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In this paper, we investigate the performance of distributed esti-
mation schemes in a wireless sensor network in the presence of an
eavesdropper. The sensors transmit observations to the fusion center
(FC), which at the same time are overheard by the eavesdropper. Both
the FC and the eavesdropper reconstruct a minimum mean-squared
error estimate of the physical quantity observed. We address the prob-
lem of transmit power allocation for system performance optimization
subject to a total average power constraint on the sensor(s), and a se-
curity/secrecy constraint on the eavesdropper. We mainly focus on
two scenarios: 1) a single sensor with multiple transmit antennas and
2) multiple sensors with each sensor having a single transmit antenna.
For each scenario, given perfect channel state information (CSI) of the
FC and full or partial CSI of the eavesdropper, we derive the trans-
mission policies for short-term and long-term cases. For the long-term
power allocation case, when the sensor is equipped with multiple an-
tennas, we can achieve zero information leakage in the full CSI case,
and dramatically enhance the system performance by deploying the
artificial noise technique for the partial CSI case. Asymptotic expres-
sions are derived for the long-term distortion at the FC as the number
of sensors or the number of antennas becomes large. In addition, we
also consider multiple-sensor multiple-antenna scenario, and simula-
tions show that given the same total number of transmitting antennas
the multiple-antenna sensor network is superior to the performance
of the multiple-sensor single-antenna network.
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I. INTRODUCTION

Wireless sensor networks (WSNs) are networks con-
sisting of some small, inexpensive, and low-power sensors,
which are deployed over a region and may communicate
with a remote processor over wireless links. Due to their
low cost, robustness, and high flexibility, WSNs are widely
employed in many military and civilian applications, such
as environmental monitoring, traffic control, battlefield
surveillance, so on. [1]. In distributed estimation, sensors in-
dependently collect data about some phenomena and send
the measurements to a fusion center (FC) which then at-
tempts to reconstruct the phenomenon.

One crucial issue in WSNs is the limited battery life
of the sensors. As sensors are normally geographically
widespread, replacing batteries can be costly. The prob-
lem of power allocation for distributed estimation has been
well-studied. In [2], Xiao et al. look at an optimal power
allocation scheme in an inhomogeneous Gaussian sen-
sor network. In [3], Cui et al. considered the problems
of minimizing transmit power under distortion [or mean-
squared error (MSE)] constraints and minimizing distor-
tion under power constraints for an orthogonal multiple
access channel (MAC). Employing a universal decen-
tralized quantization/estimation scheme and an uncoded
quadrature amplitude modulated transmission strategy,
Xiao et al. in [4] studied the optimal power scheduling prob-
lem in an inhomogeneous sensor network. In [5], Bahceci
and Khandani investigated the energy-efficient distributed
estimation problem for spatially correlated observations
in WSNs. The power allocation for the distortion out-
age probability minimization was also well studied in [6]
and [7].

Due to the broadcast nature of wireless communica-
tions, security and privacy issues have become one of the
biggest challenges in WSNs. The traditional encryption
schemes or cryptography might be vulnerable because of
problems, such as secret key distribution and management.
In addition, if an eavesdropper has sufficiently large com-
putational power, cryptographic schemes with small key
size may provide little secrecy. As an alternative, the no-
tion of perfect secrecy,1 introduced by Shannon [8], pro-
vides a different perspective on the data confidentiality.
Later, in the 1970s, Wyner introduced the concept of wire-
tap channel [9], and showed that if the adversarys chan-
nel is a degraded version of the legitimate receivers, reli-
able information can be received at the legitimate receiver
without the eavesdropper being able to extract almost any
useful information. From an information-theoretic perspec-
tive, the secrecy capacity in the case of full channel state

1Perfect secrecy was first introduced in 1949 by Shannon. In this model,
it is assumed that the confidential messageW is encrypted and then trans-
mitted over a noiseless channel [8]. In information theory, perfect secrecy
requires that I (W ;Z) = 0; it indicates that the signal Z received by the
eavesdropper does not provide any additional information about the trans-
mitted message W . A weaker definition was given in [9], which requires
the mutual information rate 1

n
I (W ;Z) goes to zero, as n, the number of

bits in Z goes to infinity.
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information (CSI) or partial CSI was studied in [10]–[12],
and the MIMO channels were investigated in [13]–[15].
Multiterminal source coding or CEO problems with se-
crecy constraints were also considered in [16]–[19]. In par-
ticular, in [19], Villard and Piantanida investigated secure
lossy source coding in the presence of an eavesdropper
who is able to observe the coded information bits and has
access to correlated side information. Under these assump-
tions, the authors derived inner and outer bounds on the
achievable rate region. In [20], Kaspi and Merhav consid-
ered a different scenario where the eavesdropper can obtain
the size of the packets, thus parsing the bit stream into
separate encrypted messages. Bounds on coding rate and
key rate are derived for perfect zero-delay secrecy. How-
ever, although such secure source coding techniques enable
one to gain information-theoretic insights, it does not pro-
vide a closed-form expression for distortion achievable via
multisensor estimation over fading channels. Thus moti-
vated, we investigate the secure estimation problem from a
signal processing viewpoint where sensors employ sim-
ple uncoded analog-forwarding techniques [21] to trans-
mit their observations to the FC. In this way, a direct
expression for the distortion over fading channels can be
obtained, which is more desirable for deriving analyti-
cal results. In fact, various secrecy schemes from a “sig-
nal processing” rather than information-theoretic point of
view have also been studied and discussed in [22]–[27],
where different performance metrics, such as Bayesian
detection-operational privacy metric, bit-error-rate, signal-
interference-to-noise ratio, Ali–Silvey distances or error
probability, were used to measure secrecy in a system.
Related techniques based on cooperating relays, artificial
noise generation or beamforming were also implemented
in [22] and [28]–[30] to secure a system.

Moreover, it is known that the mutual information be-
tween the input and the output of a channel is at the core
of information theory; given an input signal it measures the
amount of coded information that can be reliably transmit-
ted through a channel. Its counterpart, minimum mean-
square error (MMSE), is a fundamental quantity in the
estimation theory, which indicates how accurately the input
signal can be retrieved from the channel output. In [31],
Guo et al. discovered that regardless of the input distribu-
tion the derivative of the mutual information in nats w.r.t.
SNR is equal to half the MMSE, as long as the input signals
are observed through an additive Gaussian noise channel. In
[17], Naghibi et al. related the equivocation rate to the nor-
malized distortion at the eavesdropper in the CEO problem
with additional secrecy constraints, where they showed that
the estimation error at the eavesdropper is an upper bound
of the equivocation rate.

Therefore, in the favor of a close form distortion ex-
pression for multisensor estimation over fading channels
and close relation between MMSE and mutual information,
we consider analog uncoded transmission at the sensors and
introduce the MMSE as security metric to secure the system
at the physical layer.

In this paper, we consider the estimation of a single-
point Gaussian source by a sensor network in the presence
of an eavesdropper, where the analog amplify and forward
technique over a slow-fading orthogonal MAC2 is used. We
assume the same observed signal passes through another or-
thogonal MAC before reaching the eavesdropper, and both
the FC and the eavesdropper attempt to obtain an MMSE
estimation of the observations. The main contributions of
the paper are as follows:

1) We consider power allocation problems that minimize
the distortion at the FC subject to a total transmit power
constraint at the sensor(s) and a security/secrecy con-
straint at the eavesdropper.

2) In the multiple-antenna single-sensor system, we can
achieve zero information leakage in the full CSI case by
transmitting the signal onto the eavesdropper’s channel
null space, and also enhance the system performance
dramatically by employing the technique of artificial
noise for the partial CSI case. We give theoretical anal-
ysis on the long-term distortion for a power allocation
scheme, where a beamforming vector is aligned with
the FC’s channel direction. We also study the asymp-
totic distortion at the FC under the secrecy constraints
when the number of antennas grows large.

3) In the multiple-sensor scenario, we consider a short-
term power allocation problem in the full CSI case, and
long-term power allocation problems in both the full CSI
and partial CSI cases. The asymptotic behavior of the
long-term distortion at the FC is also studied under the
equal power allocation scheme as the number of sensors
increases.

REMARK A preliminary version of this paper [32]
was presented in SPAWC 2014, which contained only the
power allocation results with long-term average power con-
straints for the multi-sensor single-antenna case. This pa-
per extends these results to multiple directions including
short-term power constraints, single-sensor multiantenna
scenario with relays and artificial noise, multisensor mul-
tiantenna scenarios, and additional asymptotic results for
the decay rate of the distortion at the FC (with respect to
number of sensors/antennas) under the secrecy constraints
at the eavesdropper.

This paper is organized as follows. In Section II, we
give the general problem formulation of the decentral-
ized estimation for a system with a multiple-antenna single
sensor, and study the optimal power scheduling. We also
explore other techniques that can be utilized in the multiple-
antenna scenario. In Section III, we explore a multiple-
sensor single-antenna network and solve the power
allocation problems for different scenarios. In Section IV,
we consider a multiple-sensor multiple-antenna network. In
Section V, we look at the asymptotic long-term distortion

2When orthogonal MAC, such as TDMA and FDMA, is employed, only
pairwise synchronization between each sensor and the FC is sufficient;
whereas in the case of coherent MAC, synchronization between all sensors
and the FC are required [3].
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Fig. 1. Diagram of a multiple-antenna single-sensor system with the
presence of an eavesdropper.

at the FC in a multiple-eavesdropper multiple-antenna sce-
nario. Simulation results are given in Section VI, followed
by concluding remarks in Section VII.

Throughout this paper, we use T to denote transposi-
tion, ∗ to denote complex conjugate, H to denote conjugate
transposition, −1 to denote matrix inversion, IM to denote
the M ×M identity matrix, ‖x‖ to denote the Euclidean
norm of the vector x, |z| to denote the absolute value of
z, and ∠(x, y) to denote the angle between two vectors x
and y. In addition, for two functions f1(·) and f2(·), we
use the standard asymptotic notation and say that f1 ∼ f2

as t → t0, if f1(t)/f2(t) → 1 as t → t0 [33]. We also ex-
tend the use of the symbol ∼ to functions of the random
variables; for function f1(t, ω) and f1(t, ω), we say that
f1 ∼ f2 w.p.1 as t → t0, if f1(t, ·)/f2(t, ·) → 1 w.p.1 as
t → t0, where w.p.1 is convergence with probability 1 or
almost sure convergence.

II. MULTIPLE-ANTENNAS SCENARIO

Consider a scenario with one sensor equipped with Nt
transmit antennas observing a single point Gaussian source,
denoted by θ[t], t = 0, 1, 2, . . . , which has zero mean and
variance σ 2

θ . The measurement received by the sensor at
time t is given as

x[t] = θ[t] + ω[t] (1)

where we assume ω[t] is independent and identically dis-
tributed (i.i.d.) Gaussian noise over time t , with zero mean
and variance σ 2

ω.
The analog amplify and forward techniques [34], [35]

are employed, where the sensor transmits over fading chan-
nels a scaled version of the analog measurements to the
FC. It has been shown in [34] that this technique is asymp-
totically optimal, and exactly optimal in [35] under certain
situations for Gaussian source estimation in the coherent
MAC. In our model, the sensor amplifies the signal with a
beamforming vector p[t] ∈ C

Nt×1 before transmitting it to
the FC in the presence of an eavesdropper, as illustrated in
Fig. 1. We assume both channels experience block fading,
i.e., the channels remain constant during each coherence
time interval, and are i.i.d. over different time intervals
[36]. We further assume that the CSI of the FC is available,
while the eavesdropper’s CSI may or may not be available
to the FC. The FC designs the optimal power allocation
strategy based on the available CSI, and then sends p[t]

back to the sensor via a secure feedback link. Note that
CSI at the FC can be obtained by employing pilot training
signals transmitted from the sensor.

The signals received by the FC and the eavesdropper
are given by, respectively

y[t] = hT[t]p[t]θ[t] + hT[t]p[t]ω[t] + z[t] (2a)

ye[t] = hT
e [t]p[t]θ[t] + hT

e [t]p[t]ω[t] + ze[t] (2b)

where both z[t] and ze[t] are i.i.d. zero mean complex
Gaussian channel noise at the FC and the eavesdrop-
per with variance σ 2

n and σ 2
e , respectively, and h[t] =

[h[t]1, . . . , hn[t], . . . , hNt [t]]
T and he[t] = [he1[t], . . . ,

hen[t], . . . , heNt [t]]
T are, respectively, the channels from

the sensor to the FC and to the eavesdropper. We assume
that {hn[t]} are i.i.d. complex Gaussian with zero mean and
variance σ 2

h , and the elements in he[t] are also i.i.d. complex
Gaussian, with zero mean and variance σ 2

he
.

In order to minimize the MSE or distortion at the
FC, the MMSE estimator is used to estimate for θ

under the model (2) [37]. At time t , the distortion
at the FC and the eavesdropper can be shown to be,
respectively, as

D[t] = σ 2
θ − σ 4

θ

(
hT[t]p[t]

)H
hT[t]p[t]

σ 2
n + (

σ 2
θ + σ 2

ω

) (
hT[t]p[t]

)H
hT[t]p[t]

(3a)

De[t] = σ 2
θ − σ 4

θ

(
hT
e [t]p[t]

)H
hT
e [t]p[t]

σ 2
e +(σ 2

θ +σ 2
ω

) (
hT
e [t]p[t]

)H
hT
e [t]p[t]

.

(3b)

For a limited transmission power budget Ptot, we would
like to minimize the distortion at the FC by adapting the
sensor’ transmit power p[t]Hp[t], while maintaining a cer-
tain level of security of the transmission. In information-
theoretic security, the secrecy capacity is defined as the
maximum transmission rate at which the mutual infor-
mation between the confidential message and the signal
received by the eavesdropper is less than a threshold [11].
Motivated by this idea, plus a close relation between MMSE
and the mutual information of the channel input and out-
put [17], [31], we consider a notion of secrecy in estima-
tion from a noninformation-theoretic viewpoint by requir-
ing the distortion at the eavesdropper to be greater than a
threshold Dmin. In this way, some level of confidentiality
can be achieved at the FC. We will refer to the minimum
distortion threshold Dmin as the secrecy threshold in the
following.

Due to the assumption of system independence over
time t , we will drop the time index t for the rest of this
paper.

A. Full CSI

In the case of full CSI, where we assume the FC can
also acquire the channel information between the sensor
and the eavesdropper, the power control policies can be
derived such that the sensor is able to adjust the antenna
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transmission power depending on both the FC’s and the
eavesdropper’s channel information. Clearly, the require-
ment of full CSI of the eavesdropper channels is infea-
sible in practice. However, the optimal distortion perfor-
mance with this assumption is instructive as well as use-
ful as a benchmark for the distortion performance with
partial CSI of the eavesdropper channels, to be analyzed
subsequently.

1) Long-Term Optimal Power Allocation: In long-
term power allocation, we assume that the crucial informa-
tion lies in the long-term behavior of the estimates, such as
long-term trends in the physical process observed, hence the
FC would be more interested in the estimation over multiple
fading blocks. We would like to minimize the long-term av-
erage distortion at the FC by adapting p, where the average
is across coherence time intervals, while keeping the long-
term average sum of sensor transmission powers, defined
as

E
[
pHpE

[
x2
k

]] = E
[
pHp(σ 2

θ + σ 2
ωk)
]

(4)

to be less than the power budget Ptot. We also seek to main-
tain the average distortion at the eavesdropper to be greater
than the threshold Dmin, i.e., E[De] ≥ Dmin, to ensure that
some level of confidentiality can be achieved at the FC over
the long term.

Furthermore, an additional constraint ensuring the aver-
age estimation quality being better at the FC is considered
for more meaningful solutions. Therefore, the power con-
trol problem can be formulated as3

min
p

E [D]

s.t. E
[(
σ 2
θ + σ 2

ω

)
pHp

] ≤ Ptot

E [De] ≥ Dmin,E [De] ≥ E [D] . (5)

Given the distortion expressions in (3), we can simplify
problem (5) and rewrite it as

min
p

E

[(
α + (

hTp
)H

hTp
)−1

]

s.t. E
[
pHp

] ≤ Ptot

σ 2
θ + σ 2

ω

(6a)

E

[(
αe + (

hT
ep
)H

hT
ep
)−1

]
≥ Dma L (6b)

E

[
αe

αe+
(
hT
ep
)H

hT
ep

]

≥ E

[
α

α+(hTp
)H

hTp

]

(6c)

3In the long-term power allocation, the expectation E[·] is taken w.r.t.
both the sensor and the eavesdroppers channels, thus E[D(h, he)] =∫

h

∫
he
D(h, he) fhfhe dh dhe , where f (·) denotes the probability density

function.

where

Dma L =
⎛

⎝ Dmin

σ 2
θ σ

2
ω

σ 2
θ +σ 2

ω

− 1

⎞

⎠
/

σ 2
e σ

2
θ

(σ 2
θ + σ 2

ω)σ 2
ω

α = σ 2
n

σ 2
θ + σ 2

ω

αe = σ 2
e

σ 2
θ + σ 2

ω

.

To solve problem (6), we apply the technique of La-
grange multipliers. The dual problem of (6) is defined as

max
λ,ν,τ

g(λ, ν, τ ) (7)

where λ, ν, and τ are nonnegative Lagrange multipliers,
and the dual function g(λ, ν, τ ) associated with problem
(6) is

g(λ, ν, τ ) = min
p(h,he)

∫

h

∫

he
l (p(h, he), λ, ν, τ ) fhfhe dh dhe

+ νDma L − λ
Ptot

σ 2
θ + σ 2

ω

(8)

where fh = ∏Nt
n=1 f (hn) and fhe = ∏Nt

n=1 f (hen), with f (·)
denoting the probability density function. Also

l(p(h, he), λ, ν, τ ) = 1 + τσ 2
n /σ

2
e

α + (hTp)HhTp

+ λpHp − τ + ν

αe + (hT
ep)HhT

ep
.

It is not difficult to show that problem (6) is nonconvex.
Let [p1(h, he), . . . , pNt (h, he)]T = p(h, he) be the complex
gains allocated on each antenna, we can obtain a locally op-
timal solution from the following necessary Karush–Kuhn–
Tucker (KKT) conditions [38] from the Lagrangian formu-
lation for the optimal point:

−hH
n

(
hTp

)H

[
α + (

hTp
)H

hTp
]2 + he

H
n

(
hT
ep
)H

(ν + τ )

(1 + τσ 2
n /σ

2
e )
[
αe + (

hT
ep
)H

hT
ep
]2

+ λ

1 + τσ 2
n /σ

2
e

pH
n = 0 ∀n (9a)

λ

(
E
[
pHp

]− Ptot

σθ 2 + σω2

)
= 0 (9b)

ν

(
Dma L − E

[(
αe + (

hT
ep
)H

hT
ep
)−1

])
= 0 (9c)

τ

(
σ 2
n

σ 2
e

E

[(
α+(hTp

)H
hTp

)−1
]
−E

[(
αe+

(
hT
ep
)H

hT
ep
)−1
])

= 0. (9d)

To be more specific, we first assign arbitrary initial val-
ues to λ, ν, and τ , then iteratively apply the following Step
1 and Step 2 until (9b), (9c), and (9d) are satisfied.

STEP 1 With fixed τ (i), λ(i), and ν(i), find the optimal
solution p̃ of the Lagrange dual function (8), which can be
obtained by solving the equations in (9a).
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STEP 2 With the resulting allocated power, apply the
subgradient method to update the Lagrange multipliers, i.e.,

λ(i+1) =
[
λ(i)+ε

(
E
[
p̃Hp̃

]− Ptot

σθ 2 + σω2

)]+

ν(i+1) =
[
ν(i)+κ

(
Dma L−E

[(
αe+

(
hT
e p̃
)H

hT
e p̃
)−1

])]+

τ (i+1) =
[
τ (i)+υ

(
σ 2
n

σ 2
e

E

[(
α+(hTp̃

)H
hTp̃

)−1
]

− E

[(
αe+

(
hT
e p̃
)H

hT
e p̃
)−1

])]+
(10)

where υ, κ , and ε are sufficiently small step-sizes for up-
dating τ , ν, and λ, respectively.

REMARK To maximize the dual problem g(λ, ν, τ ), we
applied subgradient methods to update Lagrange multipli-
ers. This enables us to update all Lagrange multipliers
simultaneously along certain directions. The subgradient
method is guaranteed to converge, when the constant step-
size, in our case υ, κ , and ε, are sufficiently small [39],
[40]. In addition, in order to find the stationary point for the
given Lagrange multipliers, we used fixed-point iteration
[41] to solve a system of Nt nonlinear equations with Nt
unknowns, where we use the most up-to-date information
to solve for the nth variable in each iterate. As a result the
dual function keeps decreasing until it reaches a minimum
for the given Lagrange multipliers.

2) Zero Information Leakage: Other than diversity
gain, another advantage with multiple transmit antennas is
that we can employ techniques to hide the observation data
from the eavesdropper by transmitting it onto the null space
of the eavesdropper’s channel. As a result, the eavesdropper
is unable to detect any information about x.

Let the singular value decomposition4 of hT
e be hT

e =
USVH. The null space of the eavesdropper’s channel can be
represented by the span of the orthonormal column vectors
of V̄, where V̄ is the last Nt − 1 columns of V. Then, we
can express the eavesdropper’s channel null space as V̄V̄H

[42].
Next, we define a precoding matrix as

W = V̄V̄H (11)

where W ∈ C
Nt . The sensor sends Wpx. The signal re-

ceived by the FC and the eavesdropper are given by, re-
spectively

y = hTWpx + z = hTWpθ + hTWpω + z (12a)

ye = hT
eWpx + ze = ze (12b)

and the transmission power can be computed as
((Wp)HWp)(σ 2

θ + σ 2
ω). Since the eavesdropper receives

only noise, the distortion at the eavesdropper reaches its
highest level of σ 2

θ , and hence we can remove constraints
(6b) and (6c) in problem (6). In addition, we know that the

4Because hT
e is a row vector, U becomes a complex scalar and S is a

complex row vector.

beamforming vector should line-up with hTW to minimize
the distortion at the FC; thus, p = √

p0
(hTW)H

‖hW‖ with p0 being
real-valued. Therefore, problem (6) can be then simplified
and rewritten as

min
p0≥0

E

[(
α + p0hTWh∗)−1

]

s.t. po ≤ Ptot

σ 2
θ + σ 2

ω

. (13)

It can be easily seen that when p0 = Ptot

σ 2
θ +σ 2

ω

the long-
term distortion at the FC reaches its minimum.

REMARK The signal is transmitted on the eavesdrop-
per’s null space via the precoding matrix W. Therefore, we
have the effective FC channel hTW, which is the projection
of hT on the null space of hT

e .
3) Short-Term Optimal Power Allocation: We can

formulate a power allocation problem that minimizes the
distortion at the FC, while satisfying a secrecy constraint at
the eavesdropper and meeting the total power budget in ev-
ery transmission time slot. We refer this as short-term power
allocation. Note that for short-term optimal power alloca-
tion we cannot guarantee that the estimation quality is bet-
ter at the FC at all times. Keeping this in mind, the optimal
power allocation problem for a given set of channels can be
cast as

min
p

D = min
p
σ 2
θ − ασ 4

θ

σ 2
n

[

1 − α

α + (
hTp

)H
hTp

]

s.t. pHp ≤ Ptot

σ 2
θ + σ 2

ω

σ 2
θ − αeσ

4
θ

σ 2
e

[

1− αe

αe+
(
hT
ep
)H

hT
ep

]

≥Dmin (14)

whereDmin and Ptot are, respectively, the distortion thresh-
old at the eavesdropper and the total transmission power
budget.

We aim to find an optimal beamforming vector p which
meets the constraints in every fading block. The Lagrange
multiplier technique is applied to solve this nonconvex op-
timization problem, and the details are omitted to avoid
repetition.

B. Partial CSI

Due to the difficulties of perfectly acquiring the eaves-
dropper’s CSI in practical setups, in this section we as-
sume that the FC only has statistical knowledge of the
eavesdropper’s channel information. As it is not practi-
cal to consider short-term constraints that need to be sat-
isfied at every time instant, we only look at the long-
term scenario for the partial CSI case. We first explore
the power allocation problem that minimizes the long-
term distortion at the FC via the Lagrange multiplier tech-
nique. Next, we study the technique of artificial noise,
where the artificial interference is transmitted to confuse
the eavesdropper. We also analyze the asymptotic behavior
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Algorithm 1:
1: Initialize the iteration index q = 0, choose an

arbitrary initial value for {pn(h)(q)}Ntn=1, and obtain
l(q) = l({pn(h)(q)}, λ, ν, τ ) from (15).

2: repeat
3: For j = 1 : Nt

1) Find the complex gain pj (h) on antenna j
such that l({{pn(h)(q)}n �=j , pj (h)}, λ, ν, τ ) is
minimized.

2) Update the transmission power of antenna j
by [p1(h)(q), . . . , p′

j (h)(q), . . . , pK (h)(q)].
4: update l(q+1) = l({p′

n(h)(q)}, λ, ν, τ ), and
q = q + 1.

5: until Convergence: (l(q+1) − l(q))/(l(q+1)) < ζ ; set
{p̃n(h)} = {p′

n(h)(q)}.

of the distortion at the FC when equal power allocation is
employed.

The power allocation problem is formulated similar to
(5) but now with p being a function of h, rather than a
function of h and he as in the full CSI case. As the problem is
again nonconvex, a locally optimal solution can be obtained
as follows. Similar to (8), we define the Lagrange dual
function as

g(λ, ν, τ ) = min
pn(h)∀n

∫

h
l ({pn(h)} , λ, ν, τ ) fh dh

+ νDma L − λ
Ptot

σ 2
θ + σ 2

ω

with l({pn(h)}, λ, ν, τ ) expressed as

l ({pn(h)} , λ, ν, τ )

= 1 + τσ 2
n /σ

2
e

α+(hTp
)H

hTp
+λpHp−

∫

he

τ + ν

αe+
(
hT

ep
)H

hT
ep
fhedhe.

(15)

For any set of channels h, the optimal transmission
power of the sensor is determined by the stationary points
(or KKT points). We can then adapt similar methods as
described in Section II-A1. In Step 1, the power polices
p̃(h) can be derived by applying Algorithm 1 below. For
fixed τ (i), λ(i), and ν(i), Algorithm 1 sequentially updates
the transmit power on each antenna by minimizing the
function given in (15), until a locally optimal solution is
found. In Step 2, we update the Lagrange multipliers via the
subgradient method.

REMARK In Step 1, τ (i), λ(i), and ν(i) are fixed, hence we
drop the iteration number i in Algorithm 1; and ζ is a pre-
specified convergence criterion. Additionally, Algorithm 1
only gives a locally optimal solution, as the different initial
values of p(h)(0) may lead l in (15) to converge to a different
minimum. Thus, in practice, the FC begins with several dif-
ferent initial points, and chooses the best resulting powers
and forwards them to the sensor.

1) Artificial Noise: To enhance the system perfor-
mance, we can use the technique of artificial noise to de-

grade the eavesdropper’s channel. The artificial noise is
generated by the transmitter (the sensor) in a way that the
additional noise lies in the null space of the intended re-
ceiver’s (the FC’s) channel; as a result, the noise would not
cause any damage toward the message received by the FC
but would degrade the eavesdropper’s channel [28], [43].

To be more specific, let the column vectors of ŴH =
[w1W2] be an orthonormal basis of C

Nt , with w1 ∈ C
1×Nt

representing the signal space of h. The sensor then transmits

w1

√
βx + W2v (16)

where W2v is the artificial noise, which is chosen to be a ran-
dom vector in the null space of hT to reduce the possibility of
small “noise” seen by the eavesdropper. Here, v ∈ C

(Nt−1)×1

has Nt − 1 i.i.d. complex Gaussian entries with each hav-
ing zero mean and variance βa . Hence, the transmit power
in each fading block is given as β(σ 2

θ + σ 2
ω) + βa(Nt − 1).

The signal received by the FC and the eavesdropper are,
respectively, given as follows:

y = hTŴH
[√
βx, vT

]T
+ z= hTw1

√
βx + hTW2v + z

= hTw1

√
βx + z (17a)

ye = hT
e ŴH

[√
βx, vT

]T
+ ze

= hT
ew1

√
βx + hT

eW2v + ze. (17b)

REMARK As he has i.i.d. entries and Ŵ is a unitary
matrix, we know that hT

e ŴH also has i.i.d. elements. This
indicates that hT

ew1 is independent of hT
eW2. As a result, the

effective noise at the eavesdropper becomes hT
eW2v + ze.

Our objective is to derive the power used to produce
artificial noise and to forward the observation signal so
that the long-term distortion at the FC is minimized, while
satisfying the three long-term constraints as described in
Section II-A1. Assuming both the FC and the eavesdropper
use the optimal MMSE estimator, the functional optimiza-
tion problem can be written as follows:

min
β(h),βa (h)

E

[(
1

σ 2
θ

+ β(h)hTh∗

σ 2
n + β(h)hTh∗σ 2

ω

)−1
]

s.t. (σ 2
θ +σ 2

ω)E [β(h)]+(Nt−1) E [βa(h)] ≤ Ptot

E

[(
1

σ 2
θ

+ β(h)|hT
ew1|2

σ 2
e +β(h)|hT

ew1|2σ 2
ω+hT

eW2WH
2 h∗

eβa(h)

)−1
]

≥Dmin

E

[(
1

σ 2
θ

+ β(h)|hT
ew1|2

σ 2
e +β(h)|hT

ew1|2σ 2
ω+hT

eW2WH
2 h∗

eβa(h)

)−1
]

≥ E

[(
1

σ 2
θ

+ β(h)hTh∗

σ 2
n + β(h)hTh∗σ 2

ω

)−1
]

. (18)

To solve problem (18), we apply the technique of Lagrange
multipliers and use two steps similar to those described
in Section II-A1, where in Step 1, with fixed Lagrange
multipliers, we need to sequentially find the β(h) and βa(h).
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2) Asymptotic Analysis: In this section, we are in-
terested in seeing how the long-term distortion decays at
the FC as the number of antennas Nt increases, under both
the power constraint and the secrecy constraints.

We consider the case where the beamforming vector is
chosen to be lined up with the FC’s channel in order to
minimize the distortion at the FC, i.e.,

p =
√
p0h∗

‖h‖ (19)

where

p0 = min

[
1 − αeDma L

σ 2
he
Dma L

,
Ptot

σ 2
θ + σ 2

ω

]

.

This choice of p0 guarantees that the three long-term
constraints are satisfied. To see this, we first rewrite
E[(αe + (hT

ep)HhT
ep)−1] as

E

[(
αe+

(
hT
ep
)H

hT
ep
)−1

]

= E

[(
αe+p0

hTh∗
eh

T
eh∗

‖h‖2

)−1
]

= E

[(
αe+p0

(‖he‖
∣∣h̃Th̃∗

e

∣∣)2
)−1

]
(20)

where h̃T = hT

‖h‖ and h̃T
e = hT

e

‖he‖ , which are two independent
isotropic vectors on the Nt -dimensional unit sphere.

The first thing to be noticed from (20) is that ‖he‖ ·
|h̃Th̃∗

e | can be thought of as the magnitude of the vector
hT
e projected onto the vector space of hT, as the second

term can be written as5 |h̃Th̃∗
e | = |cos(∠(h̃, h̃e))|. This also

indicates that |h̃Th̃∗
e | is only related to the difference in

the two channel directions. Therefore, by exploiting the
independence of channel norm and channel direction [44],
we can simplify (20) as

E
[
(αe + p0XY )−1] (21)

where X = ‖he‖2 and Y = |h̃Th̃∗
e |2 are two independent

random variables, with X being gamma distributed as

X ∼ �
(
Nt, σ

2
he

)
, fX (x) = xNt−1e−x/σ

2he

σ
2Nt
he

(Nt − 1)!
.

In addition, as h̃ and h̃e are independent isotropic vectors,
we have Y being beta distributed with parameters 1 and
Nt − 1

Y ∼ Beta (1, Nt − 1) , fY (y) = (Nt − 1) (1 − y)Nt−2 .

Since (21) is convex with respect to XY , applying
Jensen’s inequality and using the fact that E[X] = σ 2

he
Nt ,

5As ∠(x, y) is the angle between two vectors x and y, we obtain

|cos(∠(x, y))| = |xHy|
‖x‖·‖y‖ .

E[Y ] = 1
Nt

, we obtain a lower bound of (21) as

E
[
(αe + p0XY )−1

] ≥ (αe + p0E [X] E [Y ])−1

= (
αe + p0σ

2
he

)−1
(22)

from which we can obtain a lower bound of the long-term
distortion at the eavesdropper given as

E [De] ≥ σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ /
(
σ 2
θ + σ 2

ω

)

1 + σ 2
he
p0 /αe

(23)

which is independent of the number of transmit antennas,
and decreases to σ 2

θ σ
2
ω/(σ

2
θ + σ 2

ω) when the total transmit
power is increased to infinity (as the long-term transmit
power is (σ 2

θ + σ 2
ω)E(pHp) = (σ 2

θ + σ 2
ω)p0). Hence, we can

set

σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ /(σ

2
θ + σ 2

ω)

1 + σ 2
he
p0/αe

≥ Dmin

to guarantee that the secrecy constraint at the eavesdropper
is satisfied, i.e.,

p0 ≤ 1 − αeDma L

σ 2
he
Dma L

.

Therefore, given a total transmit power budget Ptot, we see
that the long-term power constraint as well as the secrecy
constraint are met when

p0 = min

[
1 − αeDma L

σ 2
he
Dma L

,
Ptot

σ 2
θ + σ 2

ω

]

.

Furthermore, using the beamforming vector (19) gives
us the following long-term distortion at the FC.

THEOREM Let p =
√
p0h∗

‖h‖ . Assuming hn’s are exponen-

tially distributed with mean σ 2
h , then the long-term distor-

tion at the FC using orthogonal access scheme follows:

E [D] ∼ σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ α

2

σ 2
n σ

2
hp0

1

Nt
asNt → ∞. (24)

PROOF We have

D = σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ α

2

σ 2
n

(
α + p0‖h‖2

)−1
(25a)

= σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ α

2

σ 2
n

(

α + p0

Nt∑

n=1

|hn|2
)−1

(25b)

(a)∼ σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ α

2

σ 2
n

(
α + p0NtE

[|hn|2
])−1

w.p.1

(25c)

where (a) holds providing the expectation E[|hn|2] exists
and applying the strong law of large numbers.

Ashn’s are exponentially distributed with mean σ 2
h , then

E[|hn|2] = σ 2
h . Therefore

E [D] ∼ σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ α

2

σ 2
n

(
α + p0Ntσ

2
h

)−1

∼ σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ α

2

σ 2
n σ

2
hp0Nt

(26)
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Fig. 2. Diagram of the WSN using orthogonal MAC scheme with the
presence of an eavesdropper.

which is asymptotically equal to the constant
σ 2
θ σ

2
ω/(σ

2
θ + σ 2

ω) plus a term that decays to zero at the
rate 1/Nt . �

From (26), we notice that if the beamforming vector has
the form p = √

p0h∗/‖h‖, the long-term distortion at the
FC decreases as we increase Nt , whereas the lower bound
of the distortion at the eavesdropper, as shown in (23), is de-
pendent on the transmission power. Therefore, we conclude
that, given a limited transmit power budget, the long-term
distortion at the FC is always smaller than the distortion at
the eavesdropper when the number of transmission anten-
nas is large; in other words, all three long-term constraints
can be satisfied when p = √

p0h∗/‖h‖ with

p0 = min

[
1 − αeDma L

σ 2
he
Dma L

,
Ptot

σ 2
θ + σ 2

ω

]

.

III. MULTIPLE-SENSORS SCENARIO

For the single-point source estimation, if applying mul-
tiple antennas is not an option, an alternative way to improve
the estimation accuracy at the FC is to employ multiple sen-
sors. Therefore, in this section, we investigate the behavior
of a multiple-sensor single-antenna system, followed by
multiantenna multisensor systems in Section IV. In both
cases, we assume that the FC and eavesdropper have a sin-
gle receive antenna.

A schematic diagram of the wireless system model is
shown in Fig. 2. We assume that the same single point
Gaussian source θ as defined in Section II is observed by
K sensors. The measurement received by the kth sensor is
corrupted with noise ωk and given as

xk = θ + ωk (27)

where we assume ωk is i.i.d. Gaussian noise over time,
with zero mean and variance σ 2

ωk . We assume pairwise syn-
chronization between each sensor and the FC. The sensors
employ the analog amplify and forward technique [34], [35]
to scale the signal with pk ∈ C before sending it to the FC
via a set of orthogonal channels [h1, . . . , hK ]. The observa-
tion {xk} is also listened to by the eavesdropper via another
set of orthogonal channels [he1, . . . , heK ].

The signals received by the FC and the eavesdropper
from the kth sensor are given by, respectively

yk = hkpkθ + hkpkωk + zk (28a)

yek = hekpkθ + hekpkωk + zek (28b)

where both hk and hek are zero mean i.i.d. complex Gaus-
sian channels (Rayleigh fading) from sensor k to the FC and
the eavesdropper with variances σ 2

hk
and σ 2

hek
, respectively,

and zk and zek represent i.i.d. complex Gaussian noise with
zero mean and variances σ 2

n k
at the FC and σ 2

e k
at the eaves-

dropper, respectively.
The MMSE estimator is used at both the FC and the

eavesdropper to estimate θ . At each channel instant, the
MSE or distortion at the FC and the eavesdropper can
be shown to be, respectively

D =
(

1

σ 2
θ

+
K∑

k=1

(hkpk)H hkpk

(hkpk)H hkpkσ 2
ωk + σ 2

n k

)−1

=
(

1

σ 2
θ

+
K∑

k=1

gkβk

gkβkσ 2
ωk + σ 2

n k

)−1

(29c)

De =
(

1

σ 2
θ

+
K∑

k=1

(hekpk)
H hekpk

(hekpk)
H hekpkσ

2
ωk + σ 2

e k

)−1

=
(

1

σ 2
θ

+
K∑

k=1

gekβk

gekβkσ
2
ωk + σ 2

e k

)−1

(29d)

where gk = hH
k hk ∈ R and gek = he

H
k hek ∈ R are, respec-

tively, the channel power gains from sensor k to the FC
and the eavesdropper, and βk = pH

k pk ∈ R is the power al-
located on the kth sensor. This means that for a given set
of {βk}, any {pk} satisfying pH

k pk = βk, ∀k would result in
the same distortion, which implies pk does not necessarily
need to line-up with sensor k’s channel direction; hence we
focus on {βk} in multiple-sensor scenario.

In the following, we first look at the optimal power al-
location, where the optimal power policies are designed by
the FC based on the available CSI, and then sends {βk}
back to the sensors via a secure feedback link. Applying a
similar idea as in Section II-B1 of increasing the interfer-
ence seen by the adversary in such a way that the channel
is degraded while the channel of the legitimate receiver is
not, we then consider a scenario where some of the sensors
are employed to broadcast artificial interference which can
be canceled off at the FC, but will in general degrade the
eavesdropper’s channel. The asymptotic behavior is also
studied for the partial CSI case at the end of this section.

A. Full CSI–Optimal Power Allocation

In order to extend sensors’ lifespan meanwhile main-
taining a certain level of security for the network, we would
like to minimize the distortion at the FC by adapting the sen-
sors’ transmit powers while satisfying the same three con-
straints as considered in multiple-antenna scenarios. With
full knowledge of the eavesdropper’s channel information,
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the power control problem can be formulated as

min
βk(gk,gek)≥0,∀k

E

⎡

⎣
(

1

σ 2
θ

+
K∑

k=1

gkβk

gkβkσ 2
ωk + σ 2

n k

)−1
⎤

⎦

s.t. E

[
K∑

k=1

(
σ 2
θ + σ 2

ωk

)
βk

]

≤ Ptot

E

⎡

⎣

(
1

σ 2
θ

+
K∑

k=1

gekβk

gekβkσ
2
ωk + σ 2

e k

)−1
⎤

⎦≥Dmin

E

⎡

⎣
(

1

σ 2
θ

+
K∑

k=1

gekβk

gekβkσ
2
ωk + σ 2

e k

)−1
⎤

⎦

≥E

⎡

⎣
(

1

σ 2
θ

+
K∑

k=1

gkβk

gkβkσ 2
ωk+σ 2

n k

)−1
⎤

⎦ .

(30)

Similar setups have been considered in [32], where a
minimum distortion threshold is set at the eavesdropper to
ensure that the estimation error at the eavesdropper is no
smaller than the requirement. In (30), an additional con-
straint guaranteeing a larger error always occurs at the
eavesdropper is considered, hence one would expect no bet-
ter performance being achieved at the FC compared with
the results in [32] because of a smaller feasible region. De-
spite this, one can use the same methods as described in
[32] by applying KKT condition and then numerically ob-
tain locally optimal solutions for problem (30). Simulation
results are given in Section VI.

Next, we explore the short-term distortion performance
at the FC while satisfying a secrecy constraint at the eaves-
dropper and a total power constraint at the sensor in every
transmission instant. As for the short-term optimal power
allocation we cannot guarantee the distortion to be smaller
at the legitimate receiver than the distortion at the eaves-
dropper for every fading block. For example, if the instanta-
neous channel SNR of the eavesdropper is greater than the
channel SNR of the FC (gek/σ

2
e k
> gk/σ

2
n k
, ∀k), all sensors

will have to stop transmitting, which is not so interesting.
Therefore, the power allocation problem in short-term sce-
nario is considered only in the case of full CSI. We can
formulate the optimization problem and rewrite it as

min
βk≥0∀k

K∑

k=1

−gkβk
gkβkσ 2

ωk + σ 2
n k

s.t.
K∑

k=1

(
σ 2
θ + σ 2

ωk

)
βk ≤ Ptot (31a)

K∑

k=1

gekβk

gekβkσ
2
ωk + σ 2

e k

≤ Ims (31b)

where

Ims = 1

Dmin
− 1

σ 2
θ

.

As similar techniques depicted in Section II-A3 can be used
to find a locally optimal solution, we omit details to avoid
repetition.

REMARK Once the Lagrange dual functions are written
for problem (30) and problem (31), one could notice that in
the short-term scenario, for the given λ and ν, the power on
the kth sensor depends only on its own channel conditions;
whereas in the long-term scenario the transmission power
of sensor k is a function of all sensors’ channel information.

B. Partial CSI

1) Optimal Power Allocation: The optimal power
allocation in partial CSI case is considered when the FC
can access its own channel information but only has sta-
tistical knowledge of the eavesdropper. In this scenario,
the problem is formulated similarly as problem (30) with
the power scheme {βk} only being a function of the FC’s
channel information. A locally optimal solution can be then
derived by applying similar techniques as used in [32] and
Section II-B; thus details regarding the optimal power al-
location in partial CSI case are omitted. The simulation
results are given in Section VI for comparison.

2) Partial CSI—Artificial Noise With Relays: In
a multiple-sensor network with only the FC’s channel
information, artificial noise can be produced when the
observation information is crucial or there is a high security
requirement. Different from Section II-B1, the concept of
artificial noise in the multiple-sensor scenario is to transmit
some random signals from different sensors which can be
cancelled off at the intended receiver (the FC), but would
significantly degrade the eavesdropper’s channel [28]. In-
stead of forwarding the observation signal to the FC, some
sensors broadcast artificial noise to confuse the eavesdrop-
per in the network. In this section, we assume that a total
number of M sensors estimate the source θ and then trans-
mit the observation information {xm}Mm=1 to the FC, while
the remaining K −M sensors work as relays aiming to
boost the secret transmission of the information {xm}. This
extends the setup of [28] in which there is one transmitter
and K − 1 relays.

The transmission is completed in two stages.
Let hsmF , hsme, and hsmrk be the channels from sensor

m to the FC, the eavesdropper, and relay k, respectively.
Denote hFe and hFrk as the channels from the FC to the
eavesdropper and relay k, respectively. In the first stage, as
shown in Fig. 3, sensor m and the FC transmit nshsmF and
nF , respectively, and the eavesdropper and relay k receive,
respectively

ye,1 = ns

M∑

m=1

hsmFhsme + hFenF + ze,1 (32a)

yrk,1 = ns

M∑

m=1

hsmFhsmrk + hFrk nF + zk,1 (32b)

where ze,1 and zk,1 are zero mean i.i.d. complex Gaussian
channel noises at the eavesdropper and at the kth relay with
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Fig. 3. Diagram of stage one transmission in the artificial
noise with relays.

variances σ 2
e and σ 2

r , respectively. ns and nF are artificial
noises with variances σ 2

ns and σ 2
nF, respectively.

At the second stage, sensor m forwards to the FC the
amplified observation signal xmpm, and it also utilizes the
public weight sequences {γ̄k}, which is a publicly available
sequence of weights that are known to every participant
(may also be seen by the eavesdropper) in the network, to
transmit −ns

∑K−M
k=1 γ̄khsmrkhrkF . We assume all the public

sequences {γ̄k} are i.i.d. zero mean complex Gaussian ran-
dom variables with variance βγ̄ , thus {γ̄k} varies at each
transmission to reduce the probability of the artificial noise
being nulled at the eavesdropper. On the other hand, re-
lay k transmits γ̄kyrk,1. Therefore, at the second stage the
eavesdropper and the FC receive, respectively

ye,2 =
M∑

m=1

xmhsmepm

+ ns

K−M∑

k=1

γ̄k

M∑

m=1

hsmrk
(
hsmF hrke − hrkFhsme

)

+ nF

K−M∑

k=1

γ̄khFrkhrke +
K−M∑

k=1

γ̄khrkezk,1+ze,2 (33)

y =
M∑

m=1

xmhsFpm +
K−M∑

k=1

γ̄khrkF

(
hFrk nF + zk,1

)+ z

(b)=⇒
M∑

m=1

xmhsmFpm +
K−M∑

k=1

γ̄kzk,1hrkF + z (34)

where ze,2 and z are zero mean i.i.d. complex Gaussian
channel noises at the eavesdropper and the FC, respectively,
with variances σ 2

e and σ 2
n . In (34), (b) holds as nF is known

to the FC which can be cancelled off. Note that we assume
synchronization between all sensors and the FC is available
in this part of work, and the two-stage transmission can be

completed in one fading block, as a result all the channels
remain the same at the second stage transmission.

REMARK It is clear that the second term of (33) corre-
sponds to the artificial noise generated from the M sensors
at the first stage of transmission, which vanishes at the
second stage as it reaches the FC [as can be seen in (34)].
In channel conditions where hsmFhrke is close to hrkFhsme,
instead of increasing the transmit power at both the first
and the second stage transmissions to boost noise level, we
expect to use the third term of (33) to increase the noise
level at the eavesdropper with little power consumption.

Combining the two-stage transmission, we have that the
signal received by the eavesdropper is given as

ye=
[

0,
M∑

m=1

hsmepm (θ+ωm)

]T

+ Hre [ns, nF ]T+ ze (35)

where ze = [ze,1,
∑K−M

k=1 γ̄khrkezk,1 + ze,2]T and Hre is ex-
pressed in (36), shown at the bottom of the page. Hence,
the total power consumption Pstages for the two-stage trans-
mission can be also derived as

Pstages = σ 2
ns

(
M∑

m=1

|hsmF |2+βγ̄
M∑

m=1

|hsmF |2
K−M∑

k=1

|hsmrk |2

+βγ̄
M∑

m=1

K−M∑

k=1

|hsmrk |2|hrkF |2
)

+ βγ̄ (K −M) σ 2
r + σ 2

nFβγ̄

K−M∑

k=1

|hFrk |2

+
M∑

m=1

|pm|2 (σ 2
ωm+σ 2

ω

)
. (37)

Let Ke be the covariance matrix of [0,
∑M

m=1 hsmepm
ωm]T + Hre[ns, nF ]T + ze. As ns , nF , ze,1, ze,2, {zk,1}, and
{ωm} are all independent random noises, Ke can be easily
computed as

Ke=
[
σ 2

ns

∑M
m=1 |hsmF |2|hsme|2+σ 2

nF|hFe|2+σ 2
e 0

0 ke22

]

(38)

where ke22 is given as

ke22 =βγ̄ σ 2
ns

K−M∑

k=1

M∑

m=1

|hsmrk |2
∣
∣hsmFhrke −hrkFhsme

∣
∣2

+ βγ̄ σ
2
nF

K−M∑

k=1

|hFrk |2|hrke |2 + βγ̄ σ
2
r

K−M∑

k=1

|hrke |2

+
M∑

m=1

|pmhsme|2σ 2
ωm + σ 2

e . (39)

Hre =
[ ∑M

m=1 hsmFhsme hFe

∑K−M
k=1 γ̄k

∑M
m=1 hsmrk

(
hsmFhrke − hrkFhsme

) ∑K−M
k=1 γ̄khFrkhrke

]

(36)
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Using the optimal MMSE estimator [37], from (34),
(35), and (39) we can express the distortion D at the FC
and the distortion De at the eavesdropper as

D =
⎛

⎜
⎝

1

σ 2
θ

+

∣
∣∣
∑M

m=1 pmhsmF

∣
∣∣
2

∑M
m=1 |hsmFpm|2σ 2

ωm+βγ̄ σ 2
r

∑K−M
k=1 |hrkF |2 + σ 2

n

⎞

⎟
⎠

−1

(40)

De = σ 2
θ

⎛

⎜
⎝1−

σ 2
θ

∣
∣
∣
∑M

m=1 hsmepm

∣
∣
∣
2

ke22+σ 2
θ

∣
∣∣
∑M

m=1 hsmepm

∣
∣∣
2

⎞

⎟
⎠ . (41)

In the partial CSI scenario, the FC is able to ob-
tain the channel information of {hsmF }, {hFrk }, {hsmrk }, and
{hrkF} at each fading block, thus it can develop an intel-
ligent transmission strategy such that the {pm}, the vari-
ance of the public sequences βγ̄ , and the artificial noise
powers σ 2

ns, σ
2
nF can be adapted in different fading blocks,

while satisfying the long-term constraints as described in
Section III-A. Let G = [{hsmF }, {hFrk }, {hsmrk }, {hrkF}]. The
functional optimization problem can be then formulated as

min
{pm(G)},βγ̄ (G),σ 2

ns(G),σ 2
nF(G)

E [D]

s.t. E
[
Pstages

] ≤ Ptot

E [De] ≥ Dmin

E [De] ≥ E [D] (42)

where Pstages, D, and De are expressed in (37), (40), and
(41), which are functions of {pm}, βγ̄ , σ 2

ns, and σ 2
nF. We

can then employ the same Lagrange multiplier technique
as described in Section II-B to solve problem (42), where in
Algorithm 1, we need to sequentially find {pm(G)}, βγ̄ (G),
σ 2

ns(G), and σ 2
nF(G). The details are omitted for brevity.

3) Partial CSI—Asymptotic Analysis: In order to
see how the system performs as the number of sensors
increases, in this section, we explore the asymptotic long-
term distortion at the FC in the case of partial CSI. For
analytical tractability, we consider a homogeneous WSN
where all the measurement noise and fading distributions
are i.i.d. As a consequence, we denote σ 2

ωk = σ 2
ω, E[gk] =

σ 2
h , E[gek] = σ 2

he
, σ 2

n k
= σ 2

n , and σ 2
e k

= σ 2
e , ∀k6. We also

assume that the channel conditions of the FC and the eaves-
dropper satisfy σ 2

h /σ
2
n ≥ σ 2

he
/σ 2

e , as a result the FC always
has better estimation quality than that of the eavesdrop-
per when the number of sensors is sufficiently large. In
addition, if the secrecy constraint and the transmit power
constraint are satisfied at every transmission, the long-term
power constraint as well as the long-term secrecy constraint
can also be met.

6As both channels of the FC and the eavesdropper are distributed as i.i.d.
zero mean complex Gaussian (Rayleigh fading) with variances σ 2

h and
σ 2
he

, respectively, we know that the channel power gains gk and gek are

exponentially distributed with means σ 2
h and σ 2

he
, respectively.

With equal power allocation, i.e., βk = β∀k, we can
rewrite the short-term secrecy constraint (31b) as

K

σ 2
ωβ

1

K

K∑

k=1

1

gek + σ 2
e

σ 2
ωβ

≥ K − Imsσ
2
ω

σ 2
e

. (43)

It is straightforward to show that 1

gek+ σ2
e

σ2
ωβ

is convex in gek

∀k. For large K , applying Jensen’s inequality we have

K

σ 2
ωβ

1

K

K∑

k=1

1

gek + σ 2
e

σ 2
ωβ

≥ K

σ 2
ωβ

1
∑K

k=1 gek
K

+ σ 2
e

σ 2
ωβ

∼ K

σ 2
ωβ

1

σ 2
he

+ σ 2
e

σ 2
ωβ

w.p.1. (44)

Therefore, we can set

K

σ 2
ωβ

1

σ 2
he

+ σ 2
e /(σ 2

ωβ)
≥ K − Imsσ

2
ω

σ 2
e

to guarantee that the secrecy constraint is met (for large
K). Let re = σ 2

he
/σ 2

e . Together with the short-term transmit
power constraint (31a), the transmission power is given as

β = min

[
Ptot

K
(
σ 2
ω + σ 2

θ

) ,
Ims

re
(
K − Imsσ 2

ω

)

]

. (45)

When β = Ims
re(K−Imsσ 2

ω) , from (29a) we have

D =
⎛

⎝ 1

σ 2
θ

+ 1

σ 2
ω

K∑

k=1

gk

gk + σ 2
n

σ 2
ωβ

⎞

⎠

−1

=
⎛

⎝ 1

σ 2
θ

+ 1

σ 2
ω

K∑

k=1

gk

gk + σ 2
n re

σ 2
ωIms

K − σ 2
n re

⎞

⎠

−1

(c)∼
⎛

⎝ 1

σ 2
θ

+ K

σ 2
ω

E

⎡

⎣ g1

g1 + σ 2
n re

σ 2
ωIms

K − σ 2
n re

⎤

⎦

⎞

⎠

−1

w.p.1

(46)

provided the expectation E[ gk
gk+σ 2

e /(σ 2
ωβ) ] exists. (c) is the

result of applying a strong law of large numbers for trian-
gular arrays [45]. Hence, the long-term distortion at the FC
is given as

E [D] ∼
⎛

⎝ 1

σ 2
θ

+ K

σ 2
ω

E

⎡

⎣ g1

g1 + σ 2
n re

σ 2
ωIms

K − σ 2
n re

⎤

⎦

⎞

⎠

−1

.

(47)
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As gk , ∀k is exponentially distributed with mean σ 2
h , we

have

E

⎡

⎣ g1

g1 + σ 2
n re

σ 2
ωIms

K − σ 2
n re

⎤

⎦ = 1

+ −σ 2
n re
(
K−σ 2

ωIms
)

σ 2
h σ

2
ωIms

e

σ2
n re(K−σ2

ωIms)
σ2
h
σ2
ωIms E1

[
σ 2
n re
(
K−σ 2

ωIms
)

σ 2
h σ

2
ωIms

]

∼ σ 2
h σ

2
ωIms

σ 2
n re
(
K − σ 2

ωIms
) − 2σ 4

h σ
4
ωI

2
ms

σ 4
n r

2
e

(
K − σ 2

ωI
2
ms

)2 (48)

where function E1[z] is related to the exponential in-
tegral Ei[z] through the expression E1[z] = −Ei[−z] =∫∞
z
e−t t−1dt [46].
The case when β = Ptot/(K(σ 2

ω + σ 2
θ )) has been ex-

plored in [47]. Therefore, combining the results of (45),
(47), and (48), we have the long-term distortion at the FC
being written as

E [D] ∼ σ 2
θ σ

4
n

σ 4
n + σ 2

hσ
2
θ σ

2
nψ − 2σ 4

h σ
2
ωσ

2
θ ψ

2

K

∼ σ 2
θ σ

2
n

σ 2
n + σ 2

hσ
2
θ ψ

+ 2σ 4
h σ

2
ωψ

2σ 4
θ(

σ 2
n + σ 2

hψσ
2
θ

)2
K

(49)

where

ψ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ims

re (1 − Ims)
, Ims <

PtotreK

K
(
σ 2
θ + σ 2

ω

)+ Ptotreσ 2
ω

Ptot

σ 2
θ + σ 2

ω

, otherwise.

(50)

REMARK It can be noticed from (49) and (50), that
when the channel conditions of the FC and the eavesdropper
satisfy σ 2

h /σ
2
n ≥ σ 2

he
/σ 2

e , for any given total transmission
power Ptot and secrecy threshold at the eavesdropper Dmin

[Ims = 1/Dmin − 1/σ 2
θ as defined in (31)],ψ is fixed for all

fading blocks. In addition, the distortion at the FC decays
to σ 2

θ σ
2
n /(σ

2
n + σ 2

h σ
2
θ ψ) (as the number of sensors

increases) at the rate 1/K .

IV. MULTIPLE-SENSORS MULTIPLE-ANTENNAS
SCENARIO

In this section, we want to explore the distortion per-
formance for multiple sensors of two different multiple-
antenna scenarios: 1) each sensor is equipped with single
transmit antenna while the two receivers, namely the FC and
the eavesdropper, are loaded with multiple receiving anten-
nas and 2) multiple transmit antennas at each sensor but with
a single receive antenna at the FC and the eavesdropper.

A. Multiple Antennas at the Receivers

Similar setups as in Section III are used, where the sen-
sors are assumed to have a single transmit antenna. Each
sensor amplifies and forwards their measurements to an Nr
antenna FC with amplification factor pk ∈ C via a slow-
fading orthogonal MAC. The transmissions are overheard

by an eavesdropper who is equipped withNe receive anten-
nas. We assume that both the FC’s and the eavesdropper’s
channels experience block fading. The signals received by
the FC and eavesdropper from the kth sensor are then given
by, respectively

yk = θpkhk + ωkpkhk + zk (51a)

yek = θpkhek + ωkpkhek + zek (51b)

where yk = [y1k, . . . , yNrk]
T and yek = [ye1k, . . . , yeNek]

T,
the entries of hk and hek are the instantaneous zero
mean i.i.d. complex Gaussian channels from sensor k
to the FC and the eavesdropper with variances σ 2

h k
and

σ 2
he k

, respectively, and zk = [z1k, . . . , zNrk]
T and zek =

[ze1k, . . . , zeNek]
T represent i.i.d. additive Gaussian noise

with zero mean and covariances σ 2
k INr at the FC and σ 2

e k
INe

at the eavesdropper, respectively. The set of received signals
at the FC from all sensors can be written as

Y = [y1, . . . , yK ]T

= θ [p1h1, . . . , pkhk]T + [ω1p1h1, . . . , ωkpkhk]T

+ [z1, . . . , zk]T . (52)

Using the fact that each sensor transmits through an
orthogonal MAC, the covariance of the noise factor
[ω1p1h1, . . . , ωkpkhk]T + [z1, . . . , zk]T can be derived as
a KNr ×KNr matrix:

C =

⎡

⎢
⎣

σ 2
w1p2

1h1hH
1 +σ 2

1 INr 0
. . .

0 σ 2
wKp

2
KhKhH

K+σ 2
KINr

⎤

⎥
⎦.

(53)

Applying the MMSE estimator, at time t the distortion
at the FC is

D =

⎛

⎜
⎝

1

σ 2
θ

+

⎡

⎢
⎣

p1h1
...

pKhK

⎤

⎥
⎦

H

C−1

⎡

⎢
⎣

p1h1
...

pKhK

⎤

⎥
⎦

⎞

⎟
⎠

−1

(d)=
[

1

σ 2
θ

+
K∑

k=1

pH
k pk

×
(
σ−2
k hH

k hk−σ−2
k hH

k hk

×
(
σw

−2
k p

−2
k + σ−2

k hH
k hk

)−1
σ−2
k hH

k hk

)]−1

=
(

1

σ 2
θ

+
K∑

k=1

gkβk

σ 2
k + gkσw

2
kβk

)−1

(54)

where (d) results from applying the matrix inversion lemma,
βk � pH

k pk is the power allocated on the kth sensor, and
gk � hH

k hk = ∑Nr
m=1 h

H
mkhmk is the sum of channel power

gains from the kth sensor to the FC with hmk being the
channel gain from sensor k to the mth antenna at the FC.
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Similarly, the distortion at the eavesdropper is given as

De =
(

1

σ 2
θ

+
K∑

k=1

gekβk

gekβkσ
2
ωk + σ 2

e k

)−1

(55)

where gek � hH
ekhek = ∑Ne

n=1 he
H
nkhenk is the sum of channel

power gains from the kth sensor to the eavesdropper and
henk is the channel gain from sensor k to the nth antenna at
the eavesdropper.

It can be seen that the distortion at the FC and the eaves-
dropper, i.e., (54) and (55) share the same expression with
(29a) and (29b) of Section III. However, because both re-
ceivers are now equipped with multiple antennas, gk and
gek become the summation of channel power gains from
the kth sensor to the FC and the eavesdropper, respectively.
Therefore, the functional optimization problem that mini-
mize the overall distortion at the FC while satisfying power
and security constraints are cast and solved in the same way
as (30).

B. Multiple Antennas at the Sensors

Let

hk = [hk,1, . . . , hk,Nk ]
T

hek = [hek,1, . . . , hek,Nk ]
T

be the channels from the kth sensor to the FC and the
eavesdropper, respectively. We assume the entries of both
hk and hek are i.i.d. distributed zero mean complex Gaussian
with variances {σ 2

h k
} and {σ 2

he k
}, respectively. At each trans-

mission, sensor k adopts the analog amplify and forward
techniques by scaling the measurement with an amplifying
factor pk ∈ C

Nk×1. The FC and the eavesdropper receive,
respectively

yk = hT
kpkθ + hT

kpkωk + zk (56a)

yek = hT
ek

pkθ + hT
ek

pkωk + zek. (56b)

As a result, by employing the MMSE estimator, the dis-
tortionD at the FC and the distortionDe at the eavesdropper
can be written as

D =
(

1

σ 2
θ

+
K∑

k=1

(
hT

kpk
)H

hT
kpk

(
hT
kpk
)H

hT
kpkσ 2

ωk + σ 2
n k

)−1

(57a)

De=
(

1

σ 2
θ

+
K∑

k=1

(
hT
ek

pk
)H

hT
ek

pk
(
hT
ek

pk
)H

hT
ek

pkσ 2
ωk+σ 2

e k

)−1

. (57b)

In the long-term optimal power allocation, we have an
additional constraint to ensure that the FC has a better esti-
mation quality than at the eavesdropper; thus, the functional

optimization problem can be expressed as

min
pk,∀k

E

⎡

⎣

(
1

σ 2
θ

+
K∑

k=1

(
hT
kpk
)H

hT
kpk

(
hT
kpk
)H

hT
kpkσ 2

ωk + σ 2
n k

)−1
⎤

⎦

s.t. E

[
K∑

k=1

pH
k pk

(
σ 2
ωk + σ 2

θ

)
]

≤ Ptot

E

⎡

⎣

(
1

σ 2
θ

+
K∑

k=1

(
hT
ek

pk
)H

hT
ek

pk
(
hT
ek

pk
)H

hT
ek

pkσ 2
ωk+σ 2

e k

)−1
⎤

⎦

≥ Dmin

E

⎡

⎣
(

1

σ 2
θ

+
K∑

k=1

(
hT
ek

pk
)H

hT
ek

pk
(
hT
ek

pk
)H

hT
ek

pkσ 2
ωk + σ 2

e k

)−1
⎤

⎦

≥E

⎡

⎣
(

1

σ 2
θ

+
K∑

k=1

(
hT
kpk
)H

hT
ek

pk
(
hT
kpk
)H

hT
kpkσ 2

ωk+σ 2
n k

)−1
⎤

⎦ .

(58)

We can apply the same techniques as previous sec-
tions to solve problem (58). We omit the details to avoid
repetition.

V. MULTIPLE-EAVESDROPPER MULTIPLE-ANTENNAS
SCENARIO

In this section, we look at how the long-term distor-
tion at the FC decays as the number of transmit antennas
increases when multiple eavesdroppers are present in the
partial CSI scenario, where we first formulate the optimiza-
tion problem, followed by asymptotic analysis.

Denote the channel vector at the j th eavesdropper as
hT
e j

, where the entries of hT
e j

are i.i.d. complex Gaussian
variables with zero mean and variance σ 2

he j
. Therefore, the

signal received by eavesdropper j is given by

yej = hT
ej

pθ + hT
ej

pω + zej (59)

where the Gaussian source θ and the measurement sensitiv-
ity ω are the same as defined in Section II; zej is i.i.d. zero
mean complex Gaussian channel noise at the j th eaves-
dropper with variance σ 2

e j
.

In the multiple eavesdroppers scenario, we would like
to maintain the average distortion at all eavesdroppers to be
larger than the threshold Dmin and the long-term distortion
at the FC. Hence, the optimization problem is cast as

min
p

E [D]

s.t. E
[(
σ 2
θ + σ 2

ω

)
pHp

] ≤ Ptot (60a)

E
[
Dej

] ≥ Dmin (60b)

E
[
Dej

] ≥ E [D] , j = 1, . . . , NE (60c)

where

Dej = σ 2
θ − σ 4

θ (hT
ej

p)HhT
ej

p

σ 2
e j

+ (σ 2
θ + σ 2

ω)(hT
ej

p)HhT
ej

p
.

556 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 53, NO. 2 APRIL 2017



In problem (60), apart from the two sets of security
constraints, it almost shares the same features as the single
eavesdropper case as shown in (30). One could use the
similar approaches to obtain the locally optical solution.
Therefore, in the section, we concentrate on the asymptotic
analysis.

THEOREM Choose the beamforming vector p to be
lined up with the FC’s channel, i.e., p =

√
p̂h∗

‖h‖ . Then, the
long-term distortion at the FC using orthogonal access
scheme follows:

E [D] ∼ σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ α

2

σ 2
n σ

2
h p̂

1

Nt
asNt → ∞ (61)

where

p̂ = min

⎡

⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎝

σ 4
θ

σ 2
ω + σ 2

θ

Dmin − σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

− 1

⎞

⎟
⎟
⎟
⎠

1

SNRmax
,

Ptot

σ 2
θ + σ 2

ω

⎤

⎥
⎥
⎥
⎦

with

SNRmax = max
σ 2
he j

σ 2
e j

being the largest SNR among all the eavesdroppers.
We outline the proof, which is similar to that given in

Section II-B2. First, because the eavesdroppers’ channels
are independent we can show that the long-term distortion
at eavesdropper j is lower bounded by

σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ /(σ

2
θ + σ 2

ω)

1 + σ 2
he j
p̂/αej

where αej = σ 2
e j
/(σ 2

θ + σ 2
ω). To satisfy the secrecy con-

straints in (60b) and (60c), p̂ is set to meet

min

[
σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ /(σ

2
θ + σ 2

ω)

1 + σ 2
he j
p̂/αej

]

≥ Dmin

which gives

p̂ ≤

⎛

⎜
⎜
⎜
⎝

σ 4
θ

σ 2
ω + σ 2

θ

Dmin − σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

− 1

⎞

⎟
⎟
⎟
⎠

1

SNRmax
.

Next, applying the strong law of large numbers we obtain

E[D] ∼ σ 2
θ σ

2
ω

σ 2
θ + σ 2

ω

+ σ 4
θ α

2

σ 2
n σ

2
h p̂

1

Nt
as Nt → ∞.

We also notice that the long-term distortion at the FC
reduces to the single eavesdropper case when the eaves-
droppers’ channel gains and channel noise variances are
identical, i.e., σ 2

he j
= σ 2

he
and σ 2

e j
= σ 2

e , ∀j .

VI. NUMERICAL RESULTS

In this section, we first show the performance of a
multiple-antenna single-sensor system via numerical sim-
ulations. For simplicity, we consider the source θ to be

Fig. 4. Performance comparison when zero information
leakage is achieved.

Gaussian distributed with zero mean and variance σ 2
θ =

1 mW. The sensor measurement sensitivity is set to σ 2
ω =

10−3 mW. We assume the same noise level for both the FC
and the eavesdropper’s channel, where σ 2

n = σ 2
e = 10−8

mW. In the following simulation, the secrecy threshold is
chosen from the range 0.05 ≤ Dmin ≤ 0.65. Furthermore,
we consider the pathloss of signal power, in decibel scale,
at the FC and the eavesdropper following the free-space
pathloss model [48]

PL = 20 log10(Dist) + 20 log10(f ) − 27.55 (62)

where Dist ∈ {d, de} is the distance between the sensor and
the FC or the eavesdropper in meters, and f is the signal
frequency in megahertz (we assume the network uses oper-
ation frequency of 800 MHz, and the sensor is closer to the
FC than to the eavesdropper with the distance from the sen-
sor to the FC and to the eavesdropper being set to 127 and
130 m, respectively). Thus, the channel power gain follows
an exponential distribution with mean of 10− PL

10 mW.
Fig. 4 illustrates the distortion performance at the FC

when zero information leakage is achieved with the num-
ber of transmit antennas Nt ∈ {2, 3, 4}, for a wide range
of transmission power budgets. With the eavesdropper’s
full CSI, we can rotate and transmit the information on
the null space of the eavesdropper’s channel by sacrific-
ing only a proportion of the FC’s channel gain, and hence
no information is leaked to the eavesdropper. As Ptot in-
creases, the distortion gradually approaches its lower bound
σ 2
θ − (σ 2

θ /(σ
2
θ + σ 2

ω)), i.e., 9.99 × 10−4.
Fig. 5 depicts the distortion performance at the FC ver-

sus the secrecy threshold for a three-antenna single-sensor
system. For comparison, we plot the system performance
under four scenarios: long-term full CSI, partial CSI, par-
tial CSI with artificial noise, and short-term full CSI. First,
owing to the channel knowledge of both the FC and the
eavesdropper, it is not surprising to see that the perfor-
mance of the full CSI scenario is superior to the perfor-
mance of partial CSI. Similar performance gains can be
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Fig. 5. Performance comparison between full CSI, partial CSI, and
artificial noise in a multiple-antenna single-sensor system.

Fig. 6. Asymptotic behavior of E[D] in a multiple-antenna system.

seen for the full CSI short-term distortion. We also notice
the superior performance of artificial noise in the partial
CSI case. This is because in the full CSI scenario, due to
the full channel information of both FC and the eavesdrop-
per, the direction of the beamformer can be designed to
benefit the FC with little information being leaked to the
eavesdropper; and in the case of artificial noise, a small
amount of “noise” is deliberately generated to degrade the
eavesdropper’s channel, which indicates that the secrecy
threshold can be easily achieved without sacrificing much
transmit power; whereas for the case of partial CSI without
artificial noise, some antennas need to be switched OFFto
achieve the secrecy requirements, which is also the case for
the short-term scenario.

We next present results for the asymptotic behavior
for the multiple-antenna single-sensor scenario, where the
beamforming vector is aligned with the FC’s channel di-
rection. In Fig. 6, we can see that the asymptotic distortion
performance of the results given in (26) match closely the
distortion at the FC obtained through simulations, and the
gap gradually vanishes as Nt keeps increasing. Note that
the asymptotic behavior in a multiple-sensor network, ob-
tained by applying (49), can be plotted similarly as Fig. 6.

Fig. 7. Performance comparison in an eight-sensor network, with
σ 2
ω = 10−3 mW, and the distance from each sensor to the FC and to the

eavesdropper are 125, 126, 127, 128, 129, 130, 131, 132, and 139 m, 138,
137, 136, 135, 131, 130, and 129 m, respectively.

In the following, we study the distortion performance
at the FC for a multiple-sensor network, where we assume
the total transmit power budget is 30 mW and all sensors
share the same measurement sensitivity, i.e., σ 2

ωk
= σ 2

ω, ∀k.
We apply the same pathloss model (62) and we consider
the same noise level for both the FC and the eavesdropper’s
channel, where σ 2

n = σ 2
e = 10−8 mW. From (29b) we no-

tice that the distortion at the eavesdropper De drops to its
minimum value σ 2

θ σ
2
ω/(Kσ

2
θ + σ 2

ω) as all the transmission
powers approach infinity, andDe would reach its maximum
value σ 2

θ when βk = 0, ∀k.
In Fig. 7, the secrecy threshold is chosen from the range

0.05 ≤ Dmin ≤ 0.25. In the plot, the short-term distortion
result is obtained by averaging over 10 000 channel realiza-
tions. Not surprisingly, we can see that long-term distortion
performances are superior to the performances of short-
term power allocation problem due to a smaller feasibility
region for the latter, where the sensors are required to en-
sure that the power constraint and the secrecy constraint are
satisfied in every transmission slot.

In Fig. 8, we study the system performance of a three-
sensor network with two sensors working as relays to
generate artificial noise. The secrecy threshold is set to
0.05 ≤ Dmin ≤ 0.8. All the sensors (including two relays)
are 127 m away from the FC which is 3 m closer than to the
eavesdropper, and we also assume the distances from the
two relays to the sensor are 10 and 20 m, respectively. Due
to diversity gains, it is clear to see the superior performance
of the three-sensor network. As for the one-sensor two-
relay network, it performs the same way as the one-sensor
system when the distortion threshold is small; however,
as the secrecy requirement increases at the eavesdropper,
the performance gap grows. This is because the two relays
are activated only when Dmin is relatively large, where a
small portion of the total transmit power is used to produce
artificial noise to reach the secrecy threshold; whereas in
the other two systems, without the eavesdropper’s channel
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Fig. 8. Multiple-sensor network with relays, with σ 2
ω = 10−3 mW.

Fig. 9. Performance comparison among multiple-sensor networks with
the total number of transmitting antennas of eight.

information, the sensor(s) may need to reduce the transmis-
sion power to achieve the high secrecy requirement.

In Fig. 9, we compare the distortion performance of
three different types of multiple-sensor network with a fixed
total number of transmitting antennas of eight. It is seen that
the distortion performance of the four-antenna two-sensors
network is followed by the performance of a two-antenna
four-sensor network, which are both superior to the single-
antenna eight-sensor scenario. This suggests that we can
better utilize a multiple-antenna system for a point source
estimation to achieve a better performance at the FC under
the secrecy constraints.

VII. CONCLUSION

In this paper, we have considered the problem of
transmit power allocation for distortion minimization in
multisensor estimation in the presence of an eavesdropper,
where the sensors can also have multiple transmit antennas.
We studied the asymptotic behavior for the long-term dis-
tortion at the FC under the equal power allocation for the

multiple-sensor scenario, and also for the multiple-antenna
single-sensor scenario, where the transmit beamforming
vector at the sensor is aligned with the direction of the FC.
In addition, in a multiple-sensor network, when the secrecy
requirement is high, some sensors can be deployed to arti-
ficially produce noise to improve the transmission security.
For the multiple-antenna single-sensor system, depending
on the availability of the eavesdropper’s channel informa-
tion, we can achieve zero information leakage or degrade
the eavesdropper’s channel and enhance the system perfor-
mance by exploiting multiple-antenna techniques under the
long-term power allocation scenario. Future work includes
a study optimal power allocation in secrecy outage prob-
lems, where an outage event is declared if the instantaneous
distortion at the eavesdropper is less than the target secrecy
threshold, and also with multiple receive antennas at the FC
and the eavesdropper.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci
Wireless sensor networks: A survey
Computer Netw., vol. 38, no. 4, pp. 393–422, 2002.

[2] J. J. Xiao, Z. Q. Luo, S. Cui, and A. J. Goldsmith
Power-efficient analog forwarding transmission in an inhomo-
geneous Gaussian sensor network
In Proc. IEEE 6th Workshop Signal Process. Adv. Wireless
Commun., Jun. 2005, pp. 121–125.

[3] S. Cui, J.-J. Xiao, A. Goldsmith, Z.-Q. Luo, and H. Poor
Estimation diversity and energy efficiency in distributed sensing
IEEE Trans. Signal Process., vol. 55, no. 9, pp. 4683–4695, Sep.
2007.

[4] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. Goldsmith
Power scheduling of universal decentralized estimation in sen-
sor networks
IEEE Trans. Signal Process., vol. 54, no. 2, pp. 413–422, Feb.
2006.

[5] I. Bahceci and A. Khandani
Linear estimation of correlated data in wireless sensor networks
with optimum power allocation and analog modulation
IEEE Trans. Commun., vol. 56, no. 7, pp. 1146–1156, Jul.
2008.

[6] C.-H. Wang and S. Dey
Power allocation for distortion outage minimization in clustered
wireless sensor networks
In Proc. IEEE Wireless Commun. Mobile Comput. Conf., 2008,
pp. 395–400.

[7] C.-H. Wang, A. S. Leong, and S. Dey
Distortion outage minimization and diversity order analysis for
coherent multiaccess
IEEE Trans. Signal Process., vol. 59, no. 12, pp. 6144–6159,
Dec. 2011.

[8] C. E. Shannon
Communication theory of secrecy systems
Bell Syst. Tech. J., vol. 28, no. 4, pp. 656–715, 1949.

[9] A. D. Wyner
The wire-tap channel
Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, 1975.

[10] A. Khisti, A. Tchamkerten, and G. W. Wornell
Secure broadcasting over fading channels
IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2453–2469, Jun.
2008.

[11] P. K. Gopala, L. Lai, and H. El-Gamal
On the secrecy capacity of fading channels
IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4687–4698, Oct.
2008.

GUO ET AL.: ESTIMATION IN WIRELESS SENSOR NETWORKS WITH SECURITY CONSTRAINTS 559



[12] Y. Liang, H. Poor, and S. Shamai
Secure communication over fading channels
IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2470–2492, Jun.
2008.

[13] A. Khisti and G. W. Wornell
Secure transmission with multiple antennas—Part II: The MI-
MOME wiretap channel
IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5515–5532, Nov.
2010.

[14] R. Bustin, R. Liu, H. V. Poor, and S. Shamai
An MMSE approach to the secrecy capacity of the MIMO
Gaussian wiretap channel
EURASIP J. Wireless Commun. Netw., vol. 2009, 2009, Art.
no. 370970.

[15] T. Liu and S. Shamai
A note on the secrecy capacity of the multiple-antenna wiretap
channel
IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2547–2553, Jun.
2009.

[16] E. Ekrem and S. Ulukus
Secure lossy transmission of vector Gaussian sources
IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5466–5487, Sep.
2013.

[17] F. Naghibi, S. Salimi, and M. Skoglund
The CEO problem with secrecy constraints
In Proc. IEEE Int. Symp. Inf. Theory, 2014, pp. 756–760.

[18] G. Bagherikaram and K. N. Plataniotis
Secure hybrid digital-analog wyner-ziv coding
In Proc. IEEE 22nd Int. Symp. Pers. Indoor Mobile Radio Com-
mun., 2011, pp. 1161–1166.

[19] J. Villard and P. Piantanida
Secure multiterminal source coding with side information at
the eavesdropper
IEEE Trans. Inf. Theory, vol. 59, no. 6, pp. 3668–3692, Jun.
2013.

[20] Y. Kaspi and N. Merhav
Zero-delay and causal secure source coding
IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 6238–6250, Nov.
2015.

[21] M. Gastpar, B. Rimoldi, and M. Vetterli
To code, or not to code: lossy source-channel communication
revisited
IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1147–1158, May
2003.

[22] W.-C. Liao, T.-H. Chang, W.-K. Ma, and C.-Y. Chi
QoS based transmit beamforming in the presence of eavesdrop-
pers: An optimized artificial-noise-aided approach
IEEE Trans. Signal Process., vol. 59, no. 3, pp. 1202–1216,
Mar. 2011.

[23] R. Soosahabi and M. Naraghi-Pour
Scalable phy-layer security for distributed detection in wireless
sensor networks
IEEE Trans. Inf. Forensics Security, vol. 7, no. 4, pp. 1118–
1126, Aug. 2012.

[24] Z. Li and T. J. Oechtering
Privacy-aware distributed Bayesian detection
IEEE J. Select. Topics Signal Process., vol. 9, no. 7, pp. 1345–
1357, Oct. 2015.

[25] B. Kailkhura, V. Nadendla, and P. Varshney
Distributed inference in the presence of eavesdroppers: A sur-
vey
IEEE Commun. Mag., vol. 53, no. 6, pp. 40–46, Jun. 2015.

[26] V. S. S. Nadendla and P. K. Varshney
Design of binary quantizers for distributed detection under se-
crecy constraints
IEEE Trans. Signal Process., vol. 64, no. 10, pp. 2636–2648,
May 2016.

[27] V. S. S. Nadendla, S. Liu, and P. K. Varshney
Design of transmit-diversity schemes in detection networks un-
der secrecy constraints

In Proc. 53rd Annu. Allerton Conf. Commun., Control, Com-
put., Sep. 2015, pp. 794–801.

[28] S. Goel and R. Negi
Guaranteeing secrecy using artificial noise
IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2180–2189,
Jun. 2008.

[29] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor
Improving wireless physical layer security via cooperating re-
lays
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1875–1888,
Mar. 2010.

[30] S. Gerbracht, A. Wolf, and E. A. Jorswieck
Beamforming for fading wiretap channels with partial channel
information
In Proc. IEEE Int. ITG Workshop Smart Antennas, 2010, pp.
394–401.

[31] D. Guo, S. Shamai, and S. Verdú
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