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Abstract

A family of connections on the space of couplings for a renormalizable field theory is defined. The connections are
obtained from a Levi-Civita connection, for a metric which is a generalisation of the Zamolodchikov metric in two
dimensions, by adding a family of tensors which are solutions of the renormalization group equation for the operator product
expansion co-efficients. The connections are torsion free, but not metric compatible in general. The renormalization group

Ž .flows of Ns2 supersymmetric Yang-Mills theory in four dimensions and the O N -model in three dimensions, in the large
N limit, are analysed in terms of parallel transport under these connections. q 1999 Published by Elsevier Science B.V. All
rights reserved.

In this letter we investigate geometrical properties
of the renormalization group flow in some exactly
solved theories. The renormalization group flow can
be seen as a vector flow in the space of theories,
with the couplings of the theory g a being coordi-
nates on this space. In this approach, it has been

w x w x Žshown in 1 following a suggestion in 2 see also
w x3,4 that the renormalization group equations for
multi-point correlation functions, written in a coordi-
nate covariant form, depend on a symmetric connec-
tion G a through a tensor t a ,bc bc

t a s= = b a yRa b d , 1Ž .bc b c cb d
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defined by the RG equation for a regularized 3-point
Ž . ² Ž . Ž . Ž .:function G p,q,r s F p F q F rabc a b c

E
L qLL G p ,q ,rŽ .b abcž /EL

st d G pqq ,r qt d G qqr , pŽ . Ž .ab dc bc da

qt d G rqp ,q q . . . , 2Ž . Ž .ac db

Ž . ² Ž . Ž .:where G p,q s F p F q and the dots de-ab a b

note contact terms that are only important for large
momenta. However, there is no general rule for
finding a connection. Moreover, since the RG equa-
tions only depend on the connection through the
tensor t a , there is in fact a family of connectionsbc

which give the same equations. The approach we
take is therefore to determine the full family of
possible connections for some exactly solvable mod-
els, and investigate the geometrical properties of the
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RG flow for the most general connection. For two
˜connections G and G with covariant derivatives =

˜ ˜and = and curvatures R and R respectively to both
Ž .be compatible with Eq. 1 we must have

a a d ˜ ˜ a ˜a d= = b yR b s= = b yR b . 3Ž .b c cb d b c cb d

This equation is satisfied if the Lie derivative LL ofb

the difference between the connections vanishes. This
enables us to determine the full family of possible

o
aconnections if one connection G is already known:bc

we can write any connection which is compatible
o

a a aŽ .with Eq. 1 as G sG qGG , wherebc bc bc

LL GG a
b bc

sGG a E b d qGG a E b d yGG d E b a qb dE GG a
dc b b d c bc d d bc

s0. 4Ž .
o

aWe still have to find a connection G to constructbc

the other possible connections. One solution is to use
the Levi-Civita connection of a metric on the space
of couplings. An example of such a metric is the
Zamolodchikov metric in Ds2, which was used in

w xthe proof of the c-theorem 5 . More recently, build-
w xing on ideas laid out in 3 , the geometrical proper-

ties of metrics in D)2 have also been investigated
w xfor some models, including: free field theory 6 , the

Ž . w x Ž .O N model 7 and Seiberg-Witten theory for SU 2
w x Ž8 . In all these models, it was found that some but

.not all of the RG flow lines are geodesics of the
metric. In particular, the lines of crossover between
fixed points are geodesics, and this may be related to
irreversibility of the renormalization group flow.
Since we now have a family of connections which
are equivalent, at least as far as the renormalization
group equations are concerned, it is natural to ask
whether the geodesic flow of the lines of crossover
generalises to auto-parallel flow for other connec-

Žtions a line which is auto-parallel for the Levi-Civita
. 3connection is a geodesic .

The auto-parallel equation for a vector field is
= bshb , where h is a function which depends onb

3 We distinguish between auto-parallels, which are curves
whose tangent vectors remain tangent vectors under parallel trans-
port along the curve, and geodesics, which are curves of shortest
length. In general, these coincide for the Levi-Civita connection
only.

the parameterization along the curve. With a connec-
o

tion GsG qGG, this becomes

Eb a
o

b a b c a b c ab qG b b qGG b b shb . 5Ž .bc bcbE x

Our main aim is to see which of the possible connec-
tions, if any, will satisfy this equation for a given
renormalization group trajectory. In particular, some
of the trajectories in the models we will examine in

Ž .this letter are geodesics of the metric, so Eq. 5 is
Ž .satisfied for GGs0. In that case, Eq. 5 simplifies to

the condition that

GG a b bb c sh
X
b a , 6Ž .bc

where h
X is another function.

A natural candidate for a metric on the space of
couplings is the two-point correlation functions of

w xthe model 3 . If the action S is linear in the cou-
plings,

SsS q d D xg aF x 7Ž . Ž .H0 a

then a metric can be defined by

D ˜ ˜² :G s d x F x F 0 , 8Ž . Ž . Ž .Hab

˜ Ž . Ž . ² Ž .:where F x sF x y F x . Although the indi-
vidual components of this metric may diverge, the
geometry can still be non-singular.

Ž .As our first example, we consider the O N
model for large N in 3 dimensions. This is a model
of a scalar field w in the vector representation of
Ž .O N with the action

1 r u 223 2 2Ss d x =w q jPwq w q wŽ . Ž .H ½ 52 2 4!
9Ž .

w xfollowing 7 we analyse the geometry in terms of
three bare parameters, f, X,l, defined by

p 1
3 2² : ² :fs4 w , Xs d x w ,H(NL 2 L

Nu
ls . 10Ž .

48pL

Although these are bare parameters, they are finite as
we have a finite cut-off L, so we can use them as



( )B.P. Dolan, A. LewisrPhysics Letters B 460 1999 302–306304

Žour coordinates on the space of couplings since we
are in any case only interested in properties of the
RG flow which are independent of the coordinate

.system . The beta functions, which represent a vector
w xflow on this space are 7

1f X lb sy f , b syX , b syl. 11Ž .2

w x Ž .In 7 the metric 8 was computed, and it was found
that only one of the renormalization group trajecto-
ries described by these beta functions is actually a
geodesic of the metric – the line Xsfs0, which
is the line of crossover from the Wilson-Fisher fixed
point at ls` to the Gaussian fixed point at ls0.
We now want to see if any of the renormalization
group trajectories are auto-parallel for a connection

o o
Gs G qGG, where G is the Levi-Civita connection

w x Ž .from 7 and GG is a solution of Eq. 4 . Using bare
rather than renormalized parameters as coordinates

Ž .makes it easy to solve Eq. 4 – the general solution
contains a number of arbitrary functions which de-
pend only on the ratios Xrl and f 2rl, but these
ratios are constant along any of the RG trajectories

Ž .described by Eq. 11 , so we can treat them as just
being arbitrary constants, which we write as f i . Thejk

solution can then be written, provided X, f and l

are non-zero, as

b i
i iGG s f 12Ž .jk jkj kb b

Ž .no summation on i, j, k . With this solution, it is
Ž .clear that for Eq. 5 to be satisfied for a trajectory,

the following differences must be constant along the
curve:

2 1o o
f i j l i jG b b y G b b sconstant,i j i j

f l

2 1o o
f i j X i jG b b y G b b sconstant. 13Ž .i j i j

f X

It can be seen from the expressions for the compo-
nents of the Levi-Civita connection given in Ap-

w xpendix 2 of 6 that this is not true for any of the RG
flow lines except the line of crossover. Thus none of
the flow lines with f, X, and l all non-zero can be
auto-parallel for any connection. When one of X, f

Ž .or l is 0, the solution 12 has to be changed by
absorbing factors of Xrl or f 2rl into f i to makejk

it finite, for example if l/0 we can write the
solution as

GG i sln f i , nsn yn yn 14Ž .jk jk i j k

1with n s and n sn s1. However, if Xs0,f X l2

f Ž .s0 or ls0, Eq. 5 can only be satisfied if
o o oX i j f i j l i jG b b s0, G b b s0 or G b b s0 respec-i j i j i j

tively, and the only line which satisfies these condi-
tions is Xsfs0. Thus none of the other RG flow
lines can ever be auto-parallel. Finally, we want to
see if the geodesic Xsfs0 is auto-parallel for

Žother connections apart from the Levi-Civita con-
. Ž .nection . This means we have to see if Eq. 6 is

Ž .satisfied by the solution 14 . For example, if only
f l X Ž .f , f and f are non-zero, Eq. 6 becomesff ll X X

yh
X
fsly1r2 f f f 2r2, yh

X
lsly1 f l l2 ,ff ll

yh
X Xsly1 f X X 2 , 15Ž .X X

which clearly is satisfied for Xsfs0. However
this is not true for the most general connection. For
example, if GG X sly1 f X /0 or GG f sly3r2 f f /0ll ll ll ll

then the line of crossover is not an auto-parallel
Žsince the corresponding Levi-Civita connection

w x.components vanish in the large N limit 7 . The line
of crossover is therefore not auto-parallel for the
entire family of connections which can be used in
the RG equations, but only for the class with GG X sll

GG f s0.ll

Thus we find that introducing the family of non-
metric compatible connections changes the conclu-
sions, compared to the the Levi-Civita case, as to
which renormalization group flow lines are auto-
parallel. There is a large class of connections for
which the line of crossover between the Gaussian
and the Wilson-Fisher fixed points remains auto-
parallel, but this is not true of the most general
connection.

Our second example of an RG flow shows that, in
general, the family of connections do change the

Žauto-parallel nature of the geodesic flows in the
.special cases where RG flow is geodesic . This is

w x4-dimensional Ns2 Yang-Mills theory 9 . The ge-
ometrical properties of this model were investigated

w xin 8 where two possible metrics were considered,
and it was found most of the renormalization group
flow lines are not geodesics, but some special lines
are geodesics of both metrics. We now want to see
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which, if any, of the RG flow lines are auto-parallel
uefffor other connections. The complex coupling ts
2p

4p i 2q is given as a function of usurL , where˜2geff

² 2:usTr w parameterizes the symmetry breaking,
by

iK X

ts q2n , 16Ž .
K

Ž 2 . w xwhere K k is a standard elliptic integral 10 with
2 X2 2Ž .k s and K sK 1yk and n is an integer.uq 1˜

Various beta functions for this model have been
w x w xinvestigated in 11–13 . In 13 Wilsonian and

w xNovikov, Shifman, Vainshtein, Zakharov 14 , beta
functions were considered. Here we concentrate on

w xthe Callan-Symanzik beta functions of 11,12 . The
E ECallan-Symanzik beta functions, bsb qb areEt Et

defined by

Et dt
b t sl sy2u . 17Ž . Ž .˜

EL dũu

This beta function represents a vector flow on a
Ž .manifold, parameterized by t or u , which has the

topology of a sphere with three punctures. This
Žmanifold has three singular points: us` the weak

. 2 Žcoupling limit and us"L where there are extra
.massless degrees of freedom . The Seiberg-Witten

metric on this manifold in the u-coordinates is

24 4q q3 42 2ds sp Im t dt dtŽ . 2q2

X X1 K KqK KŽ .
s dudu , 18Ž .2 ''p 1qu 1qu

w xwhere q , is2,3,4 are Jacobi q-functions, 10 .i

Another metric which can be introduced for this
geometry is the Poincare metric´

1
2ds s dt dt . 19Ž .2

Im tŽ .Ž .

For both these metrics, the lines of real u and
imaginary u are geodesics, but the other RG flow

w xlines are not 8 .
In fact we do not need to know the explicit form
Ž .of b t to see if the geodesics will be auto-parallel

for any connection: if we use u and u as coordinates,

E EŽ . Ž .so that bsb u qb u , we only need to knowE u E u
Eb Eb Ž .that s s0. The solution of Eq. 4 is then

E uE u

1 1
u u u uGG s g uru , GG s g uru ,Ž . Ž .uu uu uu uu

b b

1 1
u u u uGG s g uru , GG s g uru ,Ž . Ž .uu uu uu uu

bb

b b
u u u uGG s g uru , GG s g uru .Ž . Ž .uu uu uu uu22 bb

20Ž .

The solution contains arbitrary functions of uru, but
these functions are constant along the radial lines in

Ž .the u-plane, and we can see from Eq. 17 that these
Žare just the RG flow lines in the u-coordinates,

u u .b sy2u, b sy2u . If we assume that GGs
E

i j kGG dx mdx m is a real tensor and substitutejk iE x
Ž . Ž .this solution into Eq. 5 or 6 , we can see that those

Ž .equations depend only on one function g uru :

u u u ug uru sg qg qg qg ,Ž . uu uu uu uu

u u u ug uru sg qg qg qg . 21Ž . Ž .uu uu uu uu

Ž .Eq. 5 then reduces to the condition that

o o
u uG uqg uru sG uqg uru 22Ž . Ž . Ž .uu uu

o o
u uwhere for the Seiberg-Witten metric G sG anduu uu

X XK E KqKE K 1o u uuG s y . 23Ž .uu X X 2 uq1Ž .K KqK K

Since g and g are constant along an RG trajectory, a
trajectory can only be auto-parallel for some choice

o
uof g and g if the imaginary part of G u is constantuu

along that trajectory. It can be shown numerically
that this is only the case for the geodesics, the lines

o
uof real and imaginary u, where G u is real. All theuu

other RG flow lines are therefore not auto-parallel
for any connection, while the real u line is auto-

Ž . Ž .parallel provided g 1 sg 1 and the imaginary u
Ž . Ž .line is auto-parallel provided g y1 sg y1 . Thus

the geodesic flow lines are not auto-parallel for the
Žmost general connection as was the case in the

Ž . .O N model , but they are auto-parallel, for exam-
Ž . Ž .ple, if g uru sg uru .
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Since we did not use the explicit expressions for t

and b above, this result can be applied to any theory
in which the beta function is an analytic function of
one complex variable only. In the case of Ns2

Ž .SU 2 Yang-Mills theory with massless quarks, as in
the pure Yang-Mills theory, the complex coupling t

depends only on urL2. However, the singularities of
the theories with massless quarks are not all on the
real or imaginary u axes – for example, when the
number of flavours N s1, there are singularities atf

usyu and usu e" ip r3. Of course, we cannot0 0

tell if these lines are actually auto-parallel unless we
know whether they are geodesics of the Seiberg-Wit-
ten metric, but we can say that if they are geodesics
of the Seiberg-Witten metric in these models, they be

Ž 2p i r3.auto-parallel for connections with g e s
2p i r3Ž .g e , but not for all connections for which

Ž . Ž .g uru sg uru , as in the case of the pure Yang-
Mills theory.

In conclusion it has been shown that the renormal-
ization group equation for the operator expansion
co-efficients gives rise to a family of non-metric
compatible connections which are related to the

o
a a aLevi-Civita connection by G sG qGG , wherebc bc bc

LL GG a s0. In general RG flows which are geodesicb bc

for the Levi-Civita connection are not auto-parallel
for all members of the family, though in the models
examined they are for a large sub-class of connec-

Žtions it can be shown that the same is also true for
w x.the free field models considered in 6 . In none of

the examples examined here is it the case that a RG

flow line which is not geodesic under the Levi-Civita
connection is auto-parallel for some member of the
family.
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