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Abstract. The equations of motion of a ten dimensio- 
nal model based on the Chapline-Manton lagrangian, 
modified by higher derivative terms, are solved using 
six dimensional coset spaces with torsion. Minkowski 
space, anti-de Sitter, de Sitter and Einstein static cos- 
mology with negative curvature are possible four di- 
mensional cosmologies. In all case symmetry breaking 
schemes E 8 x E 8 ~ E  8 x E 6 with chiral 27's of E 6 can 
be obtained. 

1 Introduction 

Supersymmetric string theories in ten dimensions 
[1] are widely regarded as being very promising 
candidates for a unified theory of gravity and the 
SU(3) xS U( 2 ) •  U(1) strong-electro-weak theory. 
The question of how to extract realistic four dimensio- 
nal physics from a ten dimensional theory with SO(32) 
or E8 x E 8 Yang-Mills symmetry has occupied many 
authors [2-7] and the path still remains unclear. The 
device of equating the gravitational connection with 
the Yang-Mills connection was used by Candelas 
et al. [2], to compactify six of the ten dimensions on 
a Calabi-Yau manifold with SU(3) holonomy, to ob- 
tain an E6 Yang-Mills group in four dimensional 
Minkowski space. This leads to some very tantalising 
results, but gives little insight into why four dimen- 
sions should be singled out in preference to any other 
number. Compactifications on six dimensional coset 
spaces have been examined in [3-7], Castellani and 
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Lust [7] performing an analysis of the a-model con- 
formal anomaly to show that the anomaly can vanish 

G2 
for the non-symmetric coset spaces and 

SU(3) SU(3) 
U(1) • U(1)' with torsion. 

In this paper, an attempt is made to explain the 
preferential existence of four dimensions dynamically, 
by giving the three form field H, of the gravitational 
bosonic multiplet, a non zero background value. 
Equating part of the three form field to the volume 
form of three dimensional space (in a manner similar 
to that used in [8] in the context of eleven dimensio- 
nal supergravity) allows solutions to be constructed 
with a four dimensional Einstein static cosmology, 
i.e. ~ • M3 where IR is the time-like direction and 
M3 is a maximally symmetric three dimensional ma- 
nifold. The solutions obtained give negative curvature 
for M3 which is thus a three dimensional hyperboloid, 
(Hyp) 3. Maximally symmetric four dimensional space 
times (Minkowski, anti-de Sitter and de Sitter) will 
also be considered. In this case the three form field 
H will only be given a non-zero component in the 
internal space. The three non-symmetric coset spaces 

G2 SU(3) Sp(4) 
SU(3) '  U(1) • U(1) and SU(2) • U(1)~'. are examined 

as candidate internal manifolds. We shall be consider- 
ing the possibility of allowing non-zero torsion on 
our manifolds as torsion can be explicitly defined on 
these non-symmetric coset spaces. 

In the original Chapline-Manton theory the role 
of torsion is clear - we should adopt second order 
formalism and set the torsion to zero (when the fer- 
mion fields are zero); however at the low energy limit 
of superstrings it is possible that we may find torsion 
arising from the higher order effects. 

When approaching compactification via the a- 
model approach [6, 7] some authors have cast the 
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H field in the role of the torsion tensor Tb" ~. We also 
set T = / - / b u t  having verified that a Minkowski space- 
time solution was not allowed decided to investigate 
the consequences of having a variable torsion. In ac- 
tual fact, for the ansatz we consider, we still have 
Habc proportional  to T~bc but the proportionality is 
not fixed. What is the possible source of this extra 
torsion? It could come from higher order terms ari- 
sing from the string theory although we can show, 
at least to first order, by observing that no 9 of SO(9) 
exists amongst the first massive level of states, that 
torsion cannot be a propagating field. At the Cha- 
pline-Manton lagrangian level we can also have tor- 
sion, via specific non-zero fermion bilinears which 
have the same tensorial properties as torsion. Even 
when the background fields are zero, quantum fluc- 
tuations of the fermionic fields can produce a torsion 
as was discussed in [23] where the authors also consi- 
dered a variable torsion. So we will take the viewpoint 
that, even if not a free field, there is the possibility 
that the torsion may be non-zero and we shall attempt 
to solve the equations of motion with this crucial 
difference. 

The Lagrangian used to obtain the dynamics is 
that of Chapline and Manton [9] for ten dimensional 
supergravity coupled to supersymmetric Yang-Mills, 
modified by the addition of terms arising from super- 
string theories as suggested in [10] and [12]. 

The outcome of the analysis is that there are two 
disconnected one parameter families of solutions for 
lRx(Hyp) 3, one joining smoothly onto ten-dimensio- 
nal Minkowski space, the other joining smoothly 
onto four-dimensional Minkowski direct producted 
with one of the three coset spaces, the two limiting 
cases also being solutions. Anti-de Sitter and de Sitter 
spaces are also possible solutions. Some possible resi- 
dual fermion spectra in four dimensions, based on 
E 6 as a unification group, are discussed. 

Other authors have considered the role of modi- 
fied Chapline-Manton Lagrangians in compactifica- 
tion, but the present work differs from these in several 
respects. Randjbar-Daemi et al. [24], modify the La- 
grangian by adding a SUSY breaking scalar potential 
to compactify to four dimensional Minkowski space- 
time, but do not consider R 2 terms. Cosmological 
implications of gaugino condensates and scalar fields 
have been considered for compactifications on Ca- 
labi-Yau spaces and spheres by Maeda and Pang [25] 
but neither R 2 terms nor non-symmetric coset spaces 
are considered. Maeda and Pollock [26] do consider 
R 2 terms, but only for compactifications on Calabi- 
Yau spaces, not on other manifolds. Chapline [27] 
considers canonical connections on non-symmetric 

Tr 
coset spaces, but uses only dH = 3 0  F/x F, and does 

not include the tr R/~ R modification, furthermore the 
question of dynamics is not addressed at all, only 
geometry. 

General aspects of torsion in superstring theories 
have been considered by a number of autbors. Bars 
[28] approaches the problem by demanding ten di- 
mensional supersymmetry, and does not consider any 
dynamics. References [29] and [30] use the two di- 
mensional sigma model approach. Hull [29] consi- 
ders conditions necessary for finiteness, conformal in- 
variance, anomaly cancellation and world sheet su- 
persymmetry in the sigma model while Rohm and 
Witten [20] use N =  1 world sheet supersymmetry as 
a guide to non zero H configurations. Neither tackles 
the full ten dimensional equations of motion. 

The question of supersymmetry on non-symmetric 
coset spaces in particular is discussed in [23] and 
[313. 

The layout of the paper is as follows. Section 2 
sets up some notation and explains the motivation 
for our choice of Lagrangian. Section 3 contains a 
review of non-symmetric coset spaces and their geo- 
metrical structures. Section 4 exhibits our ansatz and 
Sect. 5 details of the solutions. Section 6 contains an 
analysis of the fermion spectra in four dimensions 
when our solutions are used to compactify the E s x E 8 
theory. Section 7 contains a discussion of these solu- 
tions. Details of the structure constants and geometri- 
cal structures on the three non-symmetric coset spaces 
under consideration are relegated to an appendix. 

2 Dynamics 

The Lagrangian for ten-dimensional supergravity 
coupled to supersymmetric Yang-Mills [9] is a ten 
form in differential form language 

Ao = ~  ~ ,  1 1  -41 e2~H/x ,H+21_~e~Tr(FA. *F) 

- d a  A *da + Fermionic terms. (1) 

We shall assume that the vacuum expectation 
values of the fermion fields are set to zero and 
only the bosonic fields have non-zero background 
values. The field a is the dilaton (scalar) field 
and F = dA § A A A is the Yang-Mills two form, ta- 
king values in the Lie algebra of the gauge group 

s0(32) I 
G, Es xE8 or Z2 ]. The normalisation is such 

that Tr(Qi Qj)= -30N2f i i j  with Qi= -Q~+ in the ad- 
joint representation. H is a three form field, the curl 
of a two form B modified by the Yang-Mills Chern- 

1 
Simons three form a)3 r - M -  Tr(A/x F--�89 A ix A) 

30 
[93; 

H = d B + o ~  -M. (2) 



This definition of H results in the Bianchi type 
of identity 

dH = 3 ~  Tr(F  A F). (3) 

Finally, N is the Einstein scalar and * is the Hodge 
duality operator, sending p-forms to (10 -p )  forms 
(the signature is ( - ,  + . . . . .  +) ) .  For  example, if e A, 
A =0,1 . . . . .  9 are orthonormal one-forms, then 

�9 (eA'^  ... AeA~) eA'"'A~B~+,...~,O(eB,+~ A ... Ae~o). 
(10 -p ) !  

(4) 

The orthonormal one forms are related to the connec- 
tion one-forms (DAB and the torsion two forms T A 
by 

d e  a + (DAB A e e = T A, ( 5 )  

where d is the exterior derivative. 
The curvature two forms are 

RAB = dO)As + (DCA A (DcB (6) 

and the Einstein scalar is given by 

~*1 = R A B  A *(e  a A eB). (7) 

Unfortunately it is difficult to find non-trivial solu- 
tions to the equations of motion, obtained from 2, v 
by varying the fields in the bosonic sector. In fact 
it has been shown [11] that if it is assumed that ten- 
dimensional space-time is split into four dimensional 
de Sitter, anti-de Sitter or Minkowski space and six 
compact microscopic dimensions, with no boundary, 
then there is no solution of the bosonic equations 
of motion for 5r This can be easily seen from the 
scalar equation. Varying a in 5r and integrating by 
parts gives: 

+ l e 2 * H A * H - - I - , , * T ~ r F A * F - - 2 d * d a = O .  (8) 
�9 * 2 w  30 

Maximal symmetry in four dimensions implies that 
neither H nor F has a timelike component,  hence 
the H 2 and F 2 terms above are positive definite. 
Maximal symmetry in four dimensions also implies 
that a must be constant in four dimensional space- 
time and can only be a function of the internal co- 
ordinates. But the eigenvalues of the Laplacian opera- 
tor, d 'd ,  on a compact manifold with positive definite 
signature are negative. Hence all three terms in the 
scalar equation above are of the same sign, and the 
only solution is if all three vanish. 

However, if the Lagrangian above is being consi- 
dered as the low energy limit of a superstring theory, 
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then there would be other terms, higher order in a' E 2 
(E is the energy scale at which we are working and 
~' is the inverse string tension). The first indication 
of these came in [12] where cancellation of gravita- 
tion anomalies motivated the authors to modify the 
H-Bianchi identity to include the Lorentz Chern-Si- 
mons terms: 

(D~ = tr((D ^ R-~(D A (D ̂  co), (9) 

leading to 

d H  =~0 Tr(F  ^ F) + tr(R/~ R) (10) 

with tr R A R - RaB/x R ~a and with anti-hermitian ge- 
nerators of the gauge group. Note that R z contains 
four derivatives and so is of order (~'E2) 2 while d H  
and  F 2 contain only two and so are of order ~'E 2. 
An R z modification to the dynamics was suggested 
in [2], in the form of a term like �89 ~ tr(R ^ *R) as 
an extension of the Lagrangian. However this form 
would be expected to lead to gravitational ghosts and 
a ghost free form was first propounded by Zweibach 
[10]: 

A ~ = � 8 8  exp(a)Ra~/~RcD/~ *(eA AeB AeC AeD). (11) 

In four dimensions, this term would be the Euler den- 
sity and would locally be a total derivative, thus ha- 
ving no effect on the classical dynamics. However, 
in ten dimensions it does affect the classical dynamics, 
as we shall see, avoiding the no go theorem and 
allowing acceptable compactifications. 

This, then, gives us our dynamics. We take the 
Lagrangian ~ and add the R 2 terms (11) also mod- 
ifying the H-Bianchi identity. The equations of mo- 
tion for the dilaton, the anti-symmetric tensor field, 
the Yang-Mills field and the metric are respectively: 

d * d a = ~  exp(a) H A *H--�88 exp(a) ~(FATr *F) 

--~- exp(a) RAB A Rcl  ) A *(eaA eBA eC^ e D) (12) 

d(e2~*H)=O (13) 

D a [exp (a) * F] = -- exp (2 a) F A *H (14) 

1 R A  B A * (e  A A e B A e c) 

+ �88 RAB A RDF A *(eA A eB A eD A eV A eC)--~'C ~ V  + z,,C 

(15) 

where the z c are the energy-momentum forms defined 
by 

rc  = _�88 exp(2 a) [2( icn)  A *H- -  iC(H A *H)] 

Tr  -c 
~c =�89 exp(a) ~ [2 0 F) A *F- -  iC(F ^ *F)] (16) 

c _ [2(iCda)/~ . d a _ i C ( d a  A*da)],  T a --  
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i c being the interior derivative, i.e. a contraction with 
the or thonormal  tangent space vector X c, sending 
p-forms to ( p - 1 )  forms. It  has the following proper- 
ties: 

i c (e A ) = qca,  i c (e n A e B) = qcA e ~ _ e a qcB, 

iC*(e a ^ . . .  ^ e ~) = *(e a ^ . . .  ^ e B ^ e c) (17) 

We shall a t tempt  to solve the above equations 
of motion, with H~=0 to provide a splitting of the 
ten dimensions into 4 + 6, the four dimensional space- 
time being either maximally symmetric (i.e. de Sitter, 
anti-de Sitter or Minkowski) or Einstein static. A na- 
tural choice for a compact,  six dimensional manifold, 
which admits a non-zero H, is one of the three non- 

G2 SU(3) 
symmetric coset s p a c e s , - - ~ S  6, 

SU(3) U(1) x U(1) 
Sp(4) 

or In the next section we shall review 
SU(2) x U(1)" 

the geometry of coset spaces. 

3 Geometry of coset spaces 

We follow here the work of Salam and Strathdee in 
[13]. Given two compact  Lie groups W and V with 
V c W, the set of all left cosets of W with respect to 
Vcan be given the structure of a smooth differentiable 
manifold, with d i m e n s i o n = d i m W - d i m V ,  which 

W 
will be denoted by ~- .  Let ~i=l  . . . .  ,d imV,  

= 1 . . . . .  dim W and a = 1, ..., dim W -  dim V. Then 
Q~ will denote the generators of V and Q~ the genera- 
tors of W. Now we set up a co-ordinate system y, 

W 
at least locally, on ~- .  Each independent value of 

y labels a distinct left coset in W with respect to V. 
For  each value of y we choose an element L ( y )  of 

W 
W from the respective coset. Since ~ -  is a differentia- 

ble manifold L ( y )  is a differentiable function with re- 
spect to the co-ordinate system y. Hence we can define 
the W-Lie algebra valued one-forms 

e(y)  = _ 1  L -  l (y) d L ( y )  (18) 

W 
where d is the exterior derivative on ~ -  and a a real 

constant. This can be expanded in terms of the gene- 
rators of W, as 

e (y) = e a On = e" (y) Q, + e" (y) Q, (19) 

w 
where e"(y)  and ea(y) are one-forms on ~- .  Since d z 

: 0 ,  

d e ( y )  = a e ( y )  ^ e (y)  

= a eb ^ e~ [Qb,  Qe] 
2 

= c~ C b ~ ( e  b ^ e~ ) Q~ 
2 

= (d e a) Qe, 

where we have used the commutat ion  relations 

[Qn, Qb] = Cgb Qe. 

Thus 

(20) 

(21) 

a de  = ~ Cb~"(e b A e ~) 

and 

de  = ~  Cb~"(e b ^ d) .  (22) 

W 
A metric on can be manufactured using e a as 

V 
or thonormal  one forms (a = 1, ..., dim W - d i m  V). 
Considering the metric as a rank two, symmetric, co- 
variant tensor, we define it to be 

dim(~) 

g =  ~ e"| (23) 
a = l  

(tangent space indices are raised and lowered with 
qab=d iag (+  1 . . . .  , + 1)). 

W 
Torsion two forms can also be defined on ~ using 

the structure constants of W 

Ta = 2  (1 --  fl) Cbc a e b ix e c (24) 

where fl is a real constant. When the C~c are non-zero, 
the coset space is said to be non-symmetric.  When 
C~ are all zero, then 

[Qb, Q~] = cb? O. (25) 

and the coset space is said to be symmetric. In the 
ansatz that we use, it is crucial that C~,c be non-zero 
and hence we restrict ourselves to non-symmetric co- 
set spaces. The parameter  fl can take any value. The 
value f l= 1 is the zero torsion case which results in 
the standard Riemannian connection on a homoge- 
neous space. This case is referred to as the canonical 
connection of the first kind in the mathematical  litera- 
ture [14]. 

The case f l=0,  the canonical connection of the 
second kind, results in a connection with holonomy 
group V. In general, arbitrary values of fl give holo- 



nomy group SO(n)  with n = d i m  W - d i m  V. For  the 
three coset spaces on which we focus attention, the 

values fl = 1 _+ ~/5 are special, since these values result 
in vanishing Ricci tensor (though the Riemann tensor 
is still non-zero, of course) [6]. In particular, if Ifll 
is large enough, the scalar curvature can become ne- 
gative. Using (22) and (25) in (5) (noting that CC~ = 0 
since V is a group), gives 

b 09ba = = ~  flCca eC +o~Cea b e e (27) 

leading to the curvature two forms 

~2 

Rba = T (Ceab Cyge + �89 Cygc + �89 C:aC Cvb)  e:  :" g 

(28) 

from (6). 
For  all three possible non-symmetric cases this 

construction results in an Einstein space for any value 
of ft. The scalar curvature is the same for all three 
cases: 

= ~2(2 + f l _  1fl2). (29) 

W 
We now turn to the Yang-Mills field on ~- .  A 

W 
possible choice of non-zero background field on 

is to use the remaining part  of (19). Let us define 
A = - ~ e n Qa leading to 

0{ 2 
F = d A  + A / x  A = --  ~ Cbc a Qa ( eb/x eO (30) 

which takes non-zero values in the Lie algebra of 
V(indeed the case fl = 0, leads to 09 = A, the identifica- 
tion of the spin connection with the Yang-Mills con- 
nection as suggested in [2]. However  for fl=~0, 
og:~A). There are some subtleties for the case of 

Sp(4) 
SU(2) • U(1)'  related to the relative normalisations 

of the SU(2) and U(1) generators, and these are dis- 
cussed in the appendix. This background Yang-Mills 
field satisfies the Yang-Mills equations in the back- 
ground metric (24) 

D Z ' F = d * F +  [A, *F] = 0  (31) 

where r is the six dimensional Hodge duality operator  
W 

on ~- .  (The Bianchi identity D F  = 0 is trivial). Using 

the structure constants for the three non-symmetric  
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coset spaces as given in the appendices, we find 
that the energy momen tum tensor ('oF)" b, given by z~ = 
('cv)~, r e b, for this Yang-Mills field is diagonal. 

4 Ansatz 

We are now ready to write down an ansatz for a 
solution of the equations of mot ion for ~e + A 5e, with 

the topology of M4 x (~7/ and M 4 one of the two 
possible space times \ v /  

i) maximally symmetric, i.e. Minkowski,  de Sitter 
or anti-de Sitter, 

ii) Einstein static cosmology, with a maximally 
symmetric three space, IR • M 3 (where ~, is the time- 
like direction). Let 0', 1', 2', 3' or p, v, ... denote four 
dimensional space-time indices, with e" the orthonor-  
mal one forms for the four dimensional metric, and 
1 . . . .  ,6  or a, b . . . .  denote the internal indices. The 
orientation is given by * 1 = el^ e2... e6A eVA e2'A e3'A e ~ 
The scalar field a will be everywhere a constant: It  
can be scaled out of all the fields (absorbed into the 
other constants of the ansatz) but it should be remem- 
bered that ultimately it is a degree of freedom that 
can be used to set the scale. As for the three form 
H, in case i) it must  vanish on four dimensional space- 
time in accordance with the maximal symmetry of 
space-time, but in case ii) it could have a component  
proport ional  to the volume element of M 3. Its inter- 
nal components  will be taken to be hCab c which for 
a symmetric coset space vanishes of course. This an- 
satz can be written as 

3 h a e b (32) H = h o e l " A e E ' A e  ' +  3! Cabce A A e  c 

where h and ho are real constants (h0 must vanish 
for case i)). Inserting the structure constants of the 
three non-symmetric coset spaces of the appendix, the 
energy momen tum t e n s o r  Zab(T,a=za*beb ) reduces to 
a block product  of constants times the unit matrix. 

The ansatz for the Yang-Mills field is as given 
in the last section (30). It  is assumed to be zero on 
four dimensional space-time. For  completeness, we 
will also consider the case where the background 

W 
Yang-Mills field vanishes identically, on - - .  

V 
Finally we consider the metric. This will take the 

direct product  form with e u independent of the inter- 
nal space and e a independent of the external space. 
Four  dimensional space-time will be assumed torsion 
free, with a cosmological constant allowed in case 
i). Thus the curvature two forms are 

R u~ = A e u/x e ~ #, v = 0', 1', 2', 3' (33) 
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with A=0 ,  >0, < 0  for Minkowski, de Sitter and 
anti-de Sitter spaces respectively. 

For case ii), Einstein static universe, we have 

RO'i'=O 

R i'j" =)~ei'A e j' (34) 

with i', j ' =  1', 2', 3'. 2 =0, >0,  <0  for Minkowski, 
IR • S 3 and IR • (Hyp) 3 spaces respectively. 

The internal metric and connection are given by 
(23) and (27), leading to curvature two forms (28). 
The free parameters in the ansatz are thus ho, h, a, 
fl and A(or 2) and our task will be to solve (10), 
(12), (13), (14) and (15) with this ansatz. 

5 Solutions 

The equations shall be treated in order of complexity. 
First the equation of motion for the antisymmetric 
tensor 

d ' H = 0  (13) 

It is not difficult to show that, with the choice 
(32), this equation is automatically satisfied, and does 
not impose any constraints on the ansatz. 

The Yang-Mills equation is given by 

D*F = -- F/x *H. (14) 

The left-hand side vanishes, as discussed in Sect. 3, 
and it is not difficult to show that the right hand 
side is identically zero for our ansatz. Hence this equa- 
tion is also automatic and does not impose any con- 
straints. 

The Bianchi identity 

d H  = ~oo Tr (F/x F) + tr (R ^ R) (10) 

does, however, provide a constraint. The contribution 
of Ru~ vanishes for both cases (i) and (ii) as does the 
M 4 component of dH, leaving only internal compo- 
nents for (10). A four form equation on a six dimensio- 

nal manifold has (~) = 15 components but remark- 

ably, with the above ansatz, the left and right hand 
sides have exactly the same form, leaving only one 

constraint . /For the case of S p (4) this requires 
\ SU(2) x U(1) 

a particular choice of relative normalisation of the 
generators of SU(2) and U(1), as explained in the 

\ 

appendix). Equation (10) reduces to a single con- 
/ 

straint which we write as 

h = ~ 3 ( N 2 - -  L +~fl2 K)=__a3 R(fl). (35) 

We have used the Jacobi identity for the structure 
constants and the fact that they obey ~c.~,b_ r., ccdb z x  v - -  *'~cd 
and L 6 ~ ' =  C~n C cd~ with K and L as given in the ap- 
pendix. Note that, with F ~ as in (30), it is shown in 

appendix that N Z = L ,  so h=~  4 ~3flz thus the the 

canonical connection of the 2nd kind (fl=0) is the 
one which leads to d H = ~  Tr(F/x F)-- t r(R ^ R)=0,  
and results in anomaly cancelation in four dimensions 
1-15]. This is as one would expect, since f l=0  is the 
choice of gravitational connection which results in 
F = R. Other choices of fl upset this equality. 

Before considering the scalar and Einstein equa- 
tions it will be useful to introduce a few definitions 
concerning the curvature two-forms in the internal 
space: 

0~ 2 

R , b A * ( e a A e b ) = ~ Q ( f l ) * l ,  a , b = l . . . 6  (36) 

Rab ARca A *(e ~ ̂  e b A e ~ A e a) + 2 ~r 0 (F A *F) 

=~4P(fl)*l, a , b , c , d = 1 . . . 6  (37) 

Where, upon explicit evaluation using the structure 
constants, we find that Q ( f l ) = ( 4 + 2 f l - f l  2) and P(fl) 
=(~) (f14--2fla--3flE+8fl+A), A being given by 

Y 2 < 

with L and N z as defined previously and v=d im V 
G2 SU(3) 

When F a = 0  A = 11 for S U ~ '  A =20 for U(1) x U(1) 

and it is not defined for Sp(4) When F n is 
SU(2) x U(1)" 

non-zero, as in (30), A = 8  for all three cosets (see 
appendix). 

Now consider the scalar equation which we will 
write in the form 

�89 A RCD A *(e A A e R A e c A e") 

= H A  *H--~o Tr(F ^ *F). (39) 

Inserting the ansatz corresponding to case i) of a ma- 
ximally symmetric space-time, with ho=0, this equa- 
tion can be written as 

�89 c~4 P(fl) + 6A a2 Q (fl) = K h e + 12A 2, (40) 

For the Einstein static case ii), the result is 

�89 P(fl) + 3 2ct 2 Q(fl) = h 2 + K h z. (41) 

It remains to consider the Einstein equations, (15). 
Inserting our ansatz for Ru~, Rab , and F reduces these 
equations to polynomial constraints on the ansatz 
parameters, ho, a, fl and A (or 2). For case (i) we 



obtain two single constraints, arising from the inter- 
nal and external equations, and for case (ii) three sin- 
gle constraints arising from the internal, the 3-space 
and time equations. Writing them explicitly, we have 
for case i): 

~t 2 h2K 3a2AQ(fl)_I 4p(fi) ' 
3A+~-Q(fl) 4 2 

~2 . . 4  
6A + T  Q(fl)= - 6 A2 - 2A ~2 Q(f l )_~ ptR~ 

0 12 . . . .  

(42) 

(43) 

For case ii), (15) will give three polynomial equa- 
tions: 

(Z 2 

3 ) ,+~-Q(f l )=  1 (h2 K + hZ)-~-o~2Q(fl)-14o~4P(fl), 

(44) 

0~ 2 
0~2 l (h2K-h~) 2Q(fl)-la4p(fl), (45) ~+~Q(/~)= - ~  

~ 2  

32+~Q(fll=14 hZ_~Z2Q(fl ) ~4 - ] ~  P (fl). (46) 

The case of a zero background Yang-Mills field can 
be extracted from the above equations simply by set- 
ting N 2= 0. Eliminating h from the equations of mo- 
tion, using (35) we are left with the following parame- 
ters and constraints: 

case (i) h, ~, fl and A must satisfy (40), (42), (43) 
and (35). 

case (ii) h, ~, fl, 2 and ho must satisfy (41), (44), 
(45), (46) and (35). 

These equations are not linear so there is no gua- 
rantee of success. We start by considering case i) first. 
Equations (40), (42) and (43) can be combined to give 

h 2 
- (e2Q(fl)+Z4A) (47) 

3 

which substituted back into (42) gives 

0~ 2 3 1 
9 A +~-Q(fl)= - ~  ~2 A Q(fl)-4 ~4p(fi). (48) 

We can still combine (42) and (43) to obtain 

A[4A + 2 +a2Q(fl)]=O, 
giving A = 0 (Minkowski space) 

o r  

f l  ~2 O(/~)) 
A =  - - ~  + ~ - ~ .  (49) 

Treating Minkowski space first, inserting A = 0 back 
into (48) gives 

~2 = _ 2 Q (fl) {P(fl)} --1 (50) 
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Fig. 1. Graph of the function which determines whether any Min- 
kowski solutions exist in Sect. 5. We give here the function given 
in (52) for the case when the Yang-Mills fields are non-zero as 
in (30). To have a solution of the equations of motion this function 
must be zero. As we can see there are two roots, at f l=- -2 .13  
and at f l = - 1 . 3 .  At f l = - - l . 3  we do not have ~2~0 and h 2 > 0  
so we do not have a valid solution. At f l=  -2 .13  we find ct2=3.3 
and h 2 =48 so we do have a valid solution at f l=  -2 .13  

Thus everything is determined in terms of fl, which 
must be chosen to satisfy (35) 

4 K Q (fl) R 2 (fl) + {P (fl)} 2 = 0. (51) 

Inserting the group theory factors into (51), we find 
that there are no real solutions for N 2 ~ - 0 ( F a = 0 ) ,  for 
any of the three non-symmetric coset spaces, but with 
F n + 0  all coset spaces give the same polynomial in 
(51). 

3f14(f12-- 2fl--4)--(f14-- 2f13-- 3f12 +8fl+8)2=O (52) 

(A graph of this function is given in Fig. 1.) The 
real solutions are fl=2.13, - 1.24 but (47) and (50) 
must be checked to make sure that ~2> 0 and h2> 0. 
We find only one acceptable value for fl: 

f l= -2 .13 a2 =3.3 h2=48.0  (53) 

Now consider the situation when A :~ 0. Inserting 
A, from (49), back into (48) gives 

a2 = --  5 Q (fl) • {2 Q2 (fl) + 18 P (fl)}~ (54) 
{3 QZ(fl)_ p(fl)} 

Again, everything is determined in terms of fl 
which has to satisfy (35) 

~ R2(fl)= 5a 2 Q(fl)+ 12. (55) 
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Using the full expressions for P(/3), Q(/3) and R(/3) 
given in (35) and (38), gives (54) and (55) as 

~2= 30(flz--2/3--4L)+-613(fla--2f13--3fla +8fl+ A)--2(/32--2fl--4)23 �89 
Eft4-- 2fl3 --  3fl  2 + 8flq-A --9(//2 --2/3--4) 2] 

(56) 

and 

~6 
] ~  (/32 + 4NZ--4L)2 + 15 ~2(/32--2/3--4)--36 = 0. (57) 

When F a # 0 A = 8 for all three non-symmetric co- 
set spaces. For this situation the function in (57) has 
zeros at three values of/3 (found numerically). How- 
ever requiring e2 > 0 in (56) and h 2 > 0 in (47) elimina- 
tes one of the roots, leaving us with two roots 

Root 1 ~x2=1.945, //=3.16, h2=15.25, A = - 7 . 9 5  

Root 2 e2 =0.218, //=4.99, h 2 =0.1324, 
A = + 1.12. (58) 

We see that for Root 1 A < 0, i.e. we have an anti-de 
Sitter space and for Root 2 A > 0, i.e. we have a de 
Sitter space. 

Ga 
When Fa=0,  A is given in (38) for S U ~  and 

SU(3) { Sp(4) is 
U(1) x U(1) \SU(2)x U(1) not a valid solution in 

\ 

this case). These values of A solve (57) and (56) with 
/ 

the following (numerically found) values 

~2=1.1 /3=--1.73 h a =0.019 A =  1.188 

~2=5.5 / 3= -1 .12  ha=26.1 A = - 1 4 . 6  

e2=2.89 /3=2.89 h2=4.88 A = - 2 6 . 6  

~a=0.205 /3=5.09 ha=0.084 A = 1.15, 

su(3)  
for 

u(1) x 8(1) 

and 

(59) 

~2 = 2.095 

~2 = 2 . 3 2  

~2 = 0.2134 

G2 
f o r - -  

SU(3)" 

/3=--1.474 h2=0.265 A =  1.042 

/3= 3.093 h 2=19.17 A = - 1 0 . 3 1  

f l= 5.016 h 2=0.1184 A =  1.129, 

(60) 

We now turn to the Einstein static universe. It 
is not difficult to show that the scalar equation (41) 
is a direct consequence of the Einstein equations (44~ 
(46), therefore it is sufficient to solve (44)-(46) only. 

These three equations can be re-arranged as 

1 2__  2 ~2Q(/3) ~4 
~ h o - 3  + ~ + ~ P ( / 3 ) + ~ a Q ( / 3 1 2 ,  (61) 

h 2 = e2 Q (/3) + 2 e4 p (/3) + 6 e2 Q (/3) 2, (62) 

62 =-[2eaQ(/3)+e4P( /3)]  [eaQ(/3)+43-1. (63) 

These give h 2, hao and 2 in terms of e and /3. The 
Bianchi identity (35), gives one constraint on e and 
/3 

~6 

~2 Q(/3)_ ~ ~ &(/3) + 2 ~ v(/~) + ~- Q(/3) P(/3) 

1 6 2 2 = g e R (/3) [e Q (/3) + 4]. (64) 

Inserting the expressions for P(/3), Q(/3) and R(/3), we 
get a cubic polynomial in a2 from (64) 

a (/3) ~6 ..[_ b (/3) e4 + c (fl) e2 + d (/3) = 0, (65) 

where 

a(/3)=14(fl~-;--L+N2)2(/32--2/3--4) 

b(/3) = - ~ ( / 3 2 -  2 /3-  4) (/34- 2/33- 3/32 + 8/3 + A) 

c(/3) = ~(/34-- 2 /33 -- 3 /32 + 8 /3 + A ) -  �88 2 /3--4) 2 
d(/3) = -(132 - 2 / 3 - 4 ) .  

For F a # 0  all three coset spaces give solutions in a 
piecewise continuous range of/3, - - 2 . 1 5 < / / < - 1 . 2 4  
and 3.26<//<4.8,  compatible with ~2>0, h2>O, as 

G2 
shown in Fig. 2a and b. For Fn=0, SU(3~ and 

su(3) 
also give solutions in a continuous range 

U(1) x U(1) 
of/3. For Fa+  0, solutions exist (Fig. 2 a) in a smooth 
set from the case of both internal and external spaces 
being highly curved to the case of a highly curved 
internal space but flat Minkowski 4 - D  space-time. 

To summarise, we have a large class of solutions 
to the equations of motion. When F" 4= 0 four dimen- 
sional space-time can be Minkowski, anti-de Sitter, 
de Sitter or spatially unbounded Einstein static and 
the internal space can be any of the three non-sym- 
metric coset spaces. When F "=  0, only anti-de Sitter 
and spatially unbounded Einstein static solutions are 
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Fig.  2 a ,  b. Deta i l s  of  the  so lu t ions  for  the  case  where  space - t ime  
is Eins te in  static,  a F i r s t  reg ion ,  b s e c o n d  region .  F o r  the  case  w h e r e  
space - t ime  is E ins te in  s ta t ic  we f ind o u r  so lu t ions  a re  a o n e  p a r a m e -  

ter  family.  If  we t ake  fl as the  p a r a m e t e r  we f ind we h a v e  va l id  
so lu t ions  for  - 2.15 < fl < - 1.24 a n d  3.26 < fl < 4.8. W e  p resen t  in 
a a n d  b the va r i ab les  h 2, hZo, C( 2, • a n d  R (the in t e rna l  c u r v a t u r e )  

as a func t ion  of  ft. Not ice ,  in a, t h a t  the re  is a va lue  w h e r e  ho = 2 = 0 
a n d  we reduce  to  the  M i n k o w s k i  space - t ime  solu t ions .  F o r  the  - - v  e 
r eg ion  2 is - r e  so space - t ime  is ~ x (Hyp)  3 a n d  for  the  + v e  r eg ion  
2 is + r e  so space - t ime  is R x S 3 
. . . .  3 x h 2 , .  . . . . . .  9xh02, ~2 ,__  . . . .  ~ , _ _  2 

G 2 SU(3) 
allowed with S U ~  or U(1)x U(1) internal space. 

Thus a Minkowski four-dimensional space-time re- 
quires both a non-zero background value for the 
Yang-Mills field F ~ and T:t= H. It  can be verified that 

T = H  only in case (ii) of a IR x (Hyp) 3 x W solution; 
V 

in particular Minkowski four dimensional space-time 
is not allowed, when T =  H. 

6 F e r m i o n  s p e c t r a  

We now discuss what the residual four dimensional 
fermion spectra would look like under the above com- 

267 

pactification schemes, when the Original Yang-Mills 
gauge group is E8 x E8. 

When F ~=0, the gauge group is unbroken, and 
the four dimensional fermion spectrum is real. Thus 
F n = 0  does not appear  to give any good physics in 
four dimensions. Interestingly enough, F ~ = 0  is for- 
bidden dynamically if we wish to have four dimen- 
sional Minkowski space. 

When F~=0,  the fermion spectrum depends on 
the coset space used, and we shall treat each one in 
turn. 

6 2  

su(3) 

Embedding SU(3) into E s breaks it down to E 6 as 
Ea has SU(3) x E6 as a maximal subgroup [2]�9 Under  
this embedding the 248 of E8 decomposes as 

248 ~ (1, 78) + (8, 1) + (3, 27) + (3, 27)�9 

The fermions that we wish to identify as the observed 
chiral families in four dimensions are the 27 and 27's 
of E 6. The imbalance between massless 27's and 27's 
in four dimensions is given by the imbalance between 
massless 3 and 3's of SU(3) in the background field 
on the internal manifold. This is given by the index 
theorem for a six dimensional manifold 

1 3 1 (66) n +  - -  n _  = g S ( 3  c3 - 3 C 2 C 1 -[- C l ) - -  ~4SPl C1, 

where c i is the ith Chern class and p~ is the first 
G 

Pontrjagin class. Since ~ S 6 [16] the first Pontr-  
SU(3) 

jagin class Pl =0 .  Also the Chern class c 1 = 0  for a 
SU(3) field, hence 

n + - n _  = �89 I 1 7 3  . ( 6 7 )  
S 6 

When fl = 0 (canonical connection of the second kind) 
F = R and the first Chern class is identical to the Euler 
class. Since the Euler characteristic of S 6 is 2, we get 

n + - n_ = 1 (68) 

For  different fl we must  get the same value of n+ - n _ ,  
since this is a topological invariant. That  n §  
-~x-a (Euler characteristic) for a SU(3) bundle was 
used in [2]. This value differs from that of [5]. 

One excess chiral fermion in the 3 of SU(3) on 
the internal space leads to one massless chiral fermion 
family on four dimensional space-time in the 27 of 
E 6. Thus, we have an imbalance of a single 27 of 
E 6 in four dimensions. Of course, we would like three 
or four families, and it may  be possible to gain a 
horizontal symmetry from the G2 group of isometrics 
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G2 
associated with S U ~ "  However, if such a mechanism 

were to work, one would expect a minimum of seven 
families (seven being the lowest dimensional represen- 
tation of G2) which is incompatible with cosmology 
(see [17] and references therein). If this idea were to 
work, we must find some way of breaking the G2 
down to some smaller group. At present we have no 
suggestions as to how this may be done. 

Sp(4) 

SU(2) x U(1) 

The fermion spectrum on this manifold has been con- 
sidered in [5], where the topology is discussed. Con- 
sidering Sp(4) as an S 3 bundle over S 7 (it has the 
same cohomology as S3x $7), the coset space is 
formed by allowing SU(2) to act on S 7 and U(1) to 
act on S 3 so as to induce the fibrations $7----~S 4 and 
$ 3 ~ S  z, resulting in a S 2 bundle over S* (since 
n3(S2)=Z [18] these bundles are classified by the in- 

tegers). Hence Sp(4) is an S 2 bundle over S*. 
SU(2) x V(1) 

Embedding a non-zero background SU(2) x U(1) 
field into one E s produces the following decomposi- 
tion 

E 8 ~ E 7 x SU(2) 

(248) (133, 1)+(1,3)+(52,2) 

--+E 6 • U(1 )  • S U ( 2 )  

(78, 1)o+(27, 1)_2+(27, 1)2+(1, 1)o +(1, 3)o 

+(27, 2)1 +(27, 2)_ 1 +(1, 2)3 + 1, 2)_ 3 

The (27, 1)_2, (27, 2)1, and their complex conjugates 
would the interpreted as fermion families in four di- 
mensions. 

We now examine the index theorem to discover 
the excess of (27)'s over (27)'s. Since the first Pontrja- 
gin class of S 4 vanishes, the index theorem for a fer- 

background mion with U(1) charge p in a 
Sp(4) 

SU(2) x U(1) bundle over 
SU(2) x U(1) 

is 

n+ --n_ = I c h [ S U ( 2 )  x U(1)] 

= ~ch[SU (2)] ^ c h [ U  (1)] 

= ~ ( -  c2 [SU(2)] + l ( q  [S U(2)])2) A cl [U(1)] 

= - - IC2 [ S U ( 2 ) ]  A c 1 I V ( l ) ]  

= - m n p ,  ( 6 9 )  

(the U(1) charge p = l  since the (27, 1)_ 2 does not 
couple to the SU(2) field at all.) where m = m o n o p o l e  
charge on S 2 and n= ins t an ton  number  on S 4. This 
formula disagrees by a factor of 1 with that of [5] 

e.g. if m n = 2  there is no massless excess of (27)_2's 
over (27)2's and 2 more massless (27)_ l's than (27h's 
in four dimensions. 

su(3) 
U(1) x U(1) 

The fermion spectrum on this manifold has been con- 
sidered in [5] and [19], but here we shall consider 
an alternative scheme. 

SU(3) can be constructed as a CP 1 bundle 
U(1) x U(1) 

over CP 2. This structure is obtained by considering 
SU(3) as a S 3 bundle over S 5 (There is one and only 
one non-trivial S 3 bundle over S 5 since n , (S3)=Z2 
[18], this is SU(3)). By allowing one U(1) to act on 
S 5 and the other on S 3, so as to induce Hopf  fibrations 
$3 ~ $ 2 ~  CP 1 and SS ~ CP 2, we reduce the S 3 bundle 
over S 5(SU(3)) to a S 2 bundle over CP 2 

( SU(3) _] 

U(1) x U(1)/" 

Embedding a U(1)x  U(1) non-zero background 
into E s gives two of the gauge bosons in the Cartan 
subalgebra of E s a mass, see Ref. [15], due to the 
expectation values of the Chern-Simons terms in the 
field strength of the antisymmetric tensor. There are 
various ways of embedding U(1) x U(1) into E s. We 
shall discuss one which gives E 6 as a residual gauge 
group in four dimensions. E8 contains E 7 • SU(2) as 
a maximal subgroup [20, 21]. Embed one of the 
U(1)'s into SU(2). This breaks Es-+E 7. E7 contains 
E6• U(1) as a maximal subgroup. Identifying this 
U(1) factor with the remaining U(1) in U(1)x U(1) 
breaks E7-+E 6. Under this breaking scheme the 248 
of E8 decomposes as 

E s ~  E T x S U ( 2 )  

(248) (133, 1)+(1,3)+(56,1)+(56,  1) 

--~E 7 x U(1 )  

(133)o + (1)o + (1)_ 2 + (1)2 + (56)1 + (56)_1 

--+E 6 • U(1 )  • U(1 )  

(78)o,o + (27)0, z + (27)0, z 

+ (1)o, o + (1)- z, o + (1)2, o 

+ (1)1, 3 + (1)1, - 3 + (27)1,1 + (27)1, -1 

+(1)_1,3 +(1)_ 1 _3 +(27)_ 1 _  1 + (27)1,1(70) 

The index theorem for fermions of charge (1, 1) 
yields 

1 3 1 ( 7 1 )  n+--n_ =dcl- fCx pl 

since c3 =0,  c 2 = 0  for U(1) fibres. 
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Let x be the Kahler two form (volume form) on 
S 2 (x 2 =  0) and y be the Kahler two form o n  Cp2(y  2 
= volume form, y3 = 0). Then Pl = P~ ( C P 2 )  = 3 y2 [22] 
and c1 = m x  + ny  where m=monopo le  number of the 
U(1) field on S 2 and n=monopo le  number of the 
other U(1) field o n  CP 2", then (71) reduces to 

(C 3 = 3 m r l 2 x  y 2, S x y  2 = 1) 

1 .  . 2  1~ (72) 

For  fermions of charge (p, q), this is modified to 

n+ --n_ =�89 2 - ~ p m  (73) 

when the U(1) which breaks E8 x E 7 lives o n  8 2 and 
the U(1) which breaks ET-"~E 6 lives on CP 2. Alterna- 
tively 

n+ -- n_ ={(qm)(pn) 2 - - ~ q m  (74) 

when the U(1)'s change roles. 
SU(3) 

For  a fermion of charge (1, 1) on 
u(1) x u(1)' 

(72) shows that m must be a multiple of 8. This reflects 
SU(3) 

the fact that does not admit a spinor 
C(1) x U(1) 

structure coupled to a U(1)• U(1) field unless m is 
a multiple of 8. 

As an example we take the simplest non-trivial 
case n = 1, m = 8. F rom the decomposition (70) there 
are three different 27's to consider, 

(p,q)=(O, --2),(1, 1) and ( - 1 ,  1). 

When the U(1) field on S 2 is used to break E8--~ET, 
(73) gives 

n+ - -n_  =p(4q2- -1) .  (75) 

Hence the number of massless (27)1,1's exceeds the 
(27)_1,_1's by 3, the number of massless (27)1 ,_l ' s  
exceeds the number of (27)_1, l'S by 3, and there is 
no imbalance between the (27)0,_ 2's and the (27)o, 2's. 
If the difference in U(1) charges shows up as a physi- 
cal difference in four dimensions, it is possible that 
the 27a,_ a's behave very differently from the 271, l'S 
which might give a chirally asymmetric theory in four 
dimensions. 

When the U(1) field o n  CP 2 is used for the first 
step E8---~E7, (74) gives 

n+ - n _  =q(4p  2 -1 ) .  (76) 

Hence the number of massless (27)0,_ 2's exceeds 
the (27)0,2's by 2, the number of massless (27)1,1's 
exceeds the (27)_ 1, - l'S by 3 and the number of mass- 
less (27)_1,1's exceeds the (27)1,_1's by 3. Thus we 
have a total imbalance of 8 massless (27)'s in four 

dimensions, though again the different U(1)• U(1) 
charges may give different physics for each in four 
dimensions. 

All this looks very interesting for phonomenology, 
but unfortunately our ansatz for solving the dynamics 

SU(3) 
has used m = n  on and m = 8 = n  leads 

V(1) • V(1) 
to an unacceptably large number of chiral fermion 
families. However, should it prove possible to relax 
this, the above scheme is an interesting alternative 
to previous proposals. 

It is possible to contrive such a situation by having 
a U(1)x U(1)x U(1) field where U(1)x U(1) is em- 
bedded within one Es as m =  8, n =  1 and the other 
is embedded within the other E8 as n = 7 ;  then this 
will appear within the Einstein scalar equations as 
a m = n =  8 case. The resultant gauge theory would 
be E6 x E7 and it would be possible (as described be- 
fore) to have a realistic number of chiral 27's of E 6. 
We have discussed this symmetry breaking scheme 
in detail, because it may lead to interesting physics 
and it has not been examined in the literature. Other 
schemes have been explored in [5] and [19]. In partic- 
ular the authors of [19] discuss a scheme with E s 

SO (10) and 3 massless 16's of SO (10) in four dimen- 
sions. 

7 D i s c u s s i o n  

We have exhibited solutions of the modified Chap- 
line-Manton Lagrangian with F n = 0  in which four 
dimensional space-time is de Sitter, anti-de Sitter or 
unbounded Einstein static cosmology and the internal 

G2 SU(3) 
manifold is SU(3) or U(1)• U(1)' and solutions in 

which four dimensional space-time is Minkowski, 
anti-de Sitter, de Sitter or unbounded Einstein static 

G2 
cosmology with F~4:0 and defined on 

SU(3) '  
SU(3) Sp(4) 

or The problems with 
U(1) x U(1) SU(2) x U(1)" 

Sp(4) when F ~=0  were also encountered in 
su(2) x u(1) 
[7]. When F a4:0, the Einstein static cosmology has 
a one parameter family of solutions which joins 
smoothly onto four dimensional Minkowski space 
and one may envisage an evolutionary process in 
which the parameter fl changes with time and the 
four dimensional universe evolves from a very highly 
curved ~, x (Hyp) 3 to four dimensional Minkowski 
space, with only very slight variations in the internal 
curvature. A quantitative analysis of the details of 
such a process is however beyond the scope of this 
work. 
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For  a Minkowski space solution, we need to have 
the torsion on the internal manifold. We find the value 
f l = - 2 . 1 3  is necessary to solve the equations of mo- 
tion. This differs from both the Ricci flattening value 

1 _+ ]/~ [6] and the value necessary for the cancel- 
lation of conformal anomalies in the a-model, 

fl = 1 -- V15 [7]. 
The presence of the U(1) factors in V results in 

many possible chiral fermion spectra in four dimen- 

sions for SU(3) and Sp(4) Embedding 
U(1) x U(1) SU(2) x U(1)" 

V into one of the E8's of the E 8 xE8 superstring 
theory can result in an effective E 6 theory in four 

G2 
dimensions. For  S U ~  we get one family of a chiral 

27 of fermions in the usual way [2], [23]. For  
su(3) 

we can get three 27's and 27's each with 
U(1) x U(1) 
different U(1) quantum numbers or eight 27's depend- 
ing on how we perform the embedding. Perhaps the 
most promising case for phenomenology is 

Sp(4) where we can get any even integer for 
SU(2) x U(1) 
the number of 27's in four dimensions, depending on 
the winding number of the U(1) into the maximal 
torus of Sp(4). Apart from a qualitative remark about 

G2 
- - w e  have not discussed the possible role of the 
SU(3) 
isometry group W. 

We have not discussed the residual supersym- 

( metry of these background configurations for SU(3) 
\ 

this is tackled in Ref. [23]) for the following reason: 

the Lagrangian ~ + A ~ is incomplete as a low energy 
expansion of the superstring. To be consistent, we 
should include all terms up to fourth order in deriva- 
tives e.g. H 4, F 4, H 2 F 2, H 2 R "b etc., coming from the 
superstring. We do not know what these terms are, 
nor what their effect on the supersymmetry transfor- 
mations would be. The addition of As176 to ~o spoils 
the supersymmetry transformations of Chapline- 
Manton [9] and we do not yet know how to modify 
them to a consistent order in e'E 2 to restore super- 
symmetry. 
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Appendix 

6 2  

SU(3) 

The structure constants of G2 are: 

C 2 3 4  1 1 - -  C 1 3  5 - -  

1 1 
C 4 5 6  - -  C 1 2 6  - 

2] /3 '  2 ] /3  

C 1 5 9  = _ 1  C167  _ 1 4, 

C2311  - -  _ � 8 8  C268  _ 1 - 4 

C358  = _ 1 ,  C4512  _ 1 4, 
_ _ 1 C1310  _ 1 C1212  4- 

C249  = �88 C4610  = - 4 1 - ,  

C347  1 _ 1 - 4, C5611  4 

C2513  = _41 ' C3613  _ 1 4~ 

1 3  1 6 7  lo13  1 C9,  12 - -  ~, , - -  4 

C7812  �88 C7911 - -  1 4 '  
12 __ __1 C8910  = - - � 8 8  C l o ,  11 - -  4 

1 1 
C2514  - -  C 3 6 1 4  - 

41/3' 
C 7 , 1 0  - - 4 ,  C 9 , 1 2  = 4  

1 
C 8 , 1 1 1 3 _  _1 C 1 4 1 4  - -  2, 

7 . . . . .  14 label the generators of SU(3). 
The normalisation is chosen so that C~b Ci~ = 

-6aa  and indices can be raised and lowered with no 
change. 

With this normalisation the SU(3) structure con- 
stants satisfy C~ ~ Ca~= _ 3  6na. 

Hence, in the adjoint representation 

Tra2 (Qa QOaaj= -6aa, Trsv(3)(Qa Qb)adj= --] fiaa. 

The ratio, �88 of these traces is independent of the nor- 
malisation used for the structure constants and is, 
by definition the ratio of the second index of the repre- 
sentations, I2[adj(G2)]=8,  I2[adj(SU(3))]=6 [3, 
21]. In the fundamental representation 
12 [fund(SU(3))] = 1, hence 

trsv(3)(Qa Q0fu,d = --~ 6a~. 

When embedding SU(3) into Es, we need to use 
the fact that 12 [fund(E8)] = 12 [adj (Es)] = 60 



1 
�9 " 30 Tre. (0n Qh)fund 

1 I2 [fund(E8)] 1 
= 30 12 [fund(SU(3)] trsv(3)(Qn Qb)f,.d = - -~  6~.  

S o  N 2 = �88 

In the text, K and L are defined by 

K jab =Ccd a ccdb, LOab = C~d ~ ccd~ 

~K=~, L=k 

v=d im  V=8  for SU(3), hence A as defined in (38) 
is given by 

A = l l - - 1 2 N 2 ;  A = l l  when Fn=0,  A = 8  

when F a ~= 0. 

Note that f l= 1 gives Rab= ~2 e ~/x e b, the standard 
12 

torsion free Riemannian curvature two forms on S 6 
with S0(6) holonomy. 

su(3) 
u(1) x u ( 0  

The structure constants of SU(3) are 

1 1 
C 1 2 6 - -  2 ] /3 '  C135-  2 ] / 3 '  

1 1 
C 2 3 4 =  2]/3 ' C 4 5 6 - -  2] /3  

1 1 
C 2 5 7  - -  C 3 6 7  - 

C 1 4 7 = _ ] / ~ ,  C25s_ 1 2, 

1 C 3 6 8  ~ 2 

The U(1) generators are numbers 7 and 8. 
The normalisation is such that C~b Ci~ = 6aa. 
The U(1) generators, when embedded into E 8, are 

normalised so that 

~o Tr~(Q7 QT)fund =~60 TrE~(Q8 Qs)f . .d  = --  1. 
=:>N 2 = m 2 

where m is the monopole number for the U(1) fields 
o v e r  8 2 and C P  2 respectively (see discussion for (72) 
and (74), with m = n). With these structure constants 

K=�89 L = I ,  v = 2  

~ A = 2 0  when F a=0,  A = 8  when F ~=0, 

m - - n - - - - 1  
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Sp(4) 

SU(2) x U(1) 

The structure constants of Sp(4) are 

C 1 2 6  = _ C 1 3 5  = C 2 3 4  = _ C 4 5 6  = _ C 2 3 8  = _ C 2 5 9  

1 

- ] / 1 2  

C 3 5 7  = C 5 6 8  = - -  C 2 5 , 1 0  = - -  C 3 6 9  = - -  C 3 6 , 1 0  = C 2 6 7  

1 

C 1 4  ' 10 -~  C 7 8 9  - 

7, 8, 9 label the generators of SU(2) and 10 the genera- 
tor of U(1). The normalisation is chosen so that 

Trsp(4) (Qa Qb)adj = q- Cede ~t Cbit ~ = - -  bah. 

For  the SU(2) subgroup 

Trsv(z)(Q, Qt,) 

I2[adj(SU(2))] trsp(4)(Q,Q~),dj = 2 
= 12 [-adj (Sp (4))] - ~ 6,~. 

Since I 2 [,adj (S U (2))] = 4 and I 2 [,adj (S p (4))] = 6, see 
[-3]�9 

In the fundamental representation 

12 [fund (SU(2))] = 1 so we find 
1 trsvtz)(Q~ Q~)fu.d = --~" 6a~. 

When embedding SU(2) into E 8 we find 

1 
TrE~(Qa Qb)fund 

1 12 [,fund(Es) ] 1 
= 30 12 [fund(SU(2)] trsv(E)(Qa Q~)fund = - -3  6n~. 

And so N 2=1. 
These structure constants give K = � 8 9  but L is a 

little subtle because, 

Ca~caba=~6 ~a for g, d = 7 , 8 , 9  and Qbl0C~bl0=l. 

This causes various difficulties with our ansatz since 
we explicitly used the fact that Cab~ c a b a = L ~  i n  sev- 
eral places. There are two areas of difficulty: 

T r  RE 1) In the d H = ~ F Z - - t r  equation we find t r R  2 

is not proportional to dH. 
2) In the Einstein equations R a b A R c d  A ie(*e abed) is 
no longer a (const) x *e ~ for e an internal space index. 
This causes difficulties with the Einstein equations. 
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We find, however, that if we have a SU(2)x U(1) 
Yang-Mills field and the generators are normalised 
so that N2=�89 for the SU(2), and N 2= l for the U(1) 
(these are the expected values), then the F 2 terms also 
suffer from problems 1) and 2); however, when we 
consider the equation dH=~ Tr F 2 - t r  R 2, we find 
in the RHS that we have a cancellation of the parts 
not proportional to dH. We also find that the energy- 
momentum for the R and F fields considered together 
poses no difficulties in the Einstein equations. So, for 

Sp(4) 
the case, we really need the F and R 

SU(2) x V(1) 
fields together to make our ansatz work. We find we 
should take A = 8 in (38). Notice that we might have 
expected solutions with multiple monopole number 
for the U(1) but we cannot allow this without disturb- 
ing the Bianchi identity. 
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