs with oriented links. Fig. 1 depicts

this idea.

Fig. 1 A typical individual created using IWI

The idea was to replace a function node by an element

that represents links that determines what needs to be eval-

uated. We hope in this way to find parts of an individual

that can be more useful in other part(s) of the same individ-

ual. Note that the role of the function node is very different

from ADFs[2] where a function can be a subprogram, pro-

cedure or module. The main difference, is that in IWI a

function node just refers to a place where that function will

follow the execution.

Let us discuss more in detail how the p symbol works:

• Once the individuals in the population have been gen-

erated, we use a probability to replace any function

with a p symbol which is a function of arity 2 1.

• If an individual contains in its structure a p symbol,

this will point to code somewhere in the program so,

when p is executed, the subtree rooted at that node is

ignored.

• If the p symbol points to a function symbol, the p

symbol effectively represents the subtree rooted at that

function.

• If the p symbol points to a terminal symbol, the p

symbol simply represents that node.

1This is not a restriction because p could be of any arity.
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2.2 Multiple interactive outputs in a sin-
gle tree (MIOST)

MIOST is an extension of the previous approach (IWI).

Fig. 2 depicts an individual created with MIOST. Individ-

uals created with MIOST could have in their structures p

symbols and also more than one output. For this purpose, it

is necessary to define an extra set apart of the terminal and

function set. This is explained in the following paragraphs.

Fig. 2 A typical individual created using MIOST

Output set

When we create an individual using MIOST, it is nec-

essary to define an output set which will contain as many

outputs as the user requires. That is, if we need to create

individuals of four outputs then the output set will look

like O = {O1, O2, O3, O4}. Once the output set has been

defined, the individual is created using the three sets: ter-

minal, function, and output set.

When an individual is created, the first set that must be

used is the output set, the system will choose randomly any

element from the output set and the chosen element cannot

be selected again for the current individual and so on until

the individual is created. Once an individual has been cre-

ated, we check if it contains all the outputs defined in the

output set, if not the process is repeated until a valid indi-

vidual has been created. It is worth mentioning that when

we create an individual we do not specify which output will

be in the root, so our approach has the advantage to place

the most complex output in the root. The results confirm

this.

2.3 Genetic operators

The crossover operator used in IWI and MIOST works

as usual but an important difference with the traditional

crossover used in GP is that, if the subtree swapped con-

tains a p symbol, the p symbol′s pointer is not changed 2.

Moreover, in the case of MIOST, there is another difference:

once we have created our individual in the population, we

classify each node of each individual to know which nodes

2There is an exception to this rule: we prevent a p symbol from
referring to a subtree that contains the same p since this would lead
to an infinite loop. We do this by reassigning the position to where
p in question is pointing to.

can be used to apply crossover. With this, we assure that

an individual will contain the number of outputs that it

must contain.

The mutation operator is applied as usual on a per node

basis. The only restriction is that a p symbol is not allowed

to be mutated.

2.4 Fitness function

To test the effectiveness of IWI and MIOST, we have used

several evolvable hardware problems of different complexity

taken from the literature. The fitness function works in two

stages:

1) At the beginning of the search, the fitness of a geno-

type is the number of correct output bits (raw fitness).

2) Once the fitness has reached the maximum number of

correct output bits, we try to optimize the circuits by giving

a higher fitness to an individual with shorter encodings.

2.5 Features

The previous approaches have interesting features. For

instance, the presence of p symbols in the representations,

assure us that there are inactive code in the individuals.

This has at least two advantages:

1) When a mutation takes place in inactive code, there

is no need to evaluate an individual since there is a change

at genotype level but not at phenotype level;

2) It allows to study neutrality[13] which is considered

an area of controversial debate on EC systems. There

are, however, some works that have shed some light on

neutrality[14−17].

3 Effects of graph-GP representation

Before testing the approach explained earlier (MIOST),

we will conduct simple experiments (mutation-based, tree-

like GP system without crossover) using different p rates

and mutation rates. We used a well-known benchmark

problem (6-bit multiplexer Boolean function) to conduct

our analysis.

To obtain meaningful results, we performed 20 indepen-

dent runs for each of the different mutation and p rates used

in our studies. We have used 200 individuals, depth = 8,

and 400 generations. For these experiments, we have used

the full initialization method to create the individuals in

the population. Crossover operator was not used.

From Fig. 3, we can see the success rates using the graph-

GP representation using different mutation and p rates.

The highest success rate found was 100% when set p = 0.01

and mutation rate is equal to 0.02. Keeping the value of

p constant and increasing the mutation rates, the success

rate tends to decrease. Similar behaviour can be observed

with different p rates. We can conclude that regardless of

the value of p, the higher the mutation rate is, the lower

the success rate will be.
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Fig. 3 Success rates obtained using different mutation and p

rates on the 6-bit multiplexer Boolean function

Table 1 shows the results of using the graph-GP repre-

sentation with only the mutation operator. p and mutation

rates are shown in the first and second column, respectively.

Feasible circuits (success rate) and the average number of

generations that are necessary to reach the feasible zone are

shown in the last two columns.

Table 1 Results of using the graph-GP representation with

only the mutation operator

p Mutation rate Feasible circuits Average of generations

0.01 0.02 100% 80.6

0.01 0.03 90% 155.66

0.01 0.04 70% 138.62

0.01 0.05 55% 146.65

0.01 0.06 30% 203.5

0.02 0.02 75% 91.46

0.02 0.03 65% 136.66

0.02 0.04 50% 141.5

0.02 0.05 35% 163.71

0.02 0.06 35% 243.14

0.03 0.02 85% 122.7

0.03 0.03 85% 109.64

0.03 0.04 45% 179.5

0.03 0.05 50% 237.5

0.03 0.06 30% 157.56

0.04 0.02 65% 109.65

0.04 0.03 60% 117

0.04 0.04 65% 132.45

0.04 0.05 45% 220.54

0.04 0.06 30% 164

At this point, one question arises: what happens if we do

not allow the presence of the p element in our individuals?

To answer this question, we need to take a look at Fig. 3.

In no case was the system able to reach a success rate of

100% in the absence of the p symbol. Moreover, the perfor-

mance of the GP system without the presence of p is poor

compared to when it is present. In fact, the performance

of the GP system when p is not present in the individuals

is the worst for all mutation rates, except when mutation

rate is 0.03.

As mentioned previously, one of the features of the pro-

posed approach is the presence of neutrality proposed by

Kimura[13]. Kimura[13] put forward the theory that the

majority of evolutionary changes at the molecular level are

the result of random fixation of selectively neutral muta-

tions. In other words, the mutations that take place in the

evolutionary process are neither advantageous nor disad-

vantageous to the survival of individuals. Kimura′s theory

considers a mutation from one gene to another as neutral if

this modification does not affect the phenotype.

The results presented previously show how the individ-

uals in the population tend to behave in the presence of

p in their structures. Fig. 3 summarizes this behaviour on

four different p rates. The highest success rates were found

when the mutation rates were set with the lowest value

(0.02), regardless of the p rates. At the beginning of the

evolutionary process, the number of individuals affected by

neutral mutations is high but it tends to decrease after a

few generations (see Figs. 4–7). In other words, individuals

with p elements in their structures tend to disappear at the

beginning of the process. We think this happens because

at the beginning of the evolutionary process the solution

needs to be protected by allowing the presence of p in their

structures.

Fig. 4 Individuals affected by neutrality (p = 0.01)

Around 50-60 generations, when the number of individ-

uals is affected by neutral mutations, these became stable.

As can be observed in Figs. 4–7, the best performance is

achieved when the number of individuals affected by neu-

tral mutation is in the range of 90–100. Notice that this

range is close to half of the size of the population. On

the other hand, the worst performance was found when the

number of individuals affected by neutral mutation is below

80.

From this analysis, it is clear that the presence of p in

the individuals can make the solution avoid getting stuck in

local optima. However, a fine balance between p rate and

mutation rate is needed to improve the exploration of the



E. Galvan-Lopez / Efficient Graph-based Genetic Programming Representation with Multiple Outputs 85

search space.

Fig. 5 Individuals affected by neutrality (p = 0.02)

Fig. 6 Individuals affected by neutrality (p = 0.03)

Fig. 7 Individuals affected by neutrality (p = 0.04)

Using this example and carrying out experiments using

only mutations, we can see that the best performance is

achieved when setting p = 0.01 and mutation rate is 0.02,

and these are the values that we have used to conduct our

experiments in more complex problems. Moreover, the pre-

vious analysis has helped us to get a good indicator that

the graph-GP representation performs well.

4 Comparison of results

We used several evolvable hardware problems of differ-

ent complexity taken from the literature to test IWI and

MIOST. Our results were compared with those obtained

by multiobjective genetic algorithm (MGA)[18], a binary

single-objective using integer A encoding particle swarm

optimization (EAPSO)[19], a binary single-objective using

integer B encoding PSO (EBPSO)[20], a binary single-

objective PSO (BPSO)[20], encapsulated genetic program-

ming (EGP)[21] and the traditional GP. For all the exam-

ples, we performed 20 independent runs. As we will see

in the next paragraphs, in all the experiments we improve

the percentage of feasible region 3 compared with the other

techniques.

4.1 Results using IWI

After a series of preliminary experiments, we have

decided to use a crossover rate of 70, mutation rate of 0.02

and p rate of 0.01.

Example 1. For our first example, we have used the

truth table shown in Table 2, where a, b, and c denote the

inputs and O is the desired output. The parameters used

in this example are the following: population size (PS) is

190 and the maximum number of generations (MNG) is

525, i.e., a total of 99 750 fitness function evaluations. The

same values parameters were used by GP. BPSO, EAPSO

and EBPSO performed 100 000 fitness function evaluations,

while MGA performed 102 000. As we can see in Table

3, the algorithms able to converge to a feasible region in

100% of the runs were BPSO, EBPSO, and IWI. Moreover,

in IWI, the average of generations at which it solved the

circuit was 35.61, while in GP the average of generations

was 56.05. However, the average number of gates in IWI

was 10.4, while the average number of gates in EBPSO was

6.15.

Table 2 Truth table of Example 1

a b c d O1
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

3The feasible region is the area of the search space containing

circuits that match all the outputs of the problem′s truth table.
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Table 3 Comparison of results among BPSO, EAPSO,

EBPSO, MGA, GP, EGP, and IWI on Example 1

Methods Feasible Average of Average of

Circuits gates generations

BPSO 100% 6.75 -

EAPSO 95% 7.3 -

EABPSO 100% 6.15 -

MGA 90% 9.3 -

GP 90% 11.05 56.05

EGP - - -

IWI 100% 10.4 35.61

Example 2. For our second example, we have used

the truth table shown in Table 4. The parameters used

in this example are the following: PS = 240 and MNG =

415 (i.e., a total of 99 600 fitness function evaluations). The

same values parameters were used by GP. BPSO, EAPSO

and EBPSO performed 100 000 fitness function evaluations,

while MGA performed 102 000. As we can see in Table 5,

the algorithms able to converge to a feasible region in 100%

of the runs performed were EBPSO and IWI. Moreover, in

IWI the average of generations required to solve the circuit

was 28.88, while in GP the average of generations is 49.23.

However, the average number of gates in EBPSO is slightly

smaller (5.9).

Table 4 Truth table of Example 2

a b c d O1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Table 5 Comparison of results among BPSO, EAPSO,

EBPSO, MGA, GP, EGP, and IWI on Example 2

Methods Feasible Average of Average of

Circuits gates generations

BPSO 85% 10.4 -

EAPSO 90% 8.25 -

EBPSO 100% 5.9 -

MGA 70% 13.7 -

GP 90% 9.22 49.23

EGP - - -

IWI 100% 8.6 28.88

Example 3. For our third example, we have used the

truth table shown in Table 6. The parameters used in this

example are the following: PS = 550 and MNG = 900

(i.e., a total of 495 000 fitness function evaluations). The

same values parameters were used by GP. BPSO, EAPSO

and EBPSO performed 500 000 fitness function evaluations,

while MGA performed 528 000. As we can see in Table 7,

IWI is the algorithm with the highest percentage of feasible

solutions reached (70%). Moreover, in IWI the average of

generation at which it solved the circuit was 156.57, while

in GP it is 791. However, the average number of gates in

IWI is 32.28, while the average number of gates in EBPSO

was much smaller (12.15).

Table 6 Truth table of Example 3

a b c d e O1

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 0 0

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 1

0 1 1 0 1 0

0 1 1 1 0 0

0 1 1 1 1 0

1 0 0 0 0 0

1 0 0 0 1 1

1 0 0 1 0 1

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0

Table 7 Comparison of results among BPSO, EAPSO,

EBPSO, MGA, GP, EGP, and IWI on Example 3

Methods Feasible Average of Average of

Circuits gates generations

BPSO - - -

EAPSO 50% 13.8 -

EBPSO 55% 12.15 -

MGA 25% 21.4 -

GP 5% 90 791

EGP - - -

IWI 70% 32.28 156.57
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In the following paragraphs, we will continue towards the

same idea: verifying the effectiveness of using a graph-GP

representation and allowing more than one output in the

individual′s structure. For this purpose, we will use several

evolvable hardware problems of more than one output of

different complexity taken from the literature.

4.2 Results using MIOST

Example 4. For our fourth example, we have used the

truth table shown in Table 8. The parameters used in this

example are the following: PS = 380 and MNG = 525 (i.e.,

a total of 199 500 fitness function evaluations). The same

values parameters were used by EGP, IWI. BPSO, EAPSO,

and EBPSO performed 200 000 fitness function evaluations,

while MGA performed 201 300. As we can see in Table 9,

the only algorithms able to converge to the feasible region

in 100% of the runs were EBPSO and MIOST.

Table 8 Truth table of Example 4

a b c d O1 O2

0 0 0 0 1 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 1

1 1 1 1 0 1

Table 9 Comparison of results among BPSO, EAPSO,

EBPSO, MGA, GP, EGP, and MIOST on Example 4

Methods Feasible Average of Average of

Circuits gates generations

BPSO 95% 10.05 -

EAPSO 70% 13.45 -

EBPSO 100% 7.75 -

MGA 75% 13.4 -

EGP 55% 9.7 122.9

MIOST 100% 12.9 109.55

Example 5. For our fifth example, we have used the

truth table shown in Table 10. The parameters used in

this example are the following: PS = 1 200 and MNG =

832 (i.e., a total of 998 400 fitness function evaluations).

The same values parameters were used by EGP. BPSO,

EAPSO, and EBPSO performed 1 000 000 fitness function

evaluations, while MGA performed 1 101 040. As we can see

in Table 11, MIOST is the algorithm which has the highest

percentage of feasible solutions reached (75%). Moreover,

in MIOST the average of generations at which it solved the

circuit was 104.67, while in EGP it was 149.5. Surprisingly,

MIOST is one of the algorithms with the lowest average

number of gates (11.6).

Table 10 Truth table of Example 5

a b c d e O1 O2 O3

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

0 0 0 1 0 1 1 0

0 0 0 1 1 1 0 0

0 0 1 0 0 1 1 1

0 0 1 0 1 1 0 1

0 0 1 1 0 1 1 0

0 0 1 1 1 1 1 0

0 1 0 0 0 1 1 0

0 1 0 0 1 1 0 0

0 1 0 1 0 1 1 0

0 1 0 1 1 1 0 0

0 1 1 0 0 1 1 1

0 1 1 0 1 1 0 1

0 1 1 1 0 1 1 0

0 1 1 1 1 1 1 0

1 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0

1 0 0 1 0 0 1 0

1 0 0 1 1 0 0 0

1 0 1 0 0 0 1 1

1 0 1 0 1 0 0 1

1 0 1 1 0 0 1 0

1 0 1 1 1 0 1 0

1 1 0 0 0 0 1 0

1 1 0 0 1 0 0 0

1 1 0 1 0 0 1 0

1 1 0 1 1 0 0 0

1 1 1 0 0 1 1 1

1 1 1 0 1 1 0 1

1 1 1 1 0 1 1 0

1 1 1 1 1 1 1 0

Table 11 Comparison of results among BPSO, EAPSO,

EBPSO, MGA, GP, EGP, and MIOST on Example 5

Methods Feasible Average of Average of

Circuits gates generations

BPSO 25% 23.95 -

EAPSO 50% 18.65 -

EBPSO 45% 20.1 -

MGA 65% 17.05 -

GP - - -

EGP 60% 9.66 149.5

MIOST 75% 11.6 104.67

Example 6. For our sixth example, (also known as Katz

circuit) we have used the truth table shown in Table 12.

The parameters used in this example are the following: PS
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= 880 and MNG = 4000 (i.e., a total of 3 520 000 fitness

function evaluations). The same values parameters were

used by EGP and IWI. As we can see in Table 13, MIOST

is the algorithm which has the highest percentage of feasible

solutions reached (35%).

Table 12 Truth table of Example 6

a b c d O1 O2 O3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

Table 13 Comparison of results among BPSO, EAPSO,

EBPSO, MGA, GP, EGP, and MIOST on Example 6

Methods Feasible Average of Average of

circuits gates generations

BPSO - - -

EAPSO - - -

EBPSO - - -

MGA - - -

EGP 30% - -

MIOST 35% 22.16 277.363

5 Conclusions

To analyze and verify the effectiveness of our approach,

called MIOST, we have conducted our experiments in the

following way.

1) We have proposed and used a graph-GP representa-

tion (IWI) and used only mutation operators to study

the effects of allowing p symbols in the individuals′

structures;

2) We allowed the use of the traditional crossover opera-

tor on the IWI representation and conducted extensive

empirical results;

3) The addition of multiple outputs in the individuals

has allowed us to study the approach called MIOST.

In other words, MIOST is the result of IWI and the

additions of outputs in the individuals′ structures.

We have used six evolvable hardware problems of dif-

ferent complexity (plus the 6-bit multiplixer) to carry out

our experiments and analysis with the proposed approach.

Our results indicate that MIOST has a better overall perfor-

mance in terms of consistency in reaching feasible solutions.

Our approach, however, was not able to improve previously

reported results in terms of number of gates. This is due

to: 1) our approach is not an optimization technique, and

2) our approach has the restriction that one or more output

depends on the solution of one or more outputs. This can

be seen easily by analyzing Fig. 2.
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