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Abstract

A family of connections on the space of couplings for a renormalizable field theory is defined. The connections are
obtained from a Levi-Civita connection, for a metric which is a generaisation of the Zamolodchikov metric in two
dimensions, by adding a family of tensors which are solutions of the renormalization group equation for the operator product
expansion co-efficients. The connections are torsion free, but not metric compatible in general. The renormalization group
flows of N = 2 supersymmetric Y ang-Mills theory in four dimensions and the O(N)-model in three dimensions, in the large
N limit, are analysed in terms of parallel transport under these connections. © 1999 Published by Elsevier Science B.V. All

rights reserved.

In this letter we investigate geometrical properties
of the renormalization group flow in some exactly
solved theories. The renormalization group flow can
be seen as a vector flow in the space of theories,
with the couplings of the theory g? being coordi-
nates on this space. In this approach, it has been
shown in [1] following a suggestion in [2] (see also
[3,4] that the renormalization group equations for
multi-point correlation functions, written in a coordi-
nate covariant form, depend on a symmetric connec-
tion I''% through atensor 72,

Tpe = vacﬁa_Rgdedv (1)
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defined by the RG equation for a regularized 3-point
function G,,.( p,q,r) = {D,(pPP (PPLr))

d
(Aa +=%)Gabc( p1qu)

= 7-adbGdc( p + q,r) + Tk;chda(q +r, p)
+ 173G (r +p.a) + ..., (2)

where G,,(p,q) = (P, (p)P,(q)) and the dots de-
note contact terms that are only important for large
momenta. However, there is no genera rule for
finding a connection. Moreover, since the RG equa
tions only depend on the connection through the
tensor 72, there is in fact a family of connections
which give the same equations. The approach we
take is therefore to determine the full family of
possible connections for some exactly solvable mod-
és, and investigate the geometrical properties of the
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RG flow for the most general connection. For two
connections I" and I" with covariant derivatives V
and V and curvatures R and R respectively to both
be compatible with Eqg. (1) we must have

Vch.Ba_Rgdedz VchIBa_Rgded- (3)
This equation is satisfied if the Lie derivative - of
the difference between the connections vanishes. This
enables us to determine the full family of possible
connectionsif one connection 1,2 is already known:
we can write any connection which is compatible
with Eq. (1) as I'% = I3 + &, where

Z e
=Z80,BY+ %0, B — 259 B+ B, TE,
=0. (4)

We still have to find a connection Io“bi to construct
the other possible connections. One solution is to use
the Levi-Civita connection of a metric on the space
of couplings. An example of such a metric is the
Zamolodchikov metric in D = 2, which was used in
the proof of the c-theorem [5]. More recently, build-
ing on ideas laid out in [3], the geometrical proper-
ties of metricsin D > 2 have also been investigated
for some models, including: free field theory [6], the
O(N) model [7] and Seiberg-Witten theory for SU(2)
[8]. In al these models, it was found that some (but
not al) of the RG flow lines are geodesics of the
metric. In particular, the lines of crossover between
fixed points are geodesics, and this may be related to
irreversibility of the renormalization group flow.
Since we now have a family of connections which
are equivalent, at least as far as the renormalization
group equations are concerned, it is natural to ask
whether the geodesic flow of the lines of crossover
generalises to auto-parallel flow for other connec-
tions (aline which is auto-parallel for the Levi-Civita
connection is a geodesic) 3.

The auto-parallel equation for a vector field is
Vs B = npB, where n is afunction which depends on

*we distinguish between auto-paralels, which are curves
whose tangent vectors remain tangent vectors under parallel trans-
port aong the curve, and geodesics, which are curves of shortest
length. In general, these coincide for the Levi-Civita connection
only.

the parameterization along the curve. With a connec-
tion I'=I" +%, this becomes

aﬁa °
Bba—xb“‘rbiﬁbﬁ°+g§cﬂbﬁc=nﬁa- (5)

Our main aim is to see which of the possible connec-
tions, if any, will satisfy this equation for a given
renormalization group trajectory. In particular, some
of the trgjectories in the models we will examine in
this letter are geodesics of the metric, so Eq. (5) is
satisfied for & = 0. In that case, Eq. (5) simplifiesto
the condition that

Foo BB =B, (6)
where 7’ is another function.
A natural candidate for a metric on the space of

couplings is the two-point correlation functions of
the model [3]. If the action S is linear in the cou-

plings,
S=S+ [d°xgd,(x) (7

then a metric can be defined by
Gy = [dPX(B (%) B(0)), (8)

where &(x) = ®(x) — (P(x)). Although the indi-
vidual components of this metric may diverge, the
geometry can still be non-singular.

As our first example, we consider the O(N)
model for large N in 3 dimensions. This is a model
of a scalar field ¢ in the vector representation of
O(N) with the action

S=fdsx{%(\7¢)2+]'¢+ é¢2+ %(402)2}
(9)

following [7] we analyse the geometry in terms of
three bare parameters, ¢, X, A, defined by

T 1
b= 7 (@) X=o— [dx(e?),

N Nu
 487A

Although these are bare parameters, they are finite as
we have a finite cut-off A, so we can use them as

(10)
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our coordinates on the space of couplings (since we
are in any case only interested in properties of the
RG flow which are independent of the coordinate
system). The beta functions, which represent a vector
flow on this space are [7]

B=—1¢, BX=-X, B'=-A (11)

In [7] the metric (8) was computed, and it was found
that only one of the renormalization group trajecto-
ries described by these beta functions is actualy a
geodesic of the metric — the line X = ¢ =0, which
is the line of crossover from the Wilson-Fisher fixed
point a A = o to the Gaussian fixed point at A = 0.
We now want to see if any of the renormalization
group, trajectories are auto-parallel for a connection
I'=T +2, where I' is the Levi-Civita connection
from [7] and £ is a solution of Eq. (4). Using bare
rather than renormalized parameters as coordinates
makes it easy to solve Eq. (4) — the general solution
contains a number of arbitrary functions which de-
pend only on the ratios X/A and ¢2/A, but these
ratios are constant along any of the RG trajectories
described by Eq. (11), so we can treat them as just
being arbitrary constants, which we write as fj‘k. The
solution can then be written, provided X, ¢ and A
are non-zero, as

B
gjlk = BjBk fjlk (12)
(no summation on i, j, k). With this solution, it is

clear that for Eqg. (5) to be satisfied for a trajectory,
the following differences must be constant along the
curve:

2 . 1,
gl}j‘i’BBJ—xﬂjAB'B'=con$ant,

2 0 aigi _ L Pxgia)

EFHBB —iﬂjﬁﬁ = constant. (13)
It can be seen from the expressions for the compo-
nents of the Levi-Civita connection given in Ap-
pendix 2 of [6] that thisis not true for any of the RG
flow lines except the line of crossover. Thus none of
the flow lines with ¢, X, and A al non-zero can be
auto-paralléel for any connection. When one of X, ¢
or A is 0, the solution (12) has to be changed by
absorbing factors of X/A or ¢2/A into fJ-‘k to make

it finite, for example if A+ 0 we can write the
solution as

Zy=A", n=n—n-n, (14)

with n,=; and ny =n, = 1. However, if X=0,
¢=0or A=0, Eq. (5 can only be satisfied if
I[,/BB'=0, I'f8B'=0 or I'/gBI=0 respec-
tively, and the only line which satisfies these condi-
tionsis X= ¢ = 0. Thus none of the other RG flow
lines can ever be auto-parallel. Finaly, we want to
see if the geodesic X= ¢ =0 is auto-parallel for
other connections (apart from the Levi-Civita con-
nection). This means we have to see if Eq. (6) is
satisfied by the solution (14). For example, if only
f2,, £ and f3 are non-zero, Eq. (6) becomes

— = AV248,2/2,
— X = AHE X2, (15)

which clearly is satisfied for X= ¢ = 0. However
this is not true for the most general connection. For
example, if ZX=A1"1X #00r £ =1"32f% #0
then the line of crossover is not an auto-parallel
(since the corresponding Levi-Civita connection
components vanish in the large N limit [7]). The line
of crossover is therefore not auto-parallel for the
entire family of connections which can be used in
the RG equations, but only for the class with & =
Z =0,

Thus we find that introducing the family of non-
metric compatible connections changes the conclu-
sions, compared to the the Levi-Civita case, as to
which renormalization group flow lines are auto-
paralel. There is a large class of connections for
which the line of crossover between the Gaussian
and the Wilson-Fisher fixed points remains auto-
parallel, but this is not true of the most general
connection.

Our second example of an RG flow shows that, in
general, the family of connections do change the
auto-parallel nature of the geodesic flows (in the
specia cases where RG flow is geodesic). This is
4-dimensional N = 2 Yang-Mills theory [9]. The ge-
ometrical properties of this model were investigated
in [8] where two possible metrics were considered,
and it was found most of the renormalization group
flow lines are not geodesics, but some specia lines
are geodesics of both metrics. We now want to see

—gA= A",
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which, if any, of the RG flow lines are auto-parallel
for other connections. The complex coupling 7= et
2

+ %1 is given as a function of &i=u/A? where

u=Tr{@?) parameterizes the symmetry breaking,
by
S 2 16
=— +
T " n, (16)

where K(k?) is a standard elliptic integral [10] with
k?=+%; and K'=K(1—k?) and n is an integer.
Various beta functions for this model have been
investigated in [11-13]. In [13] Wilsonian and
Novikov, Shifman, Vainshtein, Zakharov [14], beta
functions were considered. Here we concentrate on
the Callan-Symanzik beta functions of [11,12]. The
Callan-Symanzik beta functions, = B< + B~
defined by

aT

or dr
B(r )—/\— = —-20—. (17)

This beta function represents a vector flow on a
manifold, parameterized by 7 (or u), which has the
topology of a sphere with three punctures. This
manifold has three singular points: u = (the weak
coupling limit) and u= + A? (where there are extra
massless degrees of freedom). The Seiberg-Witten
metric on this manifold in the u-coordinates is

2
drd7

49
ds? = 7T2|m(1')

2

(K K+K’ K)
\/1+uv1+u (18)

where 9;, i = 2,3,4 are Jacobi J-functions, [10].
Another metric which can be introduced for this
geometry is the Poincaré metric

1
ds? = ————drd7. 19
> (im(n))? (19

For both these metrics, the lines of rea u and
imaginary u are geodesics, but the other RG flow
lines are not [8].

In fact we do not need to know the explicit form
of B(7) to see if the geodesics will be auto-parallel
for any connection: if we use u and U as coordinates,

sothat B = B(u): + B(u)-5, we only need to know
that % =% = 0. The solution of Eq. (4) is then
au au
u 1 u - u 1 T -
guu=_guu(u/u)! ?uu=:gUU(U/U),
B B
- =gh (WD), 5% —g%(u/D)
Uuu::gLiJJu u/u), uuU:_ngfﬁ u/u),
B B
o= Laum. sa=Lanwn.
uu BZ uu UU BZ uu

(20)

The solution contains arbitrary functions of u/u, but
these functions are constant along the radial lines in
the u-plane, and we can see from Eq. (17) that these
are just the RG flow lines (in the u-coordinates,
BY= —2u, BU=6—2U). If we assume that &=

?]kdx' ® dx“® o is a real tensor and substitute

this solution into Eq (5) or (6), we can see that those
equations depend only on one function g(u/T):

g(u/u) = 9.y, + gay + 9 + Yo

g(u/U) = goo + Yin + 9ou + Yuu- (21)
Eg. (5) then reduces to the condition that
Iu+g(u/v) = I%u+9(u/u) (22)
where for the Seiberg-Witten metric IO"UUU = IO”L}L’J and
o K9 K+KgK' 1

I! = — - ) (23)

“” K'K + K'K 2(u+1)

Since g and g are constant along an RG trajectory, a
trgjectory can only be auto-parallel for some choice
of g and g if the imaginary part of I u is constant
aong that trgectory. It can be shown numerically
that this is only the case for the geodesics, the lines
of real and imaginary u, where I\ \u isreal. All the
other RG flow lines are therefore not auto-parallel
for any connection, while the real u line is auto-
paralel provided g(1) =g(1) and the imaginary u
line is auto-parallel provided g(—1) =g(—1). Thus
the geodesic flow lines are not auto-parallel for the
most general connection (as was the case in the
O(N) model), but they are auto-parallel, for exam-
ple if g(u/n) =g(u/u).



306 B.P. Dolan, A. Lewis / Physics Letters B 460 (1999) 302—306

Since we did not use the explicit expressions for 7
and B above, this result can be applied to any theory
in which the beta function is an analytic function of
one complex variable only. In the case of N=2
U(2) Yang-Mills theory with massless quarks, asin
the pure Yang-Mills theory, the complex coupling =
depends only on u/ A2 However, the singularities of
the theories with massless quarks are not all on the
real or imaginary u axes — for example, when the
number of flavours N; = 1, there are singularities at
u= —u, and u=uye*'"/3 Of course, we cannot
tell if these lines are actually auto-parallel unless we
know whether they are geodesics of the Seiberg-Wit-
ten metric, but we can say that if they are geodesics
of the Seiberg-Witten metric in these models, they be
auto-parallel for connections with g(e®"'/3) =
g(e?™/3), but not for all connections for which
g(u/T) = g(t/u), as in the case of the pure Yang-
Mills theory.

In conclusion it has been shown that the renormal-
ization group equation for the operator expansion
co-efficients gives rise to a family of non-metric
compatible connections which are related to the
Levi-Civita connection by I'%=1,2+%Z2, where
% %5 = 0. In general RG flows which are geodesic
for the Levi-Civita connection are not auto-parallel
for all members of the family, though in the models
examined they are for a large sub-class of connec-
tions (it can be shown that the same is also true for
the free field models considered in [6]). In none of
the examples examined here is it the case that a RG

flow line which is not geodesic under the Levi-Civita
connection is auto-parallel for some member of the
family.
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