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Abstract—In this paper, we consider the problem of encoding
and decoding codesign for linear feedback control of a scalar,
possibly unstable, stochastic linear system when the sensed
signal is to be transmitted over a finite capacity communication
channel. In particular, we consider a limited capacity channel which
transmits quantized data and is subject to packet losses. We first
characterize the optimal strategy when perfect channel feedback is
available, i.e., the transmitter has perfect knowledge of the packet
loss history. This optimal scheme, innovation forwarding hereafter,
is reminiscent of differential pulse-code modulation schemes
adapted to deal with state space models, and is strictly better
than a scheme which simply transmits the measured data, called
measurement forwarding (MF) hereafter. Comparison in terms of
control cost as well as of critical regimes, i.e., regimes where the
cost is not finite, are provided. We also consider and compare two
popular suboptimal schemes from the existing literature, based
on 1) state estimate forwarding and 2) measurement forwarding,
which ignore quantization effects in the associated estimator and
controller design. In particular, it is shown that surprisingly the
suboptimal MF strategy is always better then the suboptimal state
forwarding strategy for small signal-to-quantization-noise-ratios.

Index Terms—Control under communication constraints, linear
quadratic Gaussian (LQG) control, packet losses, quantization.

I. INTRODUCTION

The interplay between control stability and nonidealities of com-
munication channels has attracted considerable attention in the past
decade, mainly driven by the success of wireless communication and its
penetration into automation and control applications. From a theoret-
ical perspective, we have witnessed the convergence of control theory,
communication theory, and information theory which have led to
remarkable and interesting results in terms of the ultimate performance
limitations which take into account both the dynamical systems char-
acteristic, typically their unstable eigenvalues and nonminimum phase
zeros, and the channel characteristic, typically its capacity [1]–[11].

Nonetheless, there are still important open questions that need to be
answered. For example, most of the results are obtained for scenarios
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in which the transmitter has full knowledge of what happened over
the channel in the past (perfect channel feedback), which guarantees
several separation principles both in terms of controller/observer de-
sign and of source/channel coding, see e.g., [12] for early references.
Differently, if the channel feedback is not present or it is “imperfect,”
very few results are available and mainly based on heuristics [13]–[18].
Another difficulty arises when both packet loss and quantization are
considered simultaneously. In fact, if either of these two limitations is
neglected, the resulting optimal strategies can be quite different. For
example, in a scenario with packet loss only, Gupta et al. [19] showed
that the optimal strategy is to send the estimate of the state over the
channel, and it is therefore quite attractive. Differently, if only rate lim-
itation, i.e., the maximum number of symbols that can be transmitted
per unit of time, is considered, then differential coding results to be the
optimal strategy as in differential pulse-code modulation (DPCM) [20].
Obviously, this strategy is rather different from the one that transmits
the complete state estimate. Recently, in [21] we have shown that a
strategy inspired by DPCM is optimal in the context of remote estima-
tion when considering both packet loss and quantization limitations for
a scalar stable system when full channel feedback is present. However,
the optimal strategy in the presence of imperfect channel feedback
remains elusive and only some sensible heuristic schemes have been
proposed in [21]. In the context of closed loop unstable control system,
simultaneous analysis of packet loss and quantization has been stud-
ied in [11] assuming that the transmitter simply forwards a quantized
version of the raw measurement (measurement forwarding). Another
related work is [22] which obtains minimum data rates for mean square
stabilizability of linear systems over lossy channels. However, unlike
[22], the focus of this paper is not just stabilizability, but linear op-
timal encoder–decoder–controller design for optimizing the control
performance.

In this paper, expanding on [18], we extend the results of [21] and
[11] by also including the encoder design (as in [21]) in the control
problem considered in [11]. We show that the optimal strategy when full
channel feedback is available at the transmitter is to send the difference
from the estimated state at the transmitter and the predicted state at the
receiver [(innovation forwarding (IF)] as in [21] followed by a constant
gain (as in [11]) state feedback, where the receiver state estimate is
provided by a Kalman filter. However, although the stability region
remains the same, the control performance is improved as compared
to the strategy proposed in [11]. We also propose two suboptimal
strategies which neglect the presence of quantization, based on state
forwarding (SFs) proposed in [19] and measurement forwarding (MFs)
proposed in [5]; the “s” in “SFs” and “MFs” stands for suboptimal.
We analyze the stability regions of these schemes and compare their
performance with the optimal IF and MF strategies. In particular, it is
shown than none of these two suboptimal strategies is superior to the
other in all regimes; however, quite surprisingly, MFs is always better
than SFs for small signal-to-quantization-noise-ratio (SQNR).

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. General scheme of the control system under communication
constraints. The sequence γt is fed back to the coder only when channel
feedback is available.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete-time linear scalar time-invariant possibly
unstable1 plant (|a| ≥ 1) as given below:

xt+1 = axt + but + wt , b = 1

yt = xt + vt (1)

where wt , vt are the process and measurement noise assumed to be
independent and identically Gaussian distributed with zero mean and
variances σ2

w , and σ2
v , respectively. To simplify the notation, w.l.o.g.

the scalar parameter b is set to one. In the networked control scenario
we consider, the sensor output yt may be encoded to generate a signal
st which is transmitted to a remote estimator/controller over a com-
munication channel. We restrict st to be a causal linear function of the
measurements Yt � {y0 , y1 , . . . , yt}. The linear controller produces a
control input ut , see Fig. 1. We shall prove that the optimal controller
will be the cascade of a Kalman estimator followed by a constant gain
state-feedback controller. The objective of the control design problem
is to find optimal {st} and {ut} such that the average LQ cost

J∞ = lim
T →∞

1
T

T −1∑

t=0

(
E[y2

t ] + ρE[u2
t ]

)
(2)

where ρ ≥ 0 is (finite and) minimized. We assume that the channel
between the sensor (which senses the plant output) and the remote es-
timator/controller is subject to both bandwidth constraints and packet
losses. Thus, the encoded signal st is quantized using a finite number of
bits, producing sq

t which is to be transmitted. Under a fine quantization
assumption, it has been established by multiple authors [23]–[25] that
the quantization error s̃q

t := sq
t − st can be well approximated by an

additive white Gaussian noise (AWGN) independent of st , with a vari-
ance that is proportional to Var{st}. If fact, it has been shown in [21]
that a uniform scalar quantizer with as few as 3–4 bits per sample pro-
vides results that are sufficiently close to the theoretical values based
on the AWGN model used also this work. Thus, the quantized signal
can be written as sq

t = st + nt , where nt is AWGN with zero mean

and variance
E[s2

t
]

Λ , where Λ is known as the signal-to-quantization
noise ratio (SQNR).

1When the plant is stable (|a| < 1) there is no issue of stabilizability, so that
the cost (2) is finite also without feedback control (e.g., with ut = 0); thus, no
requirement needs to be made on the SQNR and the packet loss probability.
Note however that even if |a| < 1 it still makes perfect sense to optimize (2).

The received signal zt (see Fig. 1) is modeled by the multiplicative
equation zt := γt s

q
t where the packet loss process γt ∈ {0, 1} is as-

sumed to be an independent and identically distributed (i.i.d.) Bernoulli
process with packet loss probability P (γt = 0) = ε. When γt = 1,
zt = sq

t . On the other hand when γt = 0, the transmitted information is
lost. For optimal linear encoder/decoder/controller design, we assume
that the receiver sends a packet acknowledgement signal ACK/NACK
back to the transmitter to indicate whether it has received the packet.
This ACK/NACK feedback channel between the receiver (also called
the remote estimator/controller) and the transmitter/encoder is assumed
to be perfect with unit delay and no packet loss. Therefore, the trans-
mitter has exact knowledge of the packet loss sequence {γt}.

The remote estimator receives the intermittent sequence Zt �
{z0 , z1 , . . . , zt}, where zt = γt (st + nt ) based on which a control
input ut is to be produced. We shall restrict ourselves to linear strate-
gies. In the forthcoming section, we shall see that under perfect
channel feedback (i.e., when the transmitter knows the loss sequence
Γt � {γ0 , γ1 , . . . , γt}), the optimal encoding strategy will be to trans-
mit an innovation signal defined as the difference between the trans-
mitter filtered estimate and the receiver predicted estimate. The optimal
decoding/control strategy will be the cascade of a constant gain state
estimator (which produces a state estimate x̄t |t ) followed by a constant
gain feedback from the estimated state ut := �∗x̄t |t . This also moti-
vates us to consider when no channel feedback is present, a similar
constant gain “estimator-controller” structure.

III. OPTIMAL STRATEGIES WITH QUANTIZATION COMPENSATION

A. IF (Channel Feedback)

We now consider a general linear coder–decoder–controller scheme
as follows:
1) A linear coding mechanism (with memory) produces the signal

st := Lt (Yt ,Ut−1 ,Zt−1 , Γt−1 ) (3)

where Lt (Yt ,Ut−1 ,Zt−1 , Γt−1 ) is, conditionally on the packet
loss sequence γt−1 , . . . , γ0 , a linear operator of its argu-
ments yt , yt−1 , . . . , y0 (the samples to be encoded), Ut−1 =
{ut−1 , . . . , u0} and zt−1 , . . . , z0 (the past control and received
signals, respectively, which can be reconstructed at the transmitter
side if perfect channel feedback is available).

2) The signal st is quantized and sent through a lossy channel so that
the received signal zt can be modeled as

zt = γt (st + nt ) (4)

where nt is a white quantization noise signal with variance pro-

portional to the variance of st , i.e., E[n2
t ] = E[s2

t
]

Λ . Note that the
quantizer is part of the encoder in practice, so that the encoder
knows the signal sq

t = st + nt .
3) The controller uses the received signals zt to build the control

action at time t as a (conditionally on the packet loss sequence
γt , . . . , γ0 ) linear function Ct of the past received signals Zt =
{zτ , τ ∈ [0, t]} as well as past control signals Ut−1 as

ut = Ct (Zt ,Ut−1 , Γt ) . (5)

Note that, in principle, the conditional linear mappings Lt and Ct

are time varying. The result of this section is summarized in the next
proposition. The proof is deferred to the Appendix. For convenience of
notation, we define

IT x
t := {Yt ,Zt−1 ,Ut−1 , Γt−1} IRx

t := {Zt ,Ut−1 , Γt}
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which are, respectively, the information sets at the transmitter and at
the receiver.

Proposition 1: Consider the linear model (1) controlled through a
lossy and SNR limited channel (4) using a linear encoding as in (3) and
linear controller as in (5). The optimal linear quadratic strategy

(C∗,L∗) := arg min
C,L

lim
T →∞

1
T

T −1∑

t=0

(
E[y2

t ] + ρE[u2
t ]

)
(6)

satisfies the following equations:

st = L∗
t

(IT x
t

)
= x̂tx

t |t − x̄t |t−1 (7)

and

ut = C∗
t

(IRx
t

)
= �∗x̄t |t (8)

where x̂tx
t |t = E[xt | IT x

t ] and x̄t |t−1 = E[xt | IRx
t−1 ] can be computed

as

x̄t+1 |t+1 = (a + �∗)x̄t |t + kI F zt+1

x̄t+1 |t = (a + �∗)x̄t |t

x̂tx
t+1 |t+1 = (a − k∗)x̂tx

t |t + �∗x̄t |t + k∗yt+1 (9)

where kI F = Λ
1+Λ

2, and the gains �∗ and k∗ correspond to the standard
LQ controller gain and steady-state Kalman gain at the transmitter,
respectively, obtained via the unique positive solutions of the Riccati
equations:

m = a2m + 1 − a2m2

m + ρ
, �∗ = − am

m + ρ

p = a2p + σ2
w − a2p2

p + σ2
v

, k∗ =
ap

p + σ2
v

. (10)

Moreover, the optimal cost is given by

JI F
∞ = J∞(C∗,L∗) =

ρm

m + ρ
σ2

w + σ2
v +

m2

m + ρ
pC F (11)

where pC F is the receiver predictor error covariance under IF and full
channel feedback [21]; pC F is given by the expression

pCF =
σ2

w + (1 − ε) Λ
Λ+1 a2ptx

∞
1 − a2 1+ εΛ

1+Λ

where ptx
∞ = p−σ 2

w
a 2 is the steady-state transmitter filtered state esti-

mation error covariance. Finally, closed loop mean square stability is
guaranteed if and only if the following condition is satisfied3:

1 + εΛ
1 + Λ

<
1
a2 . (12)

For any fixed ε, inequality (12) can be written as

Λ > ΛIF(ε) =
a2 − 1

(1 − εa2 )

where ΛIF(ε) is the critical SQNR as a function of ε.
Remark 1: It can be easily seen that when cheap control is consid-

ered (i.e., no control penalty term in the cost, ρ = 0), m in (10) satisfies
m = 1, and J IF

∞ simplifies to pCF + σ2
v . Note that in this case �∗ = −a,

and hence the receiver predicted state estimate x̄t+1 |t = 0 ∀t from (9).
Thus in the cheap case, the optimal IF strategy is equivalent to state
estimate forwarding at the encoder, that is, st = x̂tx

t |t from (7) which

2See (15) in [21] for a proof of this result.
3Note, as a side that this condition is satisfied for any Λ ≥ 0 and ε ∈ [0, 1] if

|a| < 1.

is reminiscent of the strategy proposed in [19]. This observation will
motivate our choice of the suboptimal SFs scheme presented below in
Section IV-A.

Remark 2: The critical SQNR condition above (12) can be special-
ized to many existing stabilizability results for control over commu-
nication channels, such as SNR-constrained channels, simple erasure
channels (with no quantization constraints) and R-bit erasure chan-
nels. For a comprehensive discussion on these relationships to existing
stabilizability results, see [11, Sec. 5].

B. Measurement Forwarding (No Channel Feedback)

A suboptimal encoding strategy at the transmitter that does not re-
quire any channel feedback is, as proposed in [11], to simply forward
the sensor measurement; namely

st = yt

and to use a state estimator followed by a state feedback as follows:

ut = �x̄t |t , x̄t+1 |t = ax̄t |t + ut (13)

x̄t+1 |t+1 = x̄t+1 |t + γt+1k(zt+1 − x̄t+1 |t ) (14)

where the update step in the estimator is performed only if the packet zt

is received. The objective is then to find the optimal gains to minimize
the infinite horizon cost, i.e.,

(kMF, �MF) = arg min
k ,�

J∞. (15)

The solution of this problem was provided in [11] in a scenario which
also includes a constant transmission delay between the transmitter and
the receiver. For the sake of comparison, we summarize here the main
results:

Proposition 2 ([11]): The optimal gains kMF, �MF and the corre-
sponding optimal cost JMF

∞ [see (15)] can be obtained via the solution
of four coupled Riccati equations (see [11] for details). The closed loop
system is mean square stable if and only if the following condition is
satisfied:

1 + εΛ
1 + Λ

<
1
a2 (16)

which is the same as (12). Therefore, the stability condition can be
written as Λ > ΛMF(ε) = ΛIF(ε) with the same threshold as the IF
(with full channel feedback) case. In the cheap control scenario, i.e.,
when ρ = 0, then �MF = −a and kMF = p MF

p MF+σ 2
v

, where pMF > 0 is the
unique positive solution of the modified Riccati equation:

pMF = a2pMF + σ2
w − (1 − ε)Λ

1 + Λ
a2p2

MF

pMF + σ2
v

and

JMF
∞ = J∞(kMF, �MF) = σ2

v + pMF. (17)

It is important to remark that although the stability condition of the
measurement forwarding strategy and the IF strategy are the same, the
performance of the latter strategy is superior since

J IF
∞ < JMF

∞

under any packet-loss (ε) and quantization (Λ) scenarios.

IV. SUBOPTIMAL STRATEGIES FOR CHEAP CONTROL WITHOUT

QUANTIZATION COMPENSATION

In this section, we consider two suboptimal strategies that design the
state estimator and controller at the receiver side neglecting the pres-
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ence of quantization noise. The first scheme is based on state estimate
forwarding at the encoder with the assumption of perfect ACK/NACK
feedback so that the transmitter knows the exact control input, and the
receiver filtering and LQ control scheme being the same as in [19].
We call it as SF with no quantization compensation at the receiver,
abbreviated with SFs (SF suboptimal). The second scheme is based on
measurement forwarding at the transmitter, while the receiver designs
a filtering scheme ignoring any quantization noise with a constant gain
(for simpler analysis) and a LQ controller as in [5]. This scheme is
called measurement forwarding with no quantization compensation,
abbreviated with MFs (measurement forwarding suboptimal).

Remark 3: Note that here “no quantization compensation” in SFs
and MFs refers to the design of estimation and control algorithms at the
receiver by neglecting quantization noise, which is nevertheless present
due to the quantization in the encoding mechanism at the transmitter.
The choice of these two schemes is motivated by the fact that they are
schemes in existing works [19] and [5], respectively, which do not deal
with rate limited channels. Finally, the results in Propositions 3 and
4 refer to the minimum SQNR required at the transmitter side (which
includes the quantizer) for the cheap control case, if the no quantization
compensation-based estimation and control algorithms are adopted at
the receiver, as described below.

A. SF With No Quantization Compensation (SFs)

In this scheme, the state estimate [see (9)] is encoded with a finite
number of bits and transmitted over the packet dropping link, so that
the received signal at time t is given by γt (x̂tx

t |t + nt ). The receiver

computes the state predictor x̄SFs
t |t−1 :

x̄SFs
t+1 |t = a

(
γt (x̂tx

t |t + nt ) + (1 − γt )x̄SFs
t |t−1

)
+ ut (18)

where ut = �∗
(
γt (x̂tx

t |t + nt ) + (1 − γt )x̄SFs
t |t−1

)
. Similarly, the trans-

mitter predicted state estimate x̂tx
t |t−1 is given by

x̂tx
t+1 |t = (a + �∗γt )x̂tx

t |t−1 + �∗(1 − γt )x̄SFs
t |t−1

+ (a + �∗γt )k∗(x̃tx
t + vt ) + �∗γtnt (19)

where x̃tx
t = xt − x̂tx

t |t is the transmitter filtering error, zero-mean
Gaussian distributed with a steady-state variance of ptx

∞ , as defined
in Proposition 1. By defining an augmented state vector ξSFs

t =
[x̂tx

t |t−1 x̄SFs
t |t−1 ]

� (where � denotes transpose), one can define the matrix

P SFs
t = E[ξSFs

t ξSFs
t

�], and P SFs = limt→∞ P SFs
t . After some algebra,

one can then show that P SFs satisfies the following Lyapunov equation:

P SFs = (1 − ε)Ā1P
SFsĀ�

1 + εĀ0P
SFsĀ�

0 + (1 − ε)N1 + εN0 (20)

where Ā1 , Ā0 , N1 , N0 are given by (21) at the bottom of this page.
Here σ2

p = p 2

p+σ 2
v

, where p is given in (10), and [1 0]P SFs[1 0]� is the

element in position (1, 1) of P SFs.
For the generalized control cost with ρ > 0, it appears to be difficult

to exactly characterize when the above equation will have a unique
positive definite solution. Therefore, we provide an analysis for the

cheap control case, i.e., ρ = 0. In this case, �∗ = −a, and the above

equations simplify substantially. Denoting P SFs = [ p SFs
1 1 p SFs

1 2
p SFs

1 2 p SFs
2 2

], we find

that for the cheap control case, pSFs
12 = pSFs

22 = 0. It can be shown that
pSFs

11 satisfies

pSFs
11 =

σ2
p

(
(1 − ε) a 2

Λ + εa2
)

(1 − εa2 ) − a 2 (1−ε )
Λ

.

It follows then that the SF scheme with no quantization compensation
will have a bounded steady-state cheap control cost limt→∞ E[y2

t ],
provided Λ > ΛSFs(ε) = a 2 (1−ε )

1−εa 2 . Or alternatively, for a fixed SQNR
Λ, the maximum tolerable packet loss probability is given by εcrit

SFs(Λ) =
Λ−a 2

a 2 (Λ−1) . Below we summarize the results of this section.
Proposition 3: Consider the SF scheme without quantization com-

pensation given by (18), (19), assume that perfect channel feedback
is available and set ρ = 0 (cheap control). Then, the minimum SQNR
required for a fixed packet loss probability is given by

ΛSFs(ε) =
a2 (1 − ε)
1 − εa2 (22)

and the corresponding (cheap) control cost is given by

JSFs
∞ = σ2

v + p + a2 p2

p + σ2
v

ε + 1−ε
Λ

1 − εa2 − (1−ε )a 2

Λ

(23)

where p is the transmitter prediction error variance satisfying the second
equation of (10).

B. MF With No Quantization Compensation

In this scheme, the coder–decoder–controller architecture is identical
to the one given in Section III-B, the only difference being the choice
of the controller gain � in (13) and of the estimator gain k in (14), which
in this case neglects the presence of the quantization. Therefore, these
gains are chosen as:

(kMFs, �MFs) := lim
Λ→∞

arg min
k ,�

J∞ (24)

a2 (1 − ε)k2
MFs − kMFs(a2 − 1 − Sσ ) − Sσ = 0, Sσ :=

σ2
w

σ2
v

(25)

which are exactly the gains provided in [5]. In particular, the controller
gain �MFs turns out to be equal to the optimal LQ gain �∗, while the
estimator gain kMFs satisfies the implicit equation (25). Obviously, when
Λ 	= 0, the previous gains choice provides a suboptimal performance
as compared to the one given by the gains given Section III-B. The
performance can be derived by denoting the receiver predicted state
estimate as x̄MFs

t |t−1 , and the corresponding prediction error as x̃MFs
t =

xt − x̄MFs
t |t−1 , one can form an augmented state ξMFs

t = [x̄MFs
t |t−1 x̃MFs

t ]�.
It can be shown that this augmented state vector satisfies the following

Ā1 =

[
a + �∗ 0
a + �∗ 0

]
, Ā0 =

[
a �∗
0 a + �∗

]
, N0 =

[
a2σ2

p 0
0 0

]

N1 =

⎡

⎣ σ2
p

[
(a + �∗)2 +

�2
L Q

Λ

]
+

�2
L Q

Λ [1 0]P SFs[1 0]� σ2
p (a + �∗)2 + �∗(a+ �∗)

Λ (σ2
p + [1 0]P SFs[1 0]�)

σ2
p (a + �∗)2 + �∗(a+ �∗)

Λ (σ2
p + [1 0]P SFs[1 0]�) σ2

p (a + �∗)2 (1 + 1
Λ ) + (a+ �∗)2

Λ [1 0]P SFs[1 0]�

⎤

⎦ . (21)
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dynamical system equations:

ξMFs
t+1 =

[
a + �∗ (a + �∗)kMFsγt

0 a(1 − kMFsγt )

]
ξMFs

t

+

[
(a + �∗)kMFsγt (vt + nt )
−akMFsγt (vt + nt ) + wt

]
. (26)

Once again, defining P MFs
t = E[ξMFs

t ξMFs
t

�] and P MFs = limt→∞ P MFs
t ,

it can be shown that P MFs satisfies another Lyapunov equation

P MFs = (1 − ε)Ã1P
MFsÃ�

1 + εÃ0P
MFsÃ�

0 + (1 − ε)Ñ1 + εÑ0

(27)
where

Ã1 =

[
a + �∗ (a + �∗)kMFs

0 a(1 − kMFs)

]
, Ã0 =

[
a + �∗ 0

0 a

]

Ñ1 =(σ2
v +σ2

n )

[
(a + �∗)2k2

MFs −a(a + �∗)k2
MFs

−a(a + �∗)k2
MFs a2k2

MFs

]

Ñ0 =

[
0 0
0 σ2

w

]

pMFs
22

[
1 − a2 (1 − kMFs)2 (1 − ε) − εa2 − (1 − ε)a2k2

MFs

Λ

]

= σ2
w + (1 − ε)k2

MFsσ
2
v

(
1 +

1
Λ

)
. (28)

Here, the quantization noise variance σ2
n is given by

1
Λ [1 1]P MFs[1 1]� + σ 2

v
Λ . The optimal receiver gain kMFs minimizes

P MFs(2, 2) assuming no quantization noise (Λ → ∞). Once again,
explicitly characterizing the set of values (Λ, ε) for which there ex-
ists a positive definite solution to (27) seems difficult for a general
ρ > 0. Below we focus on the case ρ = 0 (cheap control) where

�∗ = −a. Denoting P MFs = [ p MFs
1 1 p MFs

1 2
p MFs

1 2 p MFs
2 2

], one can show that for ρ = 0,

pMFs
11 = pMFs

12 = 0, and pMFs
22 satisfies (28). Exploiting this observation

in the above equations, we can formulate the following proposition.
Proposition 4: For the scheme of measurement forwarding with no

quantization compensation given by (26) when a cheap control cost is
considered, i.e., ρ = 0, then the minimum SQNR required for a fixed
packet loss probability is given by

ΛMFs(ε) =
a2 (1 − ε)k2

MFs

1 − εa2 − a2 (1 − ε)(1 − kMFs)2 (29)

and the corresponding cheap control cost is given by

JMFs
∞ = σ2

v + pMFs
22 . (30)

Remark 4: Note that for both the above schemes, it is possible
to numerically compute the control cost for any ρ > 0, as long as
there are positive definite solutions to (20) and (27). However, it is the
characterization of values of (Λ, ε) for which such a solution exists that
is difficult. Hence, our analysis of critical SQNR focused on the cheap
control case. Later, we will illustrate the generalized control cost (for
ρ > 0) for these schemes via numerical simulation results.

C. Comparison Between the Optimal and Suboptimal
Strategies

From the discussions in the previous sections, we have the fol-
lowing facts under any packet loss and quantization scenarios: 1)
JMFs
∞ ≥ JMF

∞ ≥ J IF
∞ and 2) JSFs

∞ ≥ J IF
∞ . These relationships follow due

to the suboptimality (ignoring quantization noise) for the schemes with

Fig. 2. Plot illustrating the regions of (1/Λ, ε) where JMFs∞ < JSFs∞ (blue)
and vice versa (red).

no quantization compensation and the fact that IF with full channel
feedback is optimal. However, it is not obvious if there is any order-
ing between JSFs

∞ , JMFs
∞ or JSFs

∞ , JMF
∞ . Thus, when not compensating for

quantization error, it is not obvious whether state estimate forwarding
is better than measurement forwarding or vice versa; perhaps more
surprisingly also the state estimate forwarding with no quantization
compensation (SFs) may perform better than measurement forwarding
(MF) with optimal filtering and control gains (see, e.g., Fig. 4 when
ε < 0.08). Another interesting aspect is the relationship among the var-
ious critical SQNR (for a fixed packet loss probability ε) thresholds. In
particular, recall that for the optimal IF and measurement forwarding
(MF), the critical SQNR is ΛIF(ε) = ΛMF(ε) = a 2 −1

1−εa 2 , and the corre-
sponding critical SQNR for measurement forwarding with no quan-

tization compensation is ΛMFs(ε) =
a 2 (1−ε )k 2

MFs
1−εa 2 −a 2 (1−ε )(1−k MFs)2 , whereas

ΛSFs(ε) = a 2 (1−ε )
1−εa 2 denotes the critical SQNR for state estimate for-

warding with no quantization compensation. One can show that the
following result holds whose proof is reported in the Appendix.

Proposition 5: The critical SQNRs for the various encoding
schemes satisfy, for fixed ε, the following relationship:

ΛIF(ε) = ΛMF(ε) ≤ ΛMFs(ε) ≤ ΛSFs(ε).

Remark 5: The above result goes on to show that one requires a
larger minimum SQNR for the state estimate forwarding with no quan-
tization compensation, compared to the measurement forwarding with
no quantization compensation, which in turn requires a larger SQNR
threshold compared to IF/optimal measurement forwarding (which
takes into account the quantization loss). While the first inequality
in Proposition 5 is expected, the second inequality is somewhat coun-
terintuitive, which is primarily due to the fact that when one does not
compensate for quantization noise, closed loop control can give rise to
such unexpected results.

Note also that in light of Proposition 5, one can equivalently write
εcrit

SFs(Λ) ≤ εcrit
MFs(Λ) ≤ εcrit

IF (Λ), where εcrit
. denotes the corresponding

critical packet loss probabilities for a fixed Λ.
Fig. 2 illustrates via a 2-D plot the regions on the (ε, 1

Λ ) within which
MF with no quantization compensation (MFs) outperforms SF with no
quantization (SFs) (blue) or vice versa (red). The parameters used for
this plot are a = 1.2, σ2

w = 0.3, σ2
v = 1. The inverse of critical SQNR
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Fig. 3. Cheap control cost of optimal and suboptimal schemes versus
SQNR for packet loss probability ε = 0.2.

thresholds 1
Λ SFs(ε ) (dash-dotted) and 1

Λ MFs(ε ) (solid) are also shown. It

can be clearly seen that even for Λ > ΛSFs(ε) (i.e., 1
Λ < 1

Λ SFs(ε ) ), there

is a region within which JMFs
∞ < JSFs

∞ . More formally, we can state the
following proposition:

Proposition 6: For a given Λ > ΛSFs(ε), one can find an ε∗(Λ) such
that JMFs

∞ < JSFs
∞ for ε > ε∗(Λ), and similarly, for a given ε, one can

find a Λ∗(ε) such that for Λ < Λ∗(ε), JMFs
∞ < JSFs

∞ .
The proof of this result is elementary and is omitted.

V. NUMERICAL RESULTS

In this section, we present some numerical results on a comparative
study of the various encoder–decoder design strategies discussed in
the earlier sections. We first consider a linear dynamical system with
a = 1.2, and σ2

w = 0.3, σ2
v = 1.0.

In Fig. 3, we plot the cheap control cost (ρ = 0) for a fixed packet
loss probability (ε = 0.2) for the two optimal schemes against the
SQNR Λ: IF with full channel feedback and measurement forward-
ing with optimal filtering and control gains, and the two suboptimal
schemes: SF with no quantization compensation (SFs) and MF with no
quantization compensation (MFs). The effect of the different SQNR
thresholds are clearly visible in that the control cost rises sharply as Λ
approaches these thresholds. In particular, for this example, ΛIF(0.2) =
ΛMF(0.2) = 0.6180, ΛMFs(0.2) = 0.7555, and ΛSFs(ε) = 1.6180.

Next, we consider a linear dynamical system with a = 1.2, σ2
w =

0.1, σ2
v = 0.5, and a signal-to-noise ratio Λ := 1.6875 (corresponding

to a 2-bits quantizer). We compare, as a function of the packet loss
probability ε, the performance of the same schemes (optimal and sub-
optimal ones) both for the cheap (ρ = 0) as well as noncheap (ρ = 2)
scenarios. The results are reported in Fig. 4. It is clearly seen that
the IF scheme provides the best performance, while the MF and MFs
schemes offer close performance with MFs performing a little worse
for not compensating for quantization noise. In the cheap control case,
the SF with no quantization compensation (SFs) performs much worse
than the MFs scheme for all packet loss probabilities. In the noncheap
case, it is seen that SFs performs marginally better than MFs at low
packet loss probabilities, but as packet loss probability increases, it
quickly becomes worse than MFs ( at around approximately ε = 0.15
for ρ = 2), since the critical probability for SFs is lower than that of

Fig. 4. Control cost J∞ of optimal and suboptimal schemes versus
packet loss probability for the cheap control scenario ρ = 0 (top panel),
and for ρ = 2 (bottom panel) for Λ = 1.6875 (2-bit quantizer).

MFs. The exact value of this crossover point is difficult to determine
analytically for a given ρ, as it is given by a solution of higher degree
nonlinear equation.

VI. CONCLUSION

In this paper, we addressed the problem of closed loop optimal
control in the presence of limited capacity channels modeled via the
inclusion of packet loss and quantization. We have shown that the op-
timal linear coder–decoder–controller strategy (IF) under the assump-
tion of perfect channel feedback for the transmitter, i.e., under lossless
ACK/NACK channel, corresponds to transmitting the quantized differ-
ence between the best state estimate at the transmitter and the predicted
state estimate at the receiver, reminiscent of the DPCM scheme adopted
in lossless communication protocols. Although the stability region in
terms of feasible packet loss probability and SQNR is not enlarged as
compared to a strategy that simply forwards the measurements without
any preprocessing, the control performance is greatly improved. We
also studied two suboptimal strategies which are popular strategies in
the existing literature, but do not account for quantization, based on
state estimate forwarding (SFs) and measurement forwarding (MFs). In
this suboptimal scenario, it is shown that, surprisingly, the suboptimal
MF strategy (MFs) is always superior to suboptimal SF strategy (SFs)
for small SQNR values. Future research directions include the analysis
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for vector dynamical systems, channels with memory such as Marko-
vian channels, and lossy channel feedback, i.e., when the ACK/NACK
packets are subject to losses as well. Inspired by results such as in
[26], [27], and [28], we will also investigate the existence of possible
nonlinear controllers that outperform linear controllers in the case of
such imperfect acknowledgements.

APPENDIX

Proof of Proposition 1: First of all, we consider a finite horizon
version of the optimal control problem (6)

J ∗
T = min

C,L
JT

JT :=
1
T

T −1∑

k=0

E[y2
k + ρ u2

k ] = σ2
v +

1
T

T −1∑

k=0

E[x2
k + ρ u2

k ]

where the expectation E[·] is performed not only over the measurement,
process, and quantization noise processes, but also across the packet
loss process.

Let us consider the optimal control design as a function of any fixed
(but possibly time-varying) coding scheme L := {Lk , k ∈ [0, T )}. We
define the corresponding cost-to-go function as

V L
k = V L

k

(IRx
k

)
:= min

u k =Ck (IR x
k )

GL
k

(IRx
k , uk

)

GL
k

(IRx
k , uk

)
= E

[
x2

k + ρ u2
k + V L

k+1

(IRx
k+1

) | IRx
k

]
. (31)

Let us further define

x̄k |h := E
[
xk | IRx

h

]
, pk |h := Var

{
xk − x̄k |h | IRx

h

}

p̄k |h := E[pk |h ].

We claim that the optimal cost-to-go function can be written as

V L
k = mk E[x2

k | IRx
k ] + ck

where mk is a constant while ck is IRx
k - measurable. We prove this by

induction. The expression in clearly true for k = T with cT = mT = 0.
Assume that the expression is true for k + 1 and let us prove it for k:

GL
k (IRx

k , uk ) = E
[
x2

k +ρ u2
t + mk+1 E

[
x2

t+1 | IRx
k+1

]
+ ck+1 | IRx

k

]

= E
[
x2

k + ρ u2
t + mk+1 (axt + ut + wt )2

+ ck+1 | IRx
k

]

= (a2mk+1 + 1)E
[
x2

k | IRx
k

]
+ (ρ + mk+1 )u2

t

+ mk+1
(
σ2

w + 2ax̄k |k uk

)
+ E

[
ck+1 | IRx

k

]

therefore we get

u∗
k := arg min

u k =Ck

(
IR x
k

) GL
k

(IRx
k , uk

)
= − amk+1

mk+1 + ρ
x̄k |k

V L
k =

(
a2mk+1 + 1 − a2m2

k+1

mk+1 + ρ

)
E

[
x2

k | IRx
k

]

+
a2m2

k+1

mk+1 + ρ
pk |k + mk+1σ

2
w + E

[
ck+1 | IRx

k

]

from which it follows that:

mk := a2mk+1 + 1 − a2m2
k+1

mk+1 + ρ

ck := E

[
ck+1 + mk+1σ

2
w +

a2m2
k+1

mk+1 + ρ
pk |k | IRx

k

]
.

Therefore, the total cost for a fixed encoding strategy is given by:

JL
T = min

C
JT

=
v0

T
E[x2

0 ] +
1
T

T∑

k=1

mk σ2
w +

a2m2
k

mk + ρ
pk−1 |k−1

=
v0

T
E[x2

0 ] +
1
T

T∑

k=1

(
ρmk

mk + ρ
σ2

w +
m2

k

mk + ρ
pk |k−1

)

where we used the fact that pk+1 |k = a2pk |k + σ2
w . What is left to

do is to find the optimal encoding strategy which minimizes JL
T . For

full channel feedback the transmitter knows the applied input signal,
therefore the expected estimation error variances pk |k s do not depend
on the control input (u0 , . . . , uT −1 ). Moreover, since the cost function
is a linear combination of these expected estimation error variances
with positive coefficient and each pk+1 |k+1 is monotonically increas-
ing function of the previous value pk |k , then the optimal encoding
strategy is the one that minimizes pk |k for each k. In [21], it has been
shown, in the context of remote estimation, that the optimal encoding
strategy is to transmit the innovation, i.e., the difference between the
optimal estimate of the state at the transmitter and the optimal one-step
prediction of the same state at the receiver. The same proof can be
carried along in this context since pk |k does not depend on the input
sequence thus leading to exactly the same expression as in [21]:

pk+1 |k = a2pk |k−1 + σ2
w − (1 − ε)

a2Λ
1 + Λ

(
pk |k−1 − ptx

k |k
)

where ptx
k |k = Var{xk − xtx

k |k }. If we now consider the infinite horizon
problem by taking the limit T → ∞ we obtain the optimal cost given
in (11) where

pCF = lim
k→+∞

pk+1 |k , m = lim
T →+∞

m0 , ptx
∞ = lim

k→+∞
ptx

k |k .

�
Proof of Proposition 5: By using the expression for ΛSFs(ε) and

ΛMFs(ε), it is easy to show that

ΛMFs(ε) =
ΛSFs(ε)k2

MFs

1 − ΛSFs(ε)(1 − kMFs)2 . (32)

Using the first equation of (28), it is easy to show that 1 − ΛSFs(ε)(1 −
kMFs) ≥ 0. Also, it is easy to show that

∂kMFs

∂Sσ

>0, lim
Sσ→0

kMFs = km in =
a2 −1

a2 −εa2 , lim
Sσ →∞

kMFs = 1.

Next, after some algebraic manipulations, it follows that ∂ Λ MFs(ε )
∂ k MFs

≥
0 for km in ≤ kMFs ≤ 1. One can now use (32), and show that the min-
imum and maximum values of ΛMFs(ε) can be obtained by substitut-
ing kMFs = km in and kMFs = 1, respectively, yielding Λm in

MFs = ΛI F (ε)
and Λm ax

MFs = ΛSFs(ε). The first relationship follows by noting that
km in = 1 − 1

Λ SFs(ε ) , and ΛIF(ε) = ΛSFs(ε) − 1. Hence for a fixed ε,
and any 0 < Sσ < ∞, ΛIF(ε) < ΛMFs(ε) < ΛSFs(ε) with the inequal-
ities being tight at the boundary values of Sσ = 0 and Sσ → ∞,
respectively. �
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