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Abstract—In this paper, we investigate the distortion outage
minimization problem for a wireless sensor network (WSN) in
the presence of an eavesdropper. The observation signals trans-
mitted from the sensors to the fusion center (FC) are overheard
by the eavesdropper. Both the FC and the eavesdropper recon-
struct minimum mean squared error (MMSE) estimates of the
physical quantity observed. We address the problem of transmit
power allocation to minimise the distortion outage at the FC,
subject to a long-term total transmit power constraint across the
sensor(s) and a secrecy outage constraint at the eavesdropper.
Applying a rigorous probabilistic power allocation technique
we derive power policies for the full channel state information
(CSI) case. Suboptimal power control policies are studied for the
partial CSI case in order to reduce the high computational cost
associated with large numbers of sensors or receive antennas.
Numerical results show that significantly improved performance
can be achieved by adding multiple receive antennas at the
FC. In the case of multiple transmit antennas, the distortion
outage at the FC can be dramatically reduced and in some
cases completely eliminated, by transmitting the observations
on the null space of the eavesdropper’s channel or deploying
an artificial noise technique, in full CSI and partial CSI cases
respectively.

Index Terms—Distributed estimation, outage probability, fad-
ing channels, secrecy outage, sensor networks, power allocation.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) have attracted much
recent research interests and have been widely studied due
to many military as well as civilian applications such as envi-
ronmental monitoring, traffic control, battlefield surveillance
etc. A typical wireless sensor network normally consists of
some small, inexpensive, and low-power sensors, which are
deployed over a region and may communicate with a remote
processor over wireless links [1]. In distributed estimation,
sensors independently collect data about some phenomenon,
which are sent to a fusion centre (FC) and then combined to
reconstruct a final estimate of the observed quantity.

In a WSN, the sensors typically have limited energy
resources and replacing batteries is considered expensive.
Many works have studied how to efficiently transmit the
observations from sensors to the FC. In [2], [3], a digital
approach was considered where the analog observations are
digitised into bits and then modulated and transmitted. In
[4], [5], the authors showed that using uncoded analog
forwarding of observed signals is asymptotically optimal
in estimating a Gaussian source for a coherent Gaussian
multiple access channel (MAC); and exactly optimal in [6]

X. Guo and A. S. Leong are with the Department of Electrical and
Electronic Engineering, The University of Melbourne, VIC 3010, Australia.
(e-mails: xiaoxig@student.unimelb.edu.au and asleong @unimelb.edu.au),

Subhrakanti Dey is with the Department of Engineering Science, Uppsala
University, Sweden. (subhrakanti.dey @angstrom.uu.se).

under certain situations. Deploying this analog-forwarding
transmission, the authors in [7] studied the optimal power
scheduling problem in an inhomogeneous sensor network;
while the power allocation policies for a vector source
were investigated in [8]. The diversity order of decentralized
estimation in terms of increasing numbers of sensors has also
been explored in [9], [10].

In the context of communications and information theory,
the idea of information outage probability minimization
was introduced in [11] for block-fading channels, and has
been further extended in e.g. [12], [13]. A similar concept
of estimation outage probability for distributed estimation
was introduced by the authors in [9], which is defined
as the probability that the estimation distortion exceeds a
certain threshold. With full channel state information, the
authors in [14] considered a clustered WSN and derived the
optimal power allocation for estimation outage minimization
problem; the results were extended to partial CSI with limited
feedback in [15]. In [16], the authors explored the diversity
order for distortion outage minimization over coherent multi-
access channels. Optimal power allocation for estimation
outage probability minimization was also studied in [17] for
state estimation of linear dynamical systems.

Under open wireless media, when the measurements at
individual sensors are confidential, maintaining secrecy in
a wireless network becomes quite challenging. The tra-
ditional cryptographic encryption techniques suffer many
vulnerabilities and can be difficult to implement in sensor
networks under energy and computational constraints. As
an alternative, the concept of physical layer security has
recently garnered a lot of research interest. The concept of
wiretap channel was introduced by Wyner in [18]. It showed
that a non-zero secrecy capacity can only be obtained if the
adversary’s channel is of lower quality than that of the legit-
imate recipient. From an information theoretic perspective,
the authors in [19], [20], [21] studied the secrecy capacity in
the case of full CSI or partial CSI, and investigated MIMO
channels in [22], [23], [24]. Multiterminal source coding or
CEO problems with secrecy constraints were also considered
in [25], [26], [27], [28]. In particular, in [28], the authors
investigated secure lossy source coding in the presence of
an eavesdropper who is able to observe the coded infor-
mation bits and has access to correlated side information.
Under these assumptions, the authors derived inner and outer
bounds on the achievable rate region. The authors in [29]
considered a different scenario where the eavesdropper can
obtain the size of the packets, thus parsing the bit stream
into separate encrypted messages. Bounds on coding rate
and key rate are derived for perfect zero-delay secrecy.
However, although such secure source coding techniques
enable one to gain information-theoretic insights, it does not



provide a closed form expression for distortion achievable
via multi-sensor estimation over fading channels. Thus mo-
tivated, we investigate the secure estimation problem from
a signal processing viewpoint where sensors employ simple
uncoded analog-forwarding techniques [30] to transmit their
observations to the FC. In this way, a direct expression for
the distortion over fading channels can be obtained, which is
more desirable for deriving analytical results. In fact, various
secrecy schemes from a ‘signal processing’ rather than
information theoretic point of view have also been studied in
[31], [32], [33], [34], where different performance metrics,
such as bit-error-rate, signal-interference-to-noise ratio, Ali-
Silvey distances or error probability were used to measure
secrecy in a system. Related techniques based on cooperating
relays, artificial noise generation or beamforming were also
implemented in [31], [35], [36], [37] to secure a system.

Therefore, in favour of a closed form distortion expression
for multi-sensor estimation over fading channels, we consider
analog uncoded transmission at the sensors. Recently, the
authors in [38] looked at the optimal power allocation for
a decentralized estimation problem in the presence of an
eavesdropper. To secure the system a minimum distortion
threshold is set for the eavesdropper to ensure that the
estimation error at the eavesdropper is no smaller than this
threshold. However, due to the randomness of the fading
channels, the quality of the estimate at the FC becomes
a random variable. This might be detrimental to real-time
applications when the distortion at the FC becomes large for
a particular fading realisation, or the distortion at the eaves-
dropper becomes very small. Hence, for a delay constrained
sensor network, instead of minimising a long-term average
estimation error at the FC as in [38], it is more appropriate
to maintain a target distortion level throughout the fading
process and minimise a distortion outage probability' at the
FC and a secrecy outage constraint at the eavesdropper. This
is the subject of our current work.

In this paper, we look at a WSN where each sensor
independently measures a single point Gaussian source, and
then transmits the noisy measurements to the FC using
an uncoded analog scheme over an orthogonal multiple-
access channel (MAC) in the presence of an eavesdropper
or adversary. Both the FC and the adversary attempt to
reconstruct a minimum mean squared error (MMSE) estimate
of the observations. Under this setting, the main contributions
of the paper are:

o We consider power allocation problems that minimise
the distortion outage probability at the FC, subject to a
long-term transmit power constraint and a secrecy out-
age constraint at the eavesdropper, where a estimation
secrecy outage is defined as the event that the mean
squared error (MSE) at the eavesdropper is below a
minimum acceptable distortion level. In this way, the
entire network is guaranteed to operate under a specified
power constraint; while maintaining a certain level of
confidentiality.

« We study the distortion outage probability at the FC that
can be achieved by adding multiple receive antennas in
both the full CSI and partial CSI cases. In addition,

IThis is analogous to the situation in wireless communication where the
ergodic capacity describes the maximum achievable long term average rate
without a delay constraint; however, in real-time applications because of
the delay constraint it is more suitable to adopt the notion of the outage
capacity, which determines the maximum achievable rate with an outage
probability less than e [39].

we propose suboptimal power allocation policies to
alleviate the high computational cost issues raised by
computing for the locally optimal power policy in the
partial CSI case.

o As an alternative to having multiple sensors in a net-
work, the scenario of a single sensor with multiple
transmit antennas is investigated. Numerical studies
illustrate that in both the full CSI and partial CSI cases,
zero outage can be achieved at the FC with a sufficiently
large power budget.

The rest of the paper is organised as follows. In Section II
we present the system model for a multiple-sensor network
and solve the outage minimization problem. In Section III
investigate the secrecy outage problem for the multiple-
antenna single sensor scenario and study optimal power
control policies for both full and partial CSI. In Section IV,
alternative problems that can be solved by applying similar
techniques are formulated. Illustrative numerical results are
provided in Section V, followed by concluding remarks in
Section VI.

II. MULTIPLE SENSORS SCENARIO

A schematic diagram of the wireless sensor network model

is shown in Fig. 1, where we have K sensors observing a

single point Gaussian source with zero mean and variance

o3, denoted by 0[t], t = 0,1,2,.... The measurement xy|t]

received by the kth sensor at time ¢ is corrupted with noise
and is given by

wg[t] = O[t] + wit], (D

where wy[t] is the sensor measurement noise which is i.i.d.

(independent and identically distributed) Gaussian with zero
mean and variance 02,
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Fig. 1: Diagram of the wireless sensor network using orthog-
onal MAC scheme with the presence of an eavesdropper.

The sensors are assumed to have a single transmit antenna,
see Section III for the case of multiple transmit antennas.
Each sensor amplifies and forwards their measurements to
a N,-antenna fusion centre (FC) with amplification factor
Bk[t] € C via a slow-fading orthogonal MAC, e.g. by
using OFDMA or TDMA techniques. The transmissions
are overheard by an eavesdropper who is equipped with
N, receive antennas. We assume that both the FC’s and
the eavesdropper’s channels experience block fading, where
the channels remain constant during each coherence time



interval, and are i.i.d. over different time intervals [39]. The
signals received by the FC and eavesdropper from the kth
sensor are then given by, respectively,

Yi[t] = O[] Bk [t]hy[t] + wi[t] Be[t]he [t] 4 2 [t], (2a)
Yer [t] = O[t]Bk[t]he[t] + wi[t] B [t]her[t] + zer[t],  (2b)
where yilfl = [ylt]unal)]T and oyl =
[Yerrlt] - Yen,klt]] . the entries of hy[t] and het] are

the instantaneous zero mean i.i.d. complex Gaussian channels
from sensor k to the FC and the eavesdropper with variances
2 2 ; — T
oj.p and oy, respectively, and zy[t] = [214[t], . .., 2N,k [t]]
and zex[t] = [Ze1r[t], - - s zeNek[t]]T represent i.i.d. additive
Gaussian noise with zero mean and covariances o1, at the
FC and o2 oI, at the eavesdropper respectively®. The set of
received signals at the FC from all sensors can be written as

Y[t = [yl -y ]
=0[t] [Ba[t]ha [t], . .. Rt + [zaft), - zi[t]]
+ WA A (1), wr B [tha )] 3)

Using the fact that each sensor transmits through an
orthogonal MAC, the covariance of the noise fac-

T

, Br[t]h

tor [wi [£)By [t [t], . .. wi[t]Be[tIhk[t] +[za[t], ...,z []
can be derived as a X » matrix:
Clt) =
o2, B3 [ (DY [+ 07 L, 0
0 o2, ke B b [N 1]+ o3,

“

The linear minimum mean square error (MMSE) estimator
is well known to be the optimal estimator for 6 under the
model (2) [40]. At time ¢ the mean squared error (MSE) or
distortion at the FC using the MMSE estimator is

Bl ] 7" Br[t]ha [¢]

-1

Dl =| -+ o
%9

Brc[t]hi [1]
(2) Jig n Zﬁ}f[ﬂ&[ﬂ( *hy; [t]he[t] — o, 2y [t]hy [t]

Bic [ 1

(6210 + o W) o *h [t]hkm)]

_ <0}+ “ gl )

; op + gi[tlowiprlt]

where (a) results from applying the Matrix Inversion
Lemma, pi[t] = BH[t]Bk[t] is the power : allocated on the
kth sensor, and gi[t] 2 hi[th ] = S0 AE [ hmi[t]
is the sum of channel power gains from the kth sensor to
the FC with h,,,x[t] being the channel gain from sensor k
to mth antenna at the FC. Similarly, the distortion at the

eavesdropper is given as:
-1
) , (6)

1 K
(Z

= Yer[tlpr[t]o?
where gexf] 2 Bk [fholt] = SN, Bt [tlhenlt] is the
sum of channel power gains from the kth sensor to the
eavesdropper and he,,;[t] is the channel gain from sensor
k to nth antenna at the eavesdropper. Note that for a given
set of {p[f]}. any {By[t]} satisfying Be[]" Blt] = pult], Vk
would result in the same distortion, hence our primary focus

(%)

ger[t]pr[t]

De{t] =
o o8

2The notation x* and xH
transpose of x respectively.

refers to the transpose of x and conjugate

is {pr[t]}. Due to the randomness of the fading channels,
the instantaneous distortions at the FC and the eavesdropper,
as shown in (5) and (6), change over time.

Different from our previous work [38] in which we
studied optimal power allocation for an expected distortion
minimization with a security constraint at the eavesdropper,
in this paper we focus on the distortion outage minimization
problem. For a given maximum acceptable distortion level
D at the FC, we define a distortion outage to be the
event that the instantaneous distortion D([t] exceeds D. The
distortion outage probability at the FC is then given as
Proutage_rC £ Pr[D[t] > D]. At the eavesdropper, for a
given minimum acceptable distortion level D., a secrecy
outage event is declared if the instantaneous distortion D,[¢]
is less than D, (which means that the eavesdropper has a
good quality estimate), and the secrecy outage probability
is defined as Proytage EveE = Pr[De[t] < D.]. We assume
that the full channel state information (CSI) of the sensor-
to-FC channels are available at the FC, while eavesdropper’s
channel information may or may not be available at the FC.
The FC designs the optimal power allocation strategy based
on the availability CSI, and then sends {p[t]} back to the
sensors via a secure feedback link.

In this paper, we wish to minimise the distortion outage
probability at the FC by adapting the transmit powers of
the sensors at each channel instance, while keeping the
secrecy outage probability under a certain threshold, i.e.,
Proutage EVE < 0, and the long-term average sum of sensor

transmission powers, defined as E [Zle piE [27 [t]H =

E [Zszl pr(os +aik)}, to be less than a power budget
Ptot~

Due to the assumption of system independence over time
t, we will drop the time index ¢ for the rest of the paper.

A. Full CSI

In this section, we assume the FC can also acquire the
channel information between the sensors and the eavesdrop-
per. As a result, the power control policies can be derived
such that sensors are able to adjust the transmission powers
depending on both the FC’s and the eavesdropper’s channel
information. Clearly, the requirement of full CSI of the
eavesdropper channels is infeasible in practice. However, the
optimal performance with this assumption is instructive as
well as useful as a benchmark for the performance with
partial CSI of the eavesdropper channels, to be analysed
subsequently.

Let the channel states at the FC and the eavesdropper

be denoted by g = [g1,- .-, gx] and g, = [gers -+ ge]
respectively. The outage minimization problem is
in Pr[D(G,P(G))>D
min  Pr[D(G,P(G)) > D]
s.t. PriD.(G,P(G)) <D <46, (72)
Egp [(P(G))] < Prot, (7b)

where G = [g;g,] and (p(G)) £ >, (07 +02,) px (G)
is the total power consumption. P (G) is a vector of ran-
dom variables with conditional probability density function
fric (p| G), where p is one of the deterministic schemes and
p = [p1,-..,pK] are the powers allocated across the sensors.

Notice that, from the expression of D, in (6), when zero
power is allocated to the sensors we obtain De|,_o = o3,
giving the largest possible distortion at the eavesdropper,



while if the transmit power on each sensor approaches
infinity we have the smallest possible distortion at the eaves-

-1
dropper D, — (ﬁ Y, U%) . Therefore, in order to
produce a meaninegful solut}oﬁ "o problem (7), D, should
satisfy (% +Y, o%) < k <D, < 0F, where & is a
nonnegati\?e threshold fdc;c ensure constraint (7a) is achievable
for a given transmit power budget P;o and a secrecy outage
probability threshold §.

In communications theory, it was shown in [13], [39] that
for information outage minimization problems the optimal
power allocation policy is in general a probabilistic policy,
in particular this is often the case for discrete channel
distributions. Motivated by these results, we start with a
probabilistic power allocation P (G).

Denote the indicator function by 1(z), where 1(z) = 1
if x is true; otherwise 1(z) = 0. With the assumption
on the fading channels and perfect CSI at the FC, the
distortion outage probability at the FC and the secrecy
outage probability at the eavesdropper can be expressed as,
respectively,

Pr[D(G,P) > D]

:1/)/1{D<cap>>>D}fme<p|c>dp<c>dF<G>, ®)
Pr[D. (G,P) < D]

:1[/1{[%(GWP%<De}fmG(P\G)dP(G)dF(G)-(%

We outline the strategy involved in solving problem (7),
which are similar to techniques used in [13]. We first show
that for an arbitrary feasible probabilistic power allocation
P (G), which can be divided into four non-overlapping power
regions, we can always construct another feasible proba-
bilistic power allocation P (G) that contains three power
regions, with the powers in one of the regions all equal
to zero, and such that f’(G) gives no worse performance
than P (G). Next, based on P(G) we construct another
feasible power scheme P’ (G) which is randomised among
three deterministic power schemes {p, (G)},i = 1,2, 3 with
corresponding weighting factors {w; (G)}. Furthermore, we
show that P’ (G) performs at least as well as P (G).

First, given a feasible probabilistic power scheme P (G),

we partition the powers into four non-overlapping power
regions as given in (10).

A1 (D, De, G)={p (G): D (G,p(G)) <D, Dc (G,p (G)) >D.|G}
Az (D,De,G)={p(G): D (G,p (G)) <D, D (G,p(G)) <Dc|G}
A3 (D, De, G)={p(G): D (G,p(G))>D, Dc (G,p (G)) >D.|G}
A4 (D, D, G)={p(G): D (G,p(G))>D, D. (G,p (G)) <JD>E(|%

The objective is to minimise the distortion outage prob-
ability at the FC with the secrecy outage probability at
the eavesdropper being less than §. As A3z (D, D, G) and
Ay (D, D., G) are power regions where outage occurs at the
FC, and both D (G,p(G)) and D, (G,p(G)) are convex
functions over p (G), we can replace the power regions
Az (D, D, G) and A4 (D, D,,G) by a region where all the
powers are set to 0, which saves transmit power and does
not violate the constraints (7a) and (7b), We denote this
new feasible probabilistic power scheme as P (G), which has
three non-overlapping power regions for a given G, namely,

By (Da]D)eaG) =A (D7 ]De»G)7 Bs (DvDEvG> = {0}7
BQ (Dv]DeaG) :AQ (DaDe7G) (11)

with all powers in B3 (D, D, G) equal to zero.

Any optimal probabilistic power scheme can always be
divided into the four non-overlapping regions as defined in
(10). As A3 (D,D.,G) and A4 (D,D.,G) are two sets of
powers that result in outage at the FC, replacing these two
regions with Bz (D, D., G) would not change the distortion
outage probability at the FC, but maintains or even reduces
the secrecy outage probability at the eavesdropper. Therefore,
we conclude that if a probabilistic power allocation policy
is the optimal solution of problem (7), it can be transformed
into the same form as P (G).

Next, we construct from P (G) another probabilistic power
scheme P’ (G) which randomises among three determin-
istic power allocations {p, (G)} with time-sharing factors
{w; (G)}, ie.,

3
P(G) =) pi(G)1(X(G)=1), (12)
i=1
where X (G) is defined as
1, with probability w; (G),
X (G) =< 2, with probability ws (G), (13)

3, with probability ws(G).

The deterministic power schemes {p, (G)} are defined by
averaging the powers in each of the regions (11), i.e.,

p1(6)=E [P(G)|p(G) € B (D.D..6). G,
p:(G) =E [P(G)|p(G) € B:(D.D.. G) .G
ps (G) =E [}3 (G)‘ p(G) € B; (D, D, G) 7(;} —0. (14)

The corresponding weighting functions {w; (G)} are defined
as the probability of using each deterministic power strategy

{p; (G)}. e
w1 (G) =Pr [p (G) € By (D,D,, G)| G],
ws (G) =Pr [p(G) € Bz (D, D, G)| G,

w3 (G) =Pr [p(G) € B3 (D, D, G)| GJ. (15)

Remark: From the definition of the power regions given in
(11), we know that B; (D, D, G) is a set of transmit powers
resulting in non-outage at both the FC and eavesdropper,
while B; (D,D.,G) is the region resulting in outage at
the eavesdropper and non-outage at the FC. In addition,
B3 (D, D, G) represents the power region leading to outage
at the FC and non-outage at the eavesdropper. Given the fact
that all powers in B3 (D,D., G) are zero, we know that in
this case the distortion at both the FC and the eavesdropper
has the largest possible value of o32. Furthermore, for a
given channel state G, if B; (D, D, G) = 0, then we must
have w; (G) = 0, as there are no powers in By (D, D, G)
satisfying D (G,p(G)) < D and D.(G,p(G)) > D,
simultaneously.

Lemma I: There exists an optimal solution to problem
(7) of the form P* (G) = 2% . p, (G) 1 (X (G) = i), where
{p; (G)} and X (G) are respectively defined in (14) and (13),
and

+ w3 (G)De (G,p5(G)) —

w1 (G) D, (Ga | 1 (G))
(w1 (G) + w3 (G))

w1 (G) D (G,

(w1 (G) + wo (G
i wi(G) =1,
E TJZ (G)] <,

E <Z?=1 w; (G)p, (G)>} < Ptot-

w2 (G) D (G,p, (G)) -

Q

=
\/@v

+



The proof is given in Appendix A.

Applying Lemma 1, problem (7) can be reformulated into

another optimization problem, shown as:
min 1 —Ewi (G) + w2 (G)]

{es@}A{e;©@)}

s.t. Efws (G)] <6, (16a)
E[(w1(G)p, (G)) + (w2 (G) P2 (G))] < Prot, (16b)
w1 (G) De (G, py (G)) —wn (G) o + w2 (G) (De — )

> D, — o, (16¢)
w1 (G) D (G,p; (G)) + w2 (G) D (G,p, (G))

— (w1 (G) +w2 (G))D <0, (16d)
w1 (G) + w2 (G) <1, (16e)

0<w;(6)<1,  j=12 (160)

The functional optimization problem (16) is in general
non-convex. Let v, A, v, (G), v (G), and s (G) denote the
nonnegative Lagrange multipliers for the constraints (16a)-
(16e) respectively. The generalised Karush-Kuhn-Tucker
(KKT) conditions [41] are:

al(...) { =0, p3(G)>0
93, (G) | =0, pj(G)=0
oy | Z% 0<w
>0, wi(G)=0

)

k=1,...,K (17

UGEDEp g (18)

G)> — Prot

v: (6) [(De — 07) (1 = w3 (G)) — wi (G) De
+wi (G) o3| =0, ve (G

v (G) [wi (G) D (G, P
— (@1 (G) +w2 (G))D] =0, V" (G) =

5" (G) [wi (G) +w3 (G) 1] =0,  s"(G)
where ~*, X, vi(G), v*(G), )
optimal ~ Lagrange  multipliers, —and  {p;(G)}
{w;‘ (G)} are the optimal primal variables, and

L7\ ve (G), v (G),5(G), {p; (G)},{w; (G)}) is
defined as

LA ve (G),v(6),5(G) . {p, (G)}, {w; (G)})

=— ij (G) + w2 (G) + A <Z wj (G) p; (G)>

+ve (G) [w1 (G) 05 —w1 (G) De (G, py (G))—w2 (G) (De—07p) ]
+v(G) [w1 (G) D (G,p, (G)) +w2 (G) D (G, p2(G>>
(

)
— (W1 (G) + w2 (G)) D] +5(G) [w1 (G) + w2 (G)] .
(24)

2
<Zw; (G
j=1

From (17), we know that for any nonnegative p}, (G) and
D31 (G), they must satisfy, respectively,

dD. (G,pj (G))
ot (G)

oD (G, p; (G))

L) g k=1,...,K,
Ity (G) 25)

X'} (G) (02, +03) — ¥ (G)w} (G)

+v7(G) w1 (G)

and

N3 (G) (02, 08) —v* (6) i (6) 22 NG PE ()

=0.
Ip3y, (G)

(26)

Furthermore, from (21)-(24) we can obtain the Lagrangian
at the optimal points for each channel state G as

Ly, A2 (G), 57 (G) . {p] (6)}, {w] (G)})

2 2
- Zw; (G) +~v*w} (G) + \* <Z w; (G) p; (G)>

— v} (G) (D. — 03) + 5" (G), @7
from which we can obtain
OLL) _ g4 xe (py (G)) 28)
owi (G) E
and
5’;2( )) —1+ 2" (p3(G)) + 7" 29

Note that if the channel distributions of both the eavesdropper
and the FC are continuous, then the events A\* (p} (G)) =1
or \*(p3 (G)) = 1 — +* have zero probability. Thus, from
condition (18) and (28)-(29) we obtain the following result:

1 Ol ) <
% ’ ow* (G ’ .
W (G)=1 al(“>0 =12 (o)
’ 0w; (G) :

Remark: From the structure of the power allocation in (12)
and (30), we see that for continuous fading channel distribu-
tions, the optimal power allocation policies are deterministic.

Theorem 1. Consider the following optimization problems
(31) and (32):
min (p (G))
P
st.D.(G,p(G) >D,, D(Gp(G)<D, (1)
and

H},in r(G), st.D(G,p(G)) =D, (32)

with optimal solutions p}, (G) and pj}, (G) respectively. Then
a locally optimal solution to problem (16) is given by:

p;(G), if wi(G)=1
« ) pi(G), if wi(G)=1and
Fe) = D. (G.p; (@) <D,
0, otherwise.

The proof is given in Appendix B.

Remark: We may have no feasible solutions for problem
(31), which corresponds to the channel conditions where
there are no power allocations satisfying non-outage at both
the FC and the eavesdropper, i.e., B1 (D, D, G) = 0. In this
case, we have wj (G) = 0.

Consider the channel states where problem (31) has solu-
tion p}; (G), and p; (G) satisfying D, (G, p;} (G)) < D.. As
both D (G,p (G)) and D, (G, p (G)) are convex over p (G),
we obtain D (G,p} (G,)) = D and D, (G,p’ (G)) = D,
and (p? (G)) > (p; (G)) since problem (31) has a smaller
feasible region than problem (32). As a consequence, there is
a trade off between choosing p} (G) or p; (G) to transmit at
each channel instance; p’ (G) leads to non-outage at both the
FC and the eavesdropper, whereas p; (G) results in outage
at the eavesdropper but consumes less power.

Define a non-negative transmit power difference
pait (G) = (p:(G)) — (p; (G)). We may then further



categorise the power transmission policy into two different
types, depending on the given secrecy outage probability
threshold § and power budget Pioy.

o When M*pgig (G) > ~*, we obtain either P* (G) =
p; (G) or P*(G) = 0. In these channel states, the
transmission policies are chosen to use less transmit
power by sacrificing either an outage at the eavesdrop-
per, i.e., to use p; (G), or not transmit leading to an
outage at the FC. By doing this, transmit power can
be saved for future ’higher potential’ channel states
where outage occurs neither at the FC nor at the
eavesdropper. Furthermore, when v* = 0, from (18)
we have E[wi (G)] < 4, which indicates that we
either have a small total power budget or a loose
security requirement at the eavesdropper, i.e., a large
0. Intuitively, the optimal transmit policy under such
circumstances should be more energy conservative and
aim to meet the maximum acceptable distortion level D
at the FC.

o When \*pgir (G) < ~*, which implies that either
(p} (G)) is fairly close to (p; (G)) or we have a
relatively small A*, we should have P* (G) = p* (G)
or P* (G) = 0. When pg;g (G) is small or the transmit
power budget is large, instead of using p; (G), which
would result in outage at the eavesdropper, using p’ (G)
guarantees non-outage at both the FC and the eaves-
dropper. If the incremental power pa;g (G) is too large,
the sensors will stop transmitting to save power.

B. Partial CSI

Due to the practical difficulties in obtaining the full
channel information of the eavesdropper, in this subsection
we will assume that the FC only has statistical knowledge
of the eavesdropper. We first explore the power allocation
problem that minimises the long-term distortion at the FC via
the Lagrange multiplier technique. To reduce computational
cost we then consider suboptimal power allocation policies.

From the analysis in Section II-A we notice that the
optimal transmit power policies are deterministic if both the
FC’s and eavesdropper’s fading channels have continuous
distributions, based on which, in this part of the work we
aim to develop deterministic transmit power policies with
full knowledge of only the sensor-to-FC channels. Using a
similar setup as problem (7), the Lagrangian in the partial
CSI case can be constructed as

lgr N = [[LD@p(®) > D)+ A0 ©)

g
+l// 1{D. (g.,p(g) <D} dF (ge)]dF(g), (34)

e

where A and v are non-negative Lagrange multipliers satis-
fying the following equations at the optimal point:

N (Prot — E[(p* (g))]) =0,
v* (6 = Pr[De (g, p"(g)) <De]) =0. 35)
To minimise the Lagrangian given in (34), we need to
find the optimal power allocation for each channel state

at the FC such that 1{D(g,p(g)) >D} + A(p(g)) +
Vfge 1{D. (g.,p(g)) <D.}dF (g.) is minimised.

Lemma 2: Let ¢(p(g)) = Ap(g) +
z/ng 1{D. (g,,p(g)) <D.}dF (g.). Then the optimal

p* (g) must satisfy 0 < 1{D (g, p" (g)) >D}+¢ (p* (g)) <1.
The proof is given in Appendix C.

In order to minimise 1{D (g,p(g)) > D} +£(p(g)), we
either obtain D (g, p* (g)) > D where we declare an outage
at the FC, or the distortion at the FC is no larger than D and
so 1{D (g,p*(g)) > D} = 0. To be more specific,

e When D (g,p*(g)) > D, we see that
1{D(g,p*(g)) >D} = 1 indicates an outage at
the FC. Furthermore, we must have the optimal
power allocation at this channel instant being
equal to zero for all sensors, since a non-zero
power would result in a nonnegative value of
Ap*(g) + v [1{Dc(g. p*(g) <D} f(g)dg..
Intuitively, knowing that an outage will happen at the
FC, the sensors would stop transmitting to save power
and to reduce the possibility of information being
leaked to the eavesdropper.

e When D (g,p* (g)) < D, which implies non-outage at
the FC. In this situation, either the FC has relatively
good channel conditions that a small amount of power
would secure non-outage at the FC, or the constraints
are quite loose (i.e. a large power budget and/or a loose
security requirement at the eavesdropper).

Therefore, for a given channel state at the FC, the sensors
either choose to forward the information to the FC (with non-
outage at the FC achieved) or keep silent. Hence, by applying
Lemma 2 we obtain that the optimal power allocation p* (g)
has the form

sy ) P(g), if £(p(g) <1
P (g) = { 0, otherwise, (36)

where p (g) is a locally optimal solution of the following
problem:

min A (p(g)) +u/1{De (g..p(g) <D} f(g.)dg.

p(g)
st. D(g,p(g) <D. (37)

1) Partial CSI Suboptimal Solution: Due to the difficulties
of explicitly expressing [ 1{D. (g.,p(g)) < D.} f (g.) dg.
and deriving a locally optimal solution to problem (37),
which has high computational costs, in this part we will look
at a suboptimal power allocation scheme based on sensor
scheduling.

In a multiple-sensor system, instead of activating all the
sensors, we can selectively choose one sensor to forward
its measurement to the FC. This may be useful in scenarios
where bandwidth is at a premium or there are very strict
interference constraints. Let g,, = max(¢1,...,9x), and
Germn = Max (geq,---,Yer) Where m corresponds to the
index of the sensor with the largest channel gain. One
possible sensor scheduling policy is that only the sensor with
the best channel transmits. The distortion at the FC and the
eavesdropper then become:

—1
1 ImPm )
D=5+ R (38a)
(Ug gmpmagum + O%m
1 emPm -
D.=|(— m . 38b
<Ug * gemme',,%m + U?m) ( )

To explicitly illustrate the power policies in this scheme,
we will assume that the channel power gains are ex-
ponentially distributed at both the FC and the eaves-
dropper with means % and i respectively. We can
then obtain the I?rolbability density function of g,, as
KX (1 - e—gw)

Following similar techniques as in Section II-B, problem

e *9m and similarly for ge,,.



(37) is then reduced to

min A (p(g) +7 / 1{D, (gem:p (9m)) <De} dF (ger)

P(gm
sit. D (gm,p(9m)) <D, (39

from which we can then compute the optimal solution as
2 2
Onm (09 — D) 1

2 2 2.2 o
0+O—wm)70—60—wm m

p(gm) = D (o (40)

Knowing that the eavesdropper’s channel is exponentially

distributed, we can derive the outage probability at the
eavesdropper for a given FC channel state as

Pr [De (gem)ﬁ(gm)) < D |gm]

02 (09 ]De) 1
' [gem B D 02 - 00 (02 - De) ﬁ(gm) gm
e tom @1
o2 24 0202
where Dy, = "gm ( 0 D) [D(05+02 1) =508 m]

. ]D)) []DJ (0'2+UZ )—o’ o2 ]
Combining the results of (36), (40) and (41) we obtain the
transmit power policy:

o’i?n("’@ ]D)) 1 :
p* (gm) — ( +03m)*f’3‘75m Gm if 9m > 9m_th,
, otherwise,
(42)
- o =Dt P .
where g, ¢ satisfies v*e™ re Im-th 4 t— =1, with P, =
2
D
% and with \* and v* being the optlmal Lagrange
0w
oZtol

multlphers chosen to satisfy the power constraint and secrecy
outage constraint at the eavesdropper.
Notice that as g, is continuous and v*e™ Serom 4 P 2
is monotonic decreasing with g,,, we obtain the on- off’
transmit power policy in (42), where if g,, > gm_¢n the
sensor uses P (g,,) to transmit with non-outage at the FC
achieved, and the sensor does not transmit when g,,, < gp,_1n
which leads to an outage to occur at the FC. In addition, the
overall outage probability at the FC can be expressed as

Pr [D (gm,p" (9m)) > D]

K [9mth gm \ K1 m 9m_th \ K
:—/ (1—6_7) e_gngm = (1—8_ x h) .

A Jo

From (41) and (42), which are two monotonic decreasing
functions with respect to g,,, we obtain that g,, ¢ (A*, ")
D

must satisfy either fgoo mOre U*)e_Ttehg’"f(gm)dgm =0

Tl X ey S 0m)dgn = P
crngO'im) 0'302 Im_th(AN*,v*) gm Gm)&Gm = tot»
where f(gn) = & (1- gm)K e~ %" This is because
for a given total power budget and outage probability thresh-
old at the eavesdropper, there is zero probability of finding a
Gm_th, to meet both constraints with equality. From the KKT
conditions for the optimal points we then derive that either

or (

> 1
B/ L Fg)dgm = Pross vF =0, @3)
P 9m
or
o0 Din
/A o e e I fgm)dgm =06, X =0. (44)

Din

III. SINGLE SENSOR WITH MULTIPLE ANTENNAS
SCENARIO

In order to compare with the multiple-sensor scenario as
well as for analytical tractability, in this part of work we

consider a situation where only one sensor with multiple-
antenna is in the network observing the source.’ In this
scenario, similar performance gains as in having multiple
sensors can be achieved. In fact, with multiple antennas
additional techniques can be used to further enhance the
system performance. In this section, we investigate the
multiple-antenna single sensor system.

A schematic diagram is shown in Fig. 2. We assume that
the same single point Gaussian source 6 as defined in Section
IT is observed by a sensor with IV, transmit antennas, which
employs the analog amplify and forward technique to scale
the observed signal with a complex vector 3 € CN:x1,
before sending it to the FC via a set of complex fading
channels H € CN"™ Nt The observed signal z is also
listened to by the eavesdropper after passing through another
set of channels H, € CNe*Nt where we assume that the FC
and the eavesdropper are equipped with N, and N, receive
antennas respectively.

9—»(—%91' B '>6ﬂ9 7 e
(2]

Eaves-

; Y dropper
z

Fig. 2: Diagram of a single sensor multiple-antenna scenario
with the presence of an eavesdropper.

The signals received by the FC and the eavesdropper are,
respectively,

y =HB60 + HBw + z,
Y. =HcB0 + Hefw + 2, (45b)

where both z € CV"™*1! and z. € CN°*! are complex
Gaussian channel noise at the FC and the eavesdropper with
covariance o?Iy, and oIy, respectively.

The optimal linear minimum mean square error (MMSE)
estimator, is used at both the FC and the adversary to measure
6. For a given channel instance, the distortion D at the FC
can be obtained as

p= (L matsmg)

(45a)

2 H H/ 2 2 2 -1 2
=0 (1—(H,6) [Hﬂ(Hﬂ) (ae—t-aw)—l—a IN,,} H,@Ug),

Oz |y % (1o
[ ( a+<Hﬁ>HHﬁ>]’

of + 03
where ¥ £ H3 (Hﬁ)H 2 + 021, is the covariance matrix
of HBw+z, a0 = W’ and (b)-(c) result from applying the
Matrix Inversion Lemma. Similarly, the mean squared error
(MSE) or distortion at the eavesdropper is given as

2
% _(1- Qe 47
a%wi( %+mmFHﬁ>y )

o?
o2 +a'g .
3Multiple-sensor-multiple-antenna (MSMA) is not studied in the work
due to its complexity involving non-convex optimization problems and will
be investigated in future work. However, techniques that are explored in the
partial CSI case of this section can be also implemented in MSMA case.

(46)

D.=o} [1—

A
where o, =



We set a maximum acceptable distortion level D at the FC
and define the distortion outage probability as

1
(HB)" Hp

where S £ oi;oﬁ \I:g4—]]])(aiii§)+0503 — IL. We also set a
minimum acceptable distortion level D, at the eavesdropper
and assume that if D, < DD, the measurement informa-
tion at this channel instance can be successfully retrieved

by the eavesdropper leading to a security breach. Letting
4

Proutage_FC =Pr [D > D] =Pr

> S] , (48)

2, 2
. =
oZ ct—D, (034—05)-{-0302

probability at the eavesdropper can be expressed as

— 1|, the secrecy outage

1
Proutage EvE =Pr[De <D.]=Pr | ——————<S,| .
(H.8)" H.3
With a given power budget at the sensor, our objective is
to minimise the distortion outage probability at the FC, while
keeping the secrecy outage probability at the eavesdropper
below . Hence the optimization problem can be cast as:

min Pr % > S]
s (HB) " HpB
H Ptot
s.t. Pr m < Se‘| S 63 E |:ﬁ 16:| S m
(49)

In the following, we focus on the full CSI scenario where
both the FC and eavesdropper’s channel information are
available, and the partial CSI scenario where we assume
only the FC’s channel states are perfectly known. In both
scenarios, we first focus on finding the best 3 that minimises
the objective while satisfying all the constraints. We then
consider other techniques that can be used in the multiple-
antenna systems to further enhance the performance.

A. Full CSI

With full knowledge of the eavesdropper’s channel infor-
mation, problem (49) can be solved using similar techniques
as in Section II-A, where we start from an arbitrary feasible
probabilistic power allocation scheme, from which it can be
used to construct another feasible power allocation scheme
that provides no worse performance, and based on which we
construct three deterministic schemes 3,, 85, and 3; = 0.
We then show that the optimal 3", which is a function
of H and H., can be found by considering a probabilistic
power allocation scheme that randomises among the three
deterministic schemes 3,, 85, and 3; with corresponding
weighting factors {wi}?:1~ The problem (49) then becomes

min 1 —E[w; + wo]
{B;(HH.)}, {w;(HH.)}
s.t. Ejws] <0, (50a)
e P
H tot
E ;w]ﬂj Bi| < aror (50b)
w1
———————— > (1—wy)S,, (50c)
(H.3,)" H.8,
w1 W
+ < (witwo)S,  (50d)
(H3,)"HB, (HB,)" HB,
OS(JJI_'_WZSI’ OSWl,UJgSl, (Soe)

where the derivation is similar to that of problem (16) and is
thus omitted to avoid repetition. As problem (50) is again
a non-convex problem the result we derive is a locally
optimal solution. With the assumption that both H and H,
are continuously distributed, the solution of problem (49) in
the case of full CSI is given as

B (H,H,), if B8] <1,

By (H,H,), if \G:785<1—+* and
(H.35)" H.B; > S !

0, otherwise,

/8* (H7 He) =

(5D
where \* and v* (H, H,) are the optimal Lagrange multipli-
ers chosen to satisfy the constraints E [23:1 w}‘ﬁ?*ﬂ; <
U?j_";g) and E[w}] < ¢ respectively; and 3] and (35 are
respectively the optimal solutions of the following two
problems:

. H
min
B, (H, H,) Bl
st. (HB)"HB, >S7, (H.8,)"H.B;, <S.%;
(52)
and
i H H >s! 53
Soin, B3 B, st. (HBy) HBy >S77.  (53)

Note that as all the constraints and objective functions in
problem (50), (52), (53) are real-valued over the complex
field, we need to consider both the real and imaginary
parts when applying the KKT conditions for the optimal
points [42], [43]. Furthermore, because problem (52) is a
non-convex optimization problem, while (53) is a convex
problem; we obtain 37 being a locally optimal solution of
the problem (52) and 33 being the globally optimal solution
of the problem (53).

1) Zero Outage Probability at the Eavesdropper: If the
sensor has more transmit antennas than the number of receive
antennas at the eavesdropper, i.e., Ny > N, then it can
transmit the observation signal x onto the null space of the
eavesdropper’s channel, thus leaking no useful information
to the eavesdropper. To be more specific, let the singular
value decomposition of H, be H, = USVY. Then we can
express the eavesdropper’s channel null space as VVH where
V contains the last N, — N, columns of V [44]. Define a
precoding matrix W = \~7\~7H € CNt, The signals received by
the FC and the eavesdropper are then given by, respectively,

y = HW30 + HWBw + z, 54)
y. =HWB0+H.Wpw + z. = z.. (55)

On the eavesdropper side, as no information about x
is received, we obtain the secrecy outage probability
Proutage_EVE =0.

The outage minimization problem can then be given as

min Pr +>S , s.t.E{ﬁHﬁ}g f“’“Q.
B(H) (HWB)" HWg3 oy +0g
(56)

Similar techniques as used in Section II-A can be employed
to solve problem (56), and it can be shown that the globally
optimal 3* is constructed by randomizing among two deter-
ministic power schemes 3; and 3, = 0 with corresponding
weighting factors w and 1 — w. Furthermore, problem (56)



can be reformulated into the following problem:

min 1—E[w]
B, (H), w(H)
H Ptot
st. E [wﬁl 51} S (57a)
(HWB,)"HW3, > s, (57b)

The solution is given as
g ()= { BIH), if N (0f+07) B < 1
0, otherwise,
(58)

where \* is the optimal Lagrange multiplier associated with
the power constraint (57a) which is obtained numerically,
and 37 is the globally optimal solution of the problem:

min (o5+0%) BBy, st (HWB,)" HWS, <57
1

Remark: With this scheme, the FC’s effective channel is
HW, which is the projection of H onto the null space of H,
via the precoding matrix W. Moreover, if the FC has only
one receive antenna, i.e., /N,, = 1, we obtain the beamforming

* - s—1  (HW)H!
vector 37 (H) = W) TEW [EW]
refers to the Euclidean norm of the vector x), which lines up
with the effective channel HW while satisfying the power

constraint.*

(where the notation |IxII

B. Partial CSI

In this part of the work, we consider a case where the FC
can acquire its channel information but only has statistical
knowledge of the eavesdropper’s. From the full CSI case,
we know that a deterministic power allocation is optimal for
continuously distributed fading channels. Therefore, applying
the results derived in Section II-B, we can obtain a locally
optimal 3" at each FC channel instance as:

B* (H)

BH), if v(H) f, 1 { (Heﬂ) H.3> Sl} dF (H,)
- 3 B8<1

0, otherwise,

where ,@ is a locally optimal solution to the problem:
min A6"6 v (1) [ 1{(H.5)" K> 5.} aF (1)

B( H.
st. (HB)"HB>S, (59)

with A and v (H) being nonnegative Lagrange multipliers
corresponding to respectively the power constraint and the
secrecy outage constraint at the eavesdropper.

1) Artificial Noise: Assuming that the sensor is equipped
with more transmit antennas than the number of receive
antennas at the FC, we can employ the technique of artificial
noise [35], [45] to enhance the system performance. The
idea is to increase the noise level seen by the adversary in a
way that its channel is degraded while the channel of the
legitimate receiver is not. With this method, the artificial
noise is generated by the sensor and transmitted onto the null
space of the FC, thus it does not impact the message received
by the FC but increase the noise level at the eavesdropper.

Let [W1, W5] be an orthonormal basis of CN* with W; €
CNexNr and Wy € CNex(Ne=Ne) representing respectively

4One could also use the techniques in [11] to solve the problem, which
will give the same result.

the signal space and the null space of H. The signals received
by the FC and the eavesdropper are, respectively,

y = HW,8x+HWyv+z = HW,;80+HW,Bw+z,
(60a)

Y. =HW,8z + HWyv +z,
=H W80 + H-Ww + H.Wyv + z.. (60b)

where the artificial noise v.e CVe=Nr)X1 hag N, — N, i.i.d.
complex Gaussian elements with zero mean and variance p,.

It can be seen from (60) that the sensor transmits obser-
vation information W; Bz plus a ’noise’ term Wsv, which
is chosen to be a random vector in the null space of H,
to reduce the possibility of small noise being seen by the
eavesdropper. As [Wy, W] is a unitary matrix, we obtain that
H.W; is independent of H. W5, giving the effective noise at
the eavesdropper as H.Wov+2z.. The transmit power in each
fading block is given as (07 +02) BB + (N; — N,) pa.

We want to minimise the distortion outage probability at
the FC, by finding the best 3 (H) and p} (H) to meet the
long-term power constraint and the secrecy outage constraint
at the eavesdropper. Assuming that both the FC and the
eavesdropper use the MMSE estimator, the optimization
problem can be written as

Pr [(leﬁ)H HW, 3 < S—l}

min
P (H), B(H)

s.t. Pr [(Hewlﬂ)H ((o§+05) H.W,3 (HW,8)" +o21y,
pHW, (HW)") HW, B> (07-D,)/ 04} <5

E[(0F +02) 8"8+ (N~ No)pa] < Pior- (61)

In order to solve problem (61), we can employ similar
techniques as described in Section II-B, which are omitted
for brevity. For the special case of a single receive antenna
at both the FC and the eavesdropper, the problem is reduced
to finding p and p,, where p = BB € R. Let p, be the
solution of

Pa (H) = arg ml>% A (Nt - 1)13(1 +vd (Hvﬁa) s (62)
PaZ

where A and v are the -corresponding Lagrange
multipliers for the long-term power constraint and secrecy
outage constraint of problem (61), and d(H,p,) =

— 2 2 2 2
o1 pa< Stmem . Deloiroi) ol o2 g
H @ [HWq [2[H W2 |? 0% —De [HeW2 |2 e/

We then derive the locally optimal p* (H) and p’ (H) as

AoZ+o2)s™t .
N v (B, 5u)

+ AN —1)p,(H) < 1

_ _s! :
H) = i if

p*
PZ (H) = Pa (H) )

p*(H)=p:(H) =0, otherwise.

IV. ALTERNATIVE FORMULATIONS

In Sections II and III we considered problems that min-
imise the distortion outage probability at the FC while
maintaining the secrecy outage probability at the eavesdrop-
per and overall power consumption to be below certain
thresholds. Alternative problems can also be formulated. For
instance, we can minimise the secrecy outage probability at
the eavesdropper, with a distortion outage constraint at the
FC and a long-term power constraint among sensors, given



as
in Pr[D. (G,P(G)) < D,

s.t. Pr[D (G,P(G)) > D] < ¢, E[(P(G))] < Prot, (63)

where ¢ is the distortion outage probability threshold at the
FC. Another potential problem would be to minimise the
long-term expected estimation error at the FC subject to a
secrecy outage constraint at the eavesdropper and a long-term
power constraint among the sensors, written as

min B [D(G,P(G))]

s.t. Pr[D. (G,P(G))<D,] <5, E[(P(G))]<Pror. (64)

For both problems, we could consider the full CSI and
the partial CSI cases, which can both be solved using similar
techniques as in Section II. Note that problems (63), (64) are
formulated for the multiple-sensor scenario. Similar problem
formulations could also be constructed for a multiple-antenna
scenario.

V. NUMERICAL RESULTS

We first consider a situation with three sensors. For
simplicity, we consider the source o to be distributed as
N (0,1), and all three sensors share the same measurement
sensitivity of 02, = 107?,Vk. We assume that the distances
from each sensor to the eavesdropper are 125m, 127m and
129m, whereas it is 125m, 130m and 135m to the FC
respectively. Furthermore, we consider the path-loss of the
signal power at the FC and the eavesdropper as following
the free-space path-loss model [46]

PL = 201log,,(d) + 20log,(f) — 27.55,  (65)

where d € {di,d.;} is the distance between sensor k
and the FC or the eavesdropper in meters, and f is the
signal frequency in megahertz (we assume the network uses
an operation frequency of 800MHz). Then, the channel
power gain follows an exponential distribution with mean
10~ 7 mW. In addition, the total power budget range is set
to 1 mW < Pyt < 11 mW, to ensure that the secrecy outage
probability requirement at the eavesdropper is achievable.
The maximum acceptable distortion level D at the FC is set
to 0.007 while the required minimum distortion level D, at
the eavesdropper is 0.01.

—0—Rx-FC=2, Rx-EVE=2, §=0.1
081 Rx-FC=2, Rx-EVE=2, 6=0.2| |
Rx-FC=3, Rx-EVE=2, 6=0.1
0.7 —— Rx-FC=3, Rx-EVE=2, 6=0.2|

outage-FC

Pr

Fig. 3: Performance comparison in a three-sensor network
with N, = 2 and full CSI of the FC and the eavesdropper.

Fig. 3 shows the distortion outage probability at the
FC with two antennas at the eavesdropper, under different
secrecy outage probability requirements at the eavesdropper,
namely 0.1 and 0.2. When the number of receive antennas at
the FC is fixed, it is seen that for both sets (i.e., N, = 2 and
N, = 3) the outage probability at the FC behaves similarly
for the two different outage requirements at the eavesdropper
when Pkt is small. As we increase the total power budget,
they start to decrease until saturation. This is because when
Phiot is small, the sensors are more likely to choose small
power consumption policies that only guarantee non-outage
at the FC, or the sensors would simply stop transmitting
to save power. As the transmission power budget increases,
sensors begin to transmit in channel states where outage
happens neither at the FC nor at the eavesdropper, until
a point where more incremental power would lead to the
secrecy outage probability at the eavesdropper being greater
than the security requirement &, at which the distortion
outage probability at the FC saturates.
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Fig. 4: Performance comparison in a three-sensor network
with N, =2 and § = 0.2.

In Fig. 4, we compare the distortion outage probability
at the FC with the sensor scheduling scheme, partial CSI,
and full CSI schemes in a three-sensor network, with the FC
having two or three antennas. As we can see, similar to Fig.
3, the outage probability at the FC is smaller when the FC is
equipped with more antennas for all three cases. In addition,
the performance of sensor scheduling follows closely the
partial CSI case, and it even has similar performance as the
full CSI case when the transmit power budget is small.

The distortion outage probability at the FC versus different
transmit power budgets is plotted in Fig. 5, where we
compare the performance of sensor scheduling to the partial
CSI case with the secrecy outage probability constraint at
the eavesdropper set to 0.14, 0.18 and 0.22. The first thing
to be noticed is the close performance of sensor-scheduling
and partial CSI power allocation in all three scenarios (i.e,
0 = 0.14, § = 0.18 and § = 0.22) when the power budget
Piot 1s relatively small. In addition, the results stated in
(43) and (44) can be easily verified from the behaviour of
sensor-scheduling. When we have a small power budget,
Proutage e performs the same for all scenarios regardless of
the different secrecy outage requirements at the eavesdropper,
which implies that the total power constraint satisfies equality
at the optimal points, whereas the secrecy outage constraint is
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Fig. 5: Performance comparison in a three-sensor network
with N, =3 and N, = 2.

loose. As we keep increasing the power budget, Proytage FC
settles down to a point at which the secrecy outage constraint
is satisfied with equality but the power constraint is loose,
since any power increment makes no improvement.

Next, we study the distortion outage probability at the FC
for the multiple-antenna single sensor scenario, where we
assume that the sensor is 127m away from the FC, and 130m
away from the eavesdropper. For simplicity, we assume that
the sensor is equipped with three antennas, whereas there
is only one antenna at the FC and one or two antennas
at the eavesdropper. We consider the maximum acceptable
distortion level D, at the eavesdropper being set to 0.013,
which is twice as large as the required minimum distortion
level D at the FC. We assume the same noise level for both
the FC and the eavesdropper, where 02 = 02 = 108 mW.

== Partial CSI, 6 = 0.1

Full CSI, Pr 0

outage-EVE ™

—©&—Full CSI, § = 0.1
= = :Partial CSI - Artificial Noise, ¢ = 0.1

outage-FC

Pr

Fig. 6: Performance comparison for a single sensor multiple-
antenna scenario with N, = N, =1 and 6 = 0.1.

In Fig. 6, the distortion outage probability at the FC versus
the long-term power budget is plotted for full CSI, full CSI
with Proytage gve = 0, partial CSI and partial CSI-Artificial
Noise schemes. As we can see, the full CSI case outperforms
the partial CSI case, and in both cases the distortion outage
probability at the FC saturates. By contrast, the full CSI with
Proutage EvE = 0 and partial CSI-Artificial Noise schemes
perform better when we have a relatively large transmit

power budget, where Proutage Fe keeps decreasing as Piot
increases. More interestingly, it is seen from that the full
CSI Proutage_eve = 0 scheme performs no better than the
partial CSI-Artificial Noise scheme across the entire power
range. This is owing to the fact that the effective channel
gains of the FC are largely reduced when projecting it onto
the eavesdropper’s channel null space, whereas in the case
of partial CSI-Artificial Noise, only a small portion of the
transmit power is used to generate ’noise’.
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Fig. 7: Performance comparison for a single sensor multiple-
antenna scenario with N, = 1 and § = 0.2.

To closely observe the performance of Proutage rc us-
ing artificial noise, in Fig.7 we look at scenarios where
the eavesdropper has more receive antennas than the FC,
and we also plot the full CSI and partial CSI cases for
comparison. It is noticeable that when the eavesdropper has
more antennas, Proytage_rc in the partial CSI case quickly
saturates which is then followed by the full CSI case, as
at certain channel states the sensor has to stop transmitting
in order to maintain the required secrecy outage probability
at the eavesdropper. Whereas in the case of partial CSI-
Artificial Noise, because the sensor can intentionally generate
noise to degrade the eavesdropper’s channel, it can explore
more channel states to transmit the observation signals to
the FC. Similar behaviour is seen when the eavesdropper has
the same number of antennas as the FC, where the partial
CSI-Artificial Noise gives better performance, as less "noise’
needs to be produced which means more power can be used
to forward the observations. Therefore, the simulation results
in Fig.6 and Fig.7 indicate that injecting artificial noise into
the eavesdropper’s channel appears to be a better solution
for the single sensor multiple-antenna scenario.

VI. CONCLUSION

In this paper, we have considered the problem of transmit
power allocation for distortion outage probability minimiza-
tion in the presence of an eavesdropper. We studied the
distortion outage probability performance for both full CSI
and partial CSI under two different scenarios: multiple sensor
single antenna scenario and multiple antenna single sensor
scenario. We proposed a suboptimal solution (for the partial
CSI case) to overcome the high computational cost in the
multiple-sensor scenario. With multiple transmit antennas at



the sensor, we investigated techniques that can achieve zero
outage at the eavesdropper. Simulation results showed that
better performance can be achieved with additional receive
antennas at the FC for the multiple-sensor scenario, and in
the multiple antenna single sensor scenario the distortion
outage probability at the FC can be reduced to zero if the
transmit power budget is sufficiently large.

APPENDIX
A. Proof of Lemma 1

We will show that the power allocation policy given
in (12) is feasible, i.e. P’ (G) satisfies the secrecy outage
constraint at the eavesdropper (7a) and the total transmit
power constraint (7b); and that P’ (G) performs at least as
well as P (G).

Since P (G) is feasible, P (G) must satisfy all the con-
straints, i.e.,

Pr {De (G,f’(G)) <D ]
eufpe o (0(@) <0

and

| 6]] =B lw2(6)) <4,

iEp (f’(G))p(G) €B (]DLDE,G),G)

Pr [p(G) € B; (D,DE,G)|G1>

=Eg [<Z p; (G)w; (G)>

Remark: As f’(G) has three non-overlapping regions as
defined in (11), with all powers in Bs (D,D.,G) being
zero, we know that the only power region leading to out-
age at the eavesdropper is Bs (D, D, G). In addition, the
probability of choosing a power in By (D,D.,G) is given
as Pr [p (G) € Bz (D, D, G)| G|, which is the same as the
time-sharing factor ws (G) defined in (15).

As the new probabilistic power allocation P’ (G) is ran-
domised among the three deterministic power policies given
in (14), we can easily find the long-term average power
consumption of P’ (G) as

Elp(G))] =

=F¢

S Ptot . (66)

Ec [(Ep [p(G)|G])]

(Sriomo)

and hence P’ (G) satisfies the power constraint (7b).

In addition, as both D (G,p (G)) and D, (G,p(G)) are
continuous and convex over p(G), by the Mean Value
Theorem (MVT) for integration, we know that, for a given
channel realisation G, there exists a p1 (G) € B, (D,D,,G)
such that p, (G) = E [P(G ‘p € B (DD, G), 6.
Together with the definition of p; (G) in (14), we know that
D (G,p; (G)) < D and D, (G,p; (G)) > D.. Similarly,
only when P’ (G) = p,(G) does outage occur at the
eavesdropper. Therefore, we can compute the secrecy outage
probability at the eavesdropper when using the probabilistic
power policy P’ (G) as

)| 6]]

Pr[D. (G,P' (G)) < D]
(68)

, o (67)

=Eg [Pr [P (G) = p, (G
=Eg [w2 (G)] < 4.

Remark: Note that for the channel states where
B1 (D,D.,G) = O, the result given in (68) can be
also established, since for those channel states we have
w1 (G) = 0. By following the above arguments and applying
the MVT, we see that outage occurs at the eavesdropper
only when P’ (G) = p, (G).

The feasibility of P’ (G) has thus been proved. In order
to see that the probabilistic power policy P’ (G) performs
no worse than f’(G), we first show that for each channel
realisation, the distortion outage probability at the FC when
using P’ (G) is at least as small as when using P (G). We
then conclude that for a fixed maximum acceptable distortion
level D at the FC, P’ (G) would result in the same or smaller
outage probability at the FC. Given the channel realisation
G, the distortion outage probability at the FC is:

o (or@)> o)
refo o
(o (or

{D (G,Ep [ﬁ(c)'p(c) c Bi,G]) >
—pr [D(G,P'(G)) >D|G], (69)

where (a) follows from the definition of {w; (G)} given
in (15) and (b) follows from Jensen’s inequality, since
D (G,p(G)) is a convex function over p (G), and the last
equality follows from (12). Therefore, the resulting distortion
outage probability at the FC from using P’ (G) is no worse
than using P (G), i.e.,

Pr[D (G,P'(G)) > D] < Pr [D (Gj’(G)) > ID)} . (70)

Combining (67), (68) and (70), we conclude that a prob-
abilistic power allocation scheme P’ (G) with the form (12)
is feasible and gives the same or smaller outage probability
at the FC compared to an arbitrary probabilistic power al-
location. Furthermore, from the definition of {p, (G)} given
in (14), we have the following:

D. <E, [D. (G,P'(G))| De (G,p(G)) > De, G|
©_@(Qof  w(G)DGp(6)
w1 (G) + ws (G) w1 (G) + w3 (G)
D >E, [D (G, P'(G))| D (G,p(G)) < D,G]
@w1(G) D (G,p, (G)) | w2(G)D(G,p,(G))
w1 (G) + ws (G) w01 (G) + w2 (G)
where (c) and (d) are obtained by applying conditional
expectations.

Iz
lM“ ”M“ HMW

)>D) (G )EBi,G] Pr [p(G) € Bi|G]

) >]D>)p eBZ-,GH w; (G)

—~
Ve

ID)} wi (G)

(72)

B. Proof of Theorem 1

We will consider the case w} (G) = 1, as when w} (G) =
0, the solution of p; (G) has no impact on the optimization
problem.

(1) When v* (G) = 0: From the KKT condition (22), we
need to have wi (G) D (G, pj (G))+w; (G) D (G, ps (G))—
(Wi (G)+ws(G)D = 0. If wi(G) = 1, we must
have w3 (G) = 0, and so D (G, p; (G)) = D. However,
we also know that 5 R Nwi (G) (02, +03) —

v (G)wi (G) M’&G)) > 0. Combining with (17) we

see that p7 (G) = 0, which contradicts the requirement that



D (G,pj (G)) = D. Similar arguments apply for the case
when wj (G) = 1. Therefore, we conclude that if v* (G) =0
we must have wi (G) = w3 (G) = 0.

(2) When v* (G) > 0 and v (G) = 0: Here, one should
have o (G) [D, (G.pi (G) — 03] + w3 (G) (D, — o) >
D, — 2 and wj (G) D (G, p} (G))+w} (G) D (G,p3 (G))—
(Wi (G)+ws(G))D = 0. If wj(G) = 1, we obtain
w3 (G) = 0, D(G,p{(G)) = D and D, (G,p; (G)) >
De. In addition, from (25) we see that pj, (G) satisfies
( wk-‘r‘Je) — )\(*G)%p(lé?)) = 0. For problem (31),
from the KKT conditions, we know that the optimal solution
p; (G) must satisfy D (G,p; (G)) = D, D, (G,p; (G)) >

. oD(G,pL(G) _ .
D., and (02, + 02) — i (G) 8;7"((;” — 0, Vk, which
shares the same form as pj (G), where ©* (G) is the optimal
Lagrange multiplier corresponding to the distortion con-
straint at the FC for problem (31). Therefore, if wj (G) =1
we have p} (G) = p} (G). Similarly, for w3 (G) = 1, we
obtain p; (G) =} (G) if D. (G,p; (G)) < D.

(3) When v* (G) > 0 and v} (G) > 0: The same results
can be derived by using similar arguments as for case (2).

C. Proof of Lemma 2

First, from (34) we know that the optimal power p* (G)
should minimise 1{D (g,p* (g)) > D} + £ (p* (g)) at each
channel instant. When p (G) = 0, we obtain £ (p(g)) = 0
and 1{D (g,p(g)) > D} + £(p(g)) = 1, which indicates
that 1 {D (g,p* (g)) > D} + £ (p* (g)) is upper bounded by
1. If p* (G) is a nonzero vector, we must have £ (p* (g)) > 0.
Furthermore, as 1{D (g,p* (g)) > D} + £ (p* (g)) < 1, we
obtain & (p* (g)) < 1 and 1{D (g, p" (g)) > D} =0.
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