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Geometrically the phase space of a mechanical system involves the cotangent bundle of the
configuration space. The phase space of a relativistic field theory is infinite dimensional and can be
endowed with a symplectic structure defined in a perfectly covariant manner that is very useful for
discussing symmetries and conserved quantities of the system. In general relativity the symplectic structure
takes the Darboux form, and it is shown in this work that the presence of a cosmological constant does not
change this conclusion. For space-times that admit timelike Killing vectors the formalism can be used to
define mass in general relativity, and it is known that, for asymptotically flat black holes, this mass is
identical to the usual Arnowitt-Desner-Misner mass while for asymptotically anti—de Sitter Kerr metrics it
is the same as the Henneaux-Teitelboim mass. We show that the same formalism can also be used to derive
the Brown-York mass and the Bondi mass for stationary space times, in particular the Brown-York mass has

a natural interpretation in terms of differential forms on the space of solutions of the theory.
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I. INTRODUCTION

Some years ago Crnkovi¢ and Witten [1] gave a method
for constructing a symplectic form on the space of
solutions, S, of the equations of motion of a relativistic
field theory. They used their formalism to obtain the
relevant symplectic forms for Yang-Mills theory and for
general relativity. Their construction provides a covariant
description of relativistic field theories in the phase space of
solutions modulo gauge transformations (and diffeomorhp-

isms) G, S = S§/G, which is ideally suited to studying
symmetries and conserved quantities.

The idea of a symplectic structure for diffeomorphism
invariant theories was first introduced in [2] to inves-
tigate instabilities in rotating relativistic fluids. Wald and
Collaborators have generalized the Crnkovi¢ and Witten’s
formalism to a very wide class of diffeomorphism invariant
theories in [3—6] and studied conserved quantities asso-
ciated with Killing symmetries, such as angular momen-
tum in rotationally invariant solutions and mass in
stationary solutions.

We first summarize the construction of the symplectic
form and the role of diffeomorphisms and Killing sym-
metries in general. Examples of the statements made in the
Introduction are given in the main text following. One starts
with an (n 4 1)-dimensional space-time manifold M with
boundary OM. The space-time comes with a metric, and
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possibly other fields such as Yang-Mills fields, and the
space of all field configurations F is infinite dimensional.
The dynamics are determined by a variational principle
with a Lagrangian L, which is a gauge invariant (n + 1)-
form on M, and an action

A[F] = /M L(F),

which is a diffeomorphism invariant functional of the
fields. A solution of the equations of motion is a field
configuration that extremizes A.

It is assumed that space-time can be foliated using a time
parameter ¢ and that surfaces of constant ¢ are spacelike
hypersurfaces, %,. An infinitesimal variation of any sol-
ution of the equations of motion that satisfies the linearized
equations of motion is a 1-form on S, more correctly a cross
section of the cotangent bundle T*S.

A symplectic form on the space of solutions is obtained
by using L to construct an 1-form' 6 on S, which is also an
n-form on M, and is a presymplectic potential on X, i.e., §
does not itself furnish a symplectic potential on the space of
solutions (it is not necessarily diffeomorphism invariant)
but it gives one when diffeomorphisms are modded out.
When %, is a Cauchy surface,

'In this general discussion bold face symbols will represent
forms on S.
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gives a presymplectic potential on S. Under a second
independent variation of the dynamical fields one obtains
another n-form on M

w = 60,

where d is the exterior derivative on the space of solution S.
Since 62 =0

6w =0,

and w is a presymplectic density in the sense that

Q:/m
P

is a presymplectic 2-form on S.” It is called presymplectic
because it is not a genuine symplectic density, it is not
necessarily gauge and diffeomorphism invariant.

There is a very elegant interplay between the
d-cohomology on M and the &-cohomology on S.
The construction is such that @ is not only closed
as a 1-form on S but also as an n-form on M, dw = 0;

hence
/ dw :/ w=0.
M oM

If M has the topology 7 x X, where T = [t,/] CR is a
time interval and X is a compact Cauchy hypersurface
without boundary, then M consists of 2 copies of X,
Fig. 1. Then foliate M, using ¢ as a time-parameter, and
fit w is independent of the value of 7 chosen so we can drop

the subscript ¢ and
Q= / w
b2

is independent of the Cauchy hypersurface .
Under a projection from the space of solutions S to the
space of solutions modulo gauge transformations and

diffeomorphisms S the symplectic form Q on S must
pull-back to the presymplectic form €2 on S. This will be
the case if

(i) o is gauge invariant and d-exact whenever one of the

metric variations is a diffeomorphism;

(i1) X is compact without boundary.
Then it is shown in [5] that, when one of the metric
variations corresponds to a diffeomorphism generated by a

vector field X, the dependence of @ on X is such that o (X)

25 le = le & since, while X, depends on the coordinates, it is
independent of the fields, in particular of the metric.

Zp

¢

FIG. 1. The boundary of M consists of two spacelike hyper-
surfaces X and ¥’ connected by a timelike tube 7, with T =
OT X [t,7].

is not only d-closed as an n-form on M but it is also
d-exact®

o(X) = dp(X) (1)

for some (n — 1)-form (l)()?) If X is compact without
boundary,

when one of the variations is a diffeomorphism. Under the
projection S — S the symplectic form Q on S then pulls

back to the presymplectic form  on S, [1,3].
If Z has a boundary O then we can use (1) to deduce that

% = [o®) = [ o)

Provided f02¢()?) vanishes whenever one of the field
variations is due to a diffeomorphism then Q is again a
genuine presymplectic form. This will be the case e.g., if
the vector field X generating the diffeomorphism vanishes
fast enough on O0X.

Furthermore if the diffeomorphism X=K corresponds

to a Killing symmetry of the solution then @ (K) = d¢(K)
vanishes identically and |, aqu(l? ) = 0, even when K does

not vanish on the boundary [6]. If X consists of two
disconnected pieces, 0X = 9%, U 0%, (Fig. 2), then the

The condition 66 = d¢ is reminiscent of the Stora-Zumino
descent equations in the study of anomalies [7]. Indeed the whole
formalism is intimately related to a cohomological structure that
fits naturally into a double complex [8].
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FIG. 2. When 0% = 9%, U 9%, and K is Killing, ®[K] is
independent of which connected piece of the boundary it is

evaluated on, 9L, or 9%, ®[K] depends on the fields and a
variation thereof but if one segment of the boundary, 0Z; say, is
fixed we can distort 9%, and move it around, provided it does not

pass through a singularity in the geometry <I>[I?] evaluated on X,
does not change.

integral over each piece must be equal and opposite and
they cancel. With suitable orientations

®[F] = /a )= |

can be nonzero. If one of the pieces, e.g., 0, is held fixed
then d>[l?] evaluated on 9%, is independent of the (n — 1)-
dimensional surface 0%,.  does not have to be a Cauchy
surface for this statement to be true.

If d[K] is d-exact, and only if it is d-exact, then

$(K)

®[K] = 6Q[K]

for some Q[K]. This Q[K] is a charge related to a

Hamiltonian associated with the flow generated by I?, [5].
Among the key ingredients to generate conserved
quantities from this construction are a general coordinate
invariant action and a solution of the equations of motion
with a Killing vector generating the symmetry. This
formalism was shown in [6] to reproduce the ADM mass
[9] for stationary asymptotically flat black holes in Einstein
gravity. At the same time it clarifies the origin of the
mysterious factor of 2 that is well-known to arise when
comparing the Komar mass with the ADM mass [5,10,11].
The construction in [3] is general enough to include
theories with a cosmological constant A, of either sign
when X is compact without boundary. When X has a
boundary we can restrict to negative A so that the
asymptotic regime of a black hole solution is well-defined,
and it was shown in [12,13] that Lee and Wald’s formalism
correctly reproduces the Henneaux-Teitelboim mass
[14,15] for an asymptotically AdS Kerr black hole.

In this work we shall explore the formalism of Lee and
Wald [3] and Wald [5] in some detail and show how it
relates to some other definitions of mass in the literature,
not just the ADM mass but also the Brown-York mass [16]
and the Bondi mass [17] in stationary space-times. For
example we shall see that the Brown-York mass, which is
expressed as the difference of two extrinsic curvatures, can

be viewed as a 1-form on S. The formalism also reproduces
the Bondi mass when applied to asymptotically flat space-
times using Bondi-Sachs coordinates.

The general formalism has a very nice mathematical
structure of a double complex[18], which is the natural
mathematical language for describing cohomology. This
formal structure is described elsewhere [8].

Section II reviews Wald’s general construction in the
context of Einstein gravity with a cosmological constant.
The exposition is given in terms of differential forms on M
and S as this is the most natural framework for treating
differential cohomology. In Sec. III the symplectic 2-form
is derived for nonzero A and shown to be of Darboux form,
extending the results of [3] to include a cosmological
constant. Section IV, in which conserved quantities asso-
ciated with a timelike Killing vector are discussed, contains
our main results. We derive an exact result for the variation
of the mass in Einstein gravity, valid at any distance outside
a stationary gravitating mass. This includes the asymptoti-
cally flat case in Sec. IV A where the expression simplifies
and asymptotically reproduces the ADM mass, as derived
in [6]. We also relate Wald’s expression to the extrinsic
curvature of OX and the Brown-York mass [16]. It usually
stated that the ADM mass in asymptotically flat space-
times is completely equivalent to that defined by Brown
and York, and a proof is given in [19]; in the formalism
presented here these two masses are only the same if the
falloff conditions on the metric are slightly stronger than
those usually assumed. The Bondi mass is also derived
using Wald’s formalism.

Finally the conclusions are summarized in Sec. V. Some
more technical details are relegated to a number of
Appendices.

II. EINSTEIN GRAVITY

We shall focus on the Einstein action A with a cosmo-
logical constant on a space-time M. We keep the dimen-
sion of space, n, general for the moment and will specialize
to n =3 later. In units with G = ¢ =1 the Lagrangian
density is

1
L:E(Rab/\*eab_ZA*l), (2)

where
Rab = dwab + @4 N wcb (3)

are the curvature 2-forms, e? are orthonormal 1-forms
(vielbeins), e*” = e A e’ denotes the wedge product and *
is the Hodge star operator. In second order formulation the
connection 1-forms w,, are determined in terms of the
orthonormal 1-forms using the torsion free condition

De® =de” +w,, N e’ =0.

044010-3



BRIAN P. DOLAN

PHYS. REV. D 98, 044010 (2018)

The corresponding action is

1

=16 M(Rab A xe? —2A % 1), 4)

and the equations of motion are

1
E¢ = ——(Ry A %€ —2A % e¢) =0,
167

equivalent to
Rap = Mgy, (5 )

where R, are the components of the Ricci tensor in an

orthonormal basis and 7, = diag(—1,+1,...,+1).
Under an infinitesimal variation e? — e + de” the

linearized equations of motion, with constant A, are

6Ru =0,
and the variation in the Lagrangian density is

oL = db (6)
with

1 1

ao = E (6Rab) AN *e”b = E((SR) * 1, (7)
where the equations of motion have been used and R =
R4, is the Ricci scalar. We shall refer to field configura-
tions that satisfy the equations of motion together with
variations that satisfy the linearized equations of motion as
“on shell”.

Now

(6R,,) A %€’ = D(8w,y) A xe®? = d(bwy), A *e)

SO
1
0 =—(6w,,) N *e*> mod d (8)
167
and
— L b0, R (Bxe®) modd  (9)
® = =1 (80 e mo

(the symbol A here represents both the wedge product on
M and on S simultaneously, we hope that the distinction
between the presymplectic density @ and the connection
1-forms w,,;, is clear).

The variation de“ can itself be expanded in the ortho-
normal basis as

be® = 6(e, dx") = (be”,)dx" == A%e",  (10)
where x#, y = 0,1, ..., n, are coordinates on M and

AYy = (8e,) (e ), (11)

is a (n+1)x(n+1) matrix. Not all such variations
actually correspond to changing the metric. Decomposing

Auh = nacAch (12)
into symmetric and antisymmetric parts
Ay =S +Auw (13)

with §,, = S;,, and A,, = —-A,,, only S, can change the
metric, A ,;, merely generate local Lorentz transformations”
under which L is invariant.

Furthermore not all S, correspond to real changes in the

metric, under a diffeomorphism X
1
Sap = 5 (DX}, + DpX,). (14)

As dw,, is linear in de* the decomposition (13) implies a
similar decomposition for dw,,. Using the torsion free
condition (A2)

6a)ab = (Dbsac - Dasbc - DcAab)eC'

This means that (6w,,) A *e® is not gauge invariant;
however

(DAp) A xe®” = d(Agy  e”) = d (e A be,)

is d-exact, and we can use the arbitrariness in (8) to define

1
0(6”,66”):E (bwy,) Axe® +dx* (e* Nbe,)},  (15)

which is gauge invariant by construction. In terms of S,
and the covariant derivative D,

0(e?,6e) = é (DS — 0,8,0) * e (16)

The explicit form of @ (e?, 5, e, 5,e*) interms of (A )9, =
Sre?, (e, and (Ay)9,=5e,(e7")#, is not very
illuminating but for completeness is given in Appendix B.
Here we just remark that, since it is gauge invariant, it only
depends on the symmetric variations (S;),,=%{(A1),+
(Al )ba} and (SZ)ab :%{ (AZ)ab + (AZ)ba}'

Note that (16) has no explicit dependence on the cosmo-
logical constant A, though there is an implicit dependence
when e“ are on shell. This is to be expected from (2) as the
cosmological term in the action only involves e¢“, not their
derivatives, and so cannot influence d@ in (6). In particular
the presence of a nonzero A does not affect the symplectic
form and the statement by Lee and Wald in [3] that the
symplectic form takes the Darboux form is unchanged when
A is introduced, as we shall see explicitly in Sec. IIL.

“From now on we shall use the term “gauge transformations”
for such local Lorentz transformations, as distinct from
diffeomorphisms.
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Diffeomorphisms are generated by an infinitesimal
vector field X

be! = Lie = dige” +igde”. (17)
When the variation is a diffeomorphism one finds, for the
Einstein action (4),

1
O(e?, Lse") :—?(Ze A *DDX, + d* dX), (18)

X 16x

where X = X,¢“ is both a 1-form on M and on S.” Now
DDX, = R,,X" leading to

O(e”, Lye®) = — (2R ;X" * e’ — d = dX)

1
16

DA X —d % dX
1672( ¥ * dX),

where the equations of motion have been used in the last
step. But on shell

L A 1
— — %
8

and by definition *X = i; % I, so

0(ct, Lge®) = izL + J(X),

where
J(X) = L yvax
~ lé6x
and J(X) = dQ is d-exact, with
1
= —— % dX. 1
Q=—1c* (19)

dQ is a 2-form on M. The similarity between dQ = d * dX

with the vacuum Maxwell equations was observed in [20].
The symplectic density is obtained from

w(X) = 60(e%, Lye®) + L0(e,be%)

1
= 6<iiL - ?d *dX | + (digy +izd)f(e®,6e?)
= d(——&(*dX) iz0(e, de” )>
where we have used

BigL = —igbL = —igdf(e",5e?).

°In practice we need not take X to be 1nf1n1te51mal Smce all

subsequent formulas are linear in X we can rescale X — eX with
€ < 1, and € is just an overall factor in all formulas. Indeed we
can let € represent a constant 1-form on S, so that §¢ = —ed and

X = eX is a vector on M and a 1-form on S, with ii’ = eiy, [8].

We have proven that

w (e, Lye,be) = dp(X)
with
S 1
d(X) = —Fﬁ * dX +izf(e”, 6e”) (20)
n
and
Q[ = /w(i) — [ o). (21)
p> B>
where Q[X] = Q[e® ,Lge®, 6e”]. When X has no boundary

Q[)_f | vanishes and a general Q will be a genuine pull back
from © on S. If T has a boundary this is still the case

provided X is constrained to vanish on the boundary
If X=K is K1111ng then S,, = 0, and not only does

Q[I?] vanish but a)(K) is identically zero, see (B2),
independently of any boundary conditions or choice of
hypersurfaces. This is an important observation: on shell

w (e, Lie 66)
Killing vector K. Since o(X )

w(K) vanishes identically for any
dgp(X) this implies that

= 1
Ple*. K. Be') = =5 —6+ dK +igh(e*,6¢") (22)
T

is d-closed, but it need not vanish and can carry useful
information. R

If K is purely tangential to 0%, e.g., if K generates
rotations about the origin and O is the sphere at infinity,

then
/ i0=0
%
and
0=Q[K]=-6 1/ dK
— = — —_— >k
167 o
SO
1
— dK
167 Jps

is invariant under on shell perturbations of the metric.
If the boundary JX consists of disconnected pieces, e.g.,
if 0¥ = 0%, U 0%, consists of two separate pieces 9%, and
0%,, then define

- 1

(p = 1, 2) and, with appropriate orientations,

°If O is some asymptotic regime with unbounded area then

this statement must be qualified, X must vanish “fast enough” on
the boundary.
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QK| = @, [K.6¢%] — @, [K,5e%] = 0.

We can deform X and move either of the boundaries around,
keeping the other fixed—provided we do not pass through
any singularities in the geometry and

DK, 5¢] := D, [Ka.be"] = D,[K.5¢%]  (24)

is unchanged by such deformations. This statement is
independent of any symplectic structure, and X~ need not
be a Cauchy surface. @ in (24) will not change as the
boundary of X is moved around, as long as it does not move
through a region containing matter or a singularity in the
geometry.

. 1 |
Kl=-— | wdk=-——1[ s«dK
0K = —16, o, 167 Joz, "

is the integral of the Komar 2-form associated with the
Killing vector K [10], it is not itself invariant under metric
perturbations of course.

When K is not purely tangential to JX however 6 can
contribute to ¢b and the story is more involved, but we can
still define a charge if i@ is 6-exact. In the most general
case we have

— 1

p[K]:_—

K [ =0(e?,0e%). 2
TR +sztK0(e Set).  (25)

-

If furthermore iz@ is d-exact, so ¢ = dp(K) for some p,
then

0[] = L i) - L (&) (26)

is a candidate for a Noether charge’ associated with the
symmetry generated by K. Q[Iz'} and p(f( ) are 1-forms on S
but only through their dependence on K, they do not
themselves involve a metric variation but also are not
invariant under genuine metric perturbations. Examples are
given in Sec. IVA for K = % a timelike Killing vector, in
which case Q[%] is a mass.

III. THE SYMPLECTIC FORM

We shall now explicitly calculate the symplectic form for
Einstein gravity with a cosmological constant A. The case
A = 0 was analyzed in [1,3,6].

Assume the space-time M can be foliated into spacelike
hypersurfaces X, of constant 7. Defining lapse and shift

"This is not in general the same as the Noether charge
associated the entropy, as defined in [5].

functions N and N“ for the foliation in the usual way we
can choose the orthonormal 1-forms®

a _ ,a U
e’ = e dx
to decompose as

. . Nt
" =Ndt and e =7¢ —l-ﬁeo, (27)
where

=2 dxe

and N' = ¢’ ,N*. With (27) we have made a partial choice

often referred to as the time gauge, and this will be used in
the following.

The timelike unit 1-form n = —e" vanishes on X, and the
future-pointing unit vector normal to %, is

0

1
i = (0, = ND,). (29)

In the time gauge (28) the extrinsic curvature of X, in M

takes the form
= 30
Kap 0 i . ( )

k;j can be expressed in terms of the time evolution of the

dreibein
Tij = (8tzia><z_l>aj
and the shear of the shift function
1 - ~
oLijy = E(DiNj + D;N;),
with Ei the three-dimensional covariant derivative on X%,,
DN; = O;N; + @ ;N*.

In terms of these the extrinsic curvature is

1
Kij = N (T{ij} - O'{ij})’ (31)

with T{ij} = %(T,’j + Tji)'
In the time gauge the Einstein Lagrangian takes the
well-known form

8Greek indices near the middle of the alphabet,
u,v,...=0,1,...,n, label coordinates on M while indices
a,pB,...=1,....,n, near the beginning of the alphabet label
coordinates on X,. Roman letters a,b,.. =0, 1, ..., n are ortho-
normal indices on M and i,j,... =1,...,n are orthonormal
indices for 1-forms ¢’ on X,.
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1

L:F(Rgb/\*e”b—ZA*l)
1
= 1en (kiKY — K + R —2A) * Imod d,
V3

with « the trace of k;; and R is the three-dimensional Ricci
scalar associated with el =¢,dx*. Discarding surface
terms ¢ « only appears here in «;
in (31), and

ij» through the 7;;, term
skt vedul v
sF TN N (€ )98, + (e) "5}

The momentum canonically conjugate to ¢, in the
Hamilton formulation is the (n + 1)-form

oL

T
Hi: Q¥
5o

in terms of which

I, = 2 1% =

1

877:N( ij 6in) * 1

1
:g(KU l] )(dl/\*l)

where ¥ is the Hodge-* on X, with 1 =2, We
therefore define momentum n-forms on X,

;= (@NWI,; with II; = siK)F1. (32)

1
@(Kij -

In the time gauge variations of the metric induce

a0
A%, = ( N ) (33)
AT A

with

. . 1 . o . o
AZIAIO :N(aNZ—AllNJ) and A’j:(ﬁ?a)(e_l)"

J

The symplectic structure associated with the action (4)
was evaluated in [3] for A = 0, and the result is the same for
nonzero A. @ for the action (4) is

1
0=—1{6(wy, N *e®) —

o Wap A 8(xe®) +d x (e4 A Se,)}

and, using the expressions for @, in the time-gauge given
in Appendix B 1, Eq. (B18), this gives

~ , 1 1 .
6 =— n*.6e¢t ———6 0) A Ol7
/>:/ i0e'a—o </>:,K*e> 16”/&)2, ke
(34)

where I1%,8¢,,
of Z, this is

=1, 8% In terms of the extrinsic curvature

1
:——/ K;iSY + k) x ¥ ——

e A,- xe%. (35)

From (34) the presymplectic form is

z/f’aAﬁl'I”V——&(/ Ai*eOi>.
s, 167\ Jos,

When the surface term vanishes this is of the Darboux form
[3], the inclusion of a cosmological constant does not
change this conclusion.

IV. TIMELIKE KILLING VECTORS AND MASS

The Noether charge associated the symmetry of a time-
like Killing vector is of course a mass. Suppose an
asymptotically flat space- time M is endowed with a

timelike Killing vector K =2 with the normalization

Bt’
fixed by demanding that K has unit length asymptotically.

In the time-gauge (29) K has components
K® = (N,N"). (36)

It was shown in [6] that @[J] in (25) is the variation of the
ADM mass. With 0 = 9%, U 9%,

- 1

D] = —— 6*dK+/ iz0(e?, 6e)  (37)
167 o )

is independent of p =1 or p = 2.

We shall now drop the boldface notation for forms on S
from here on—while it can be useful in understanding the
general structure it becomes rather ugly when examining
the details of specific examples—and write

> 1
OK] = —/ S * dK—I—/ igf(e, 6e?).  (38)
167z oz, %,

The change in sign in the first term here is because de* and

K anticommute in (37) while de“ and K“ in (38) are
ordinary commuting quantities.
An exact expression for ®[K] in the time-gauge, when

K= % in (36), is derived in Appendix B 2, Eq. (B30),

3] (o ) -0(2) o

- Ni(Sijjk + 5K)} * €0i, (39)
where S;; =3(A;;+A4j;), S=S' is the trace of ;;,
Ok = k', is the trace of x;; and’

? T'he combination
k k
5Kij + KikA i AikK j

is gauge invariant and depends only on §;;.
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X” = 6Kij + KikA : — Ale + K; S (40)

o in (39) is either of the components of 0%, 0Z; or 0%,.

A. Asymptotically flat black holes

The simplest example of the formalism in the previous
section is as always the Schwarzschild line element

2 1
ds® =~ <1 ——m> dr + 3 dr? + (9 + sin9%dg?)
r —

for which N = 0. Hypersurfaces of the Schwarzschild
geometry with constant ¢ are timelike for r < 2m so in
defining X, we restrict to r > 2m.

1. ADM mass

For the Schwarzschild geometry in the time-gauge
k;;=0and N' =0 so ¢’ =2' and Eq. (39) simplifies to

oo
iN)S = (9;N)§/;) (41)
with N = \/1——2—'"

We can choose

dr

_m
1 r

e’ = rd9, e’ = rsindde

with unit normal to %,

m o N,
Q)] :—ere ) W = ——¢€7,

N cotd ,
(1)13:—76 s WH3 = e-.

If we vary the metric by varying the mass m — m + dm
then

Sel = el e =8e° =0,
r—2m
SO
rfrznm 0 0
AL, =8 = 0O 0 O
0 0 0
and

57('1‘]‘ =0.

Now!?

26m m

D;S/—0,S/=—"__5! and O;N=
SIS = :

giving (with *1 = %12 and xe! = &%)

0 26m
@[E} . /ﬂ ( 2 )r sm&d&dga—— / sin 9d9d .

For example we could take X to be a thick solid shell with
ry < r < ry, then the boundary 0% consists of two spheres
with radii r; and r, (in particular it is not necessary to take
r, — o0). Taking o to be the outer sphere gives

5
60 =0 =" sin8d9dp = 6m
47

S2

so @ is the variation of the mass parameter, which is
therefore identified with the physical mass. Since @[S dt]

independent of r we can calculate it using whatever value
of r is convenient. Indeed we can even smoothly distort o to
any arbitrary shape, as long as it encloses the origin and
subtends a solid angle of 4z we will always get the same
answer.' More generally, for any space-time with a sta-
tionary metric which is asymptotically flat, we can evaluate
®[2] on a sphere of large r in polar coordinates. Since 2 is

Killing T(ij} vanishes in (31), and we can assume that

1 1
N~1+O<—>, N,wO(—),
r r
~ 1

These conditions include the case of asymptotically flat
rotating black holes. A stationary metric has % as a Killing
vector but we do not assume that the variation de“ shares
this symmetry, we can only assume the falloff

) 1 ~ 1 1
S/N0<;> DlS]kN0<ﬁ) 5]('{,]}"‘0(;),

the last since d7;;, could be of order 1/r in (31). Here
however the linearized equations of motion are invoked and
satisfying these requires that, for an asymptotically flat
metric,

"In an orthonormal basis 9; = (2')%,8,.

'Of course the value that we get for the mass depends on the
normalization of the Killing vector and, for asymptotically flat
space-times, this is naturally fixed by demanding that K has unit
length when r — oo.
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1

With these asymptotic conditions, N/X;; ~ 0(%) and
(39) reduces to

CD{%] :é/sz(bj(s,f) —a,-s)%’wro(%), (43)

which is the variation of the ADM mass [6,9].

This variation has been calculated here asymptotically as
r — oo but it is stressed that, in principle at least, this is not
necessary—we can smoothly distort the sphere at infinity to
any other sphere [provided we do not pass through any
matter to reach it by the distortion, otherwise (4) is not the
correct action to use], and the formalism ensures that we
would have obtained the same answer for any stationary
asymptotically flat metric. It is not necessary to go to
asymptotia to evaluate variations in the ADM mass for a
stationary space-time.

2. The Brown-York mass

It is well-known that in asymptotically flat space-time
the ADM mass [9] is related to the Brown-York mass [16],
indeed it is usually stated that they are exactly equivalent.
The earliest reference to their equivalence appears to be
[19]. In this section we shall investigate how this relates to
the Wald formalism of Sec. IV A, specifically Eq. (43).

The Brown-York mass in asymptotically flat space-time
is defined using the extrinsic curvature of the asymptotic
boundary of X. If 7 is the unit normal to OX then the
extrinsic curvature of 0% in X is

Kij =500 0 (D + D),

where

ﬁij = (5{ - %iﬁj)
projects from the (co)tangent space of X onto the (co)
tangent space of OX. The trace ¥ = ;' can be obtained from

dsn=%%1, (44)

where d = 2'9; is the exterior derivative and % the Hodge
duality operator on X, at constant 7. If k) is the trace of the
extrinsic curvature of 90X with the flat metric on X then the
Brown-York mass [16] is

1 _ 1

Mg y = — (Ko —K)*n = ——
87.)5), 87.)5),..

(6R)%7. (45)

This is related to (43) as follows. Under a perturbation of
the metric (44) can be used to show that, in the gauge (28),

/H{(&)Jr;zi,sif};:ﬁ_/(a,.s—i)jsf,.);zf. (46)

l

Hence, at large r in asymptotically flat space-time with the
falloff conditions (42),

<1>{% :—% SZlm{(&z)+%,-,-sff}»7ﬁ+o(%>. (47)

Now let 6k = kK —k be the deviation of the trace of the
extrinsic curvature of the asymptotic boundary S? of ¥ from
its flat space value

. 2
Kop = —.
r

Asymptotically the extrinsic curvature has the form

~ 1~ 1
KlJ:rPU+O(r2>

This implies that Ky — X ~ O(%), and it is these 1/r* terms
that contain information about the mass since

1 — 1
- xn=4r+ O (—)
r Sz‘l.r r

and

0 1 S . 1 —
) L?t] = 87T/SZ|,N(K0 —K)xn + rlgg <8ﬂr /52|,_, S * n>,
(48)

where S, = P;;SU is the transverse trace of S;; [it does not
matter whether or not we use the flat metric for * 7 in (47)
since the difference is O(1)]. We see from (45) that ®
equals the Brown-York mass if

1 —
lim <—/ Sl*n> =0.
r—oo \ r SZ‘,_,

It is not sufficient that S;; falls off like 1/7, in addition the
transverse trace of the metric perturbation, S | , must fall off
faster than 1/r (for a perturbation corresponding to a
gravitational wave moving radially outward this is guar-
anteed since S| = 0).

This analysis shows that the difference k, —k in the
definition of the Brown-York mass is best viewed as a
1-form on the space of solutions S.

3. The Bondi mass

In Bondi-Sachs coordinates (u,r,9,¢), [21], the line
element is

d?s = —U?e®du? — 2¢*W dudr

+ rPhog(dx* — Vedu)(dxP — VPdu),

where u =t —r is a lightlike coordinate, r is a radial
coordinate and x* = (9, ¢) are coordinates on a 2-sphere
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with metric components /,5. In general U(u,r,9,q),
W(u,r,9,¢) and V*(u,r,9,p) are functions of all four
coordinates, but we require at least that

U—1, W—1, Ve — 0.

r—00 r—0o0 r—00

With foresight in relation to the Bondi mass it is useful to
replace U, without any loss of generality, with the function
M(u,r,9, ) defined via

oM
U=1-"= (49)

’
with M finite as r — oo.
We can choose orthonormal 1-forms
e¥ = exp(W)(Udu + U~'dr),
el = U lexp(W)dr, el =ret —Vidu, (50)

with ¢ (i =2, 3) orthonormal 1-forms for the 2-sphere
metric h,; and

Vi=relve.
We are free to choose a gauge in which
el =Ciel, (51)
where detC =1 and
&2 = dd, &3 = sinddg

are orthonormal 1-forms for the round unit 2-sphere.
Asymptotically we demand that C'; = &'; + O(%) for large
r but the condition detC = 1 ensures that volume of the
2-sphere is 4z for all r (see Appendix C). We shall call (50)
and (51)_the Bondi-Sachs gauge.

Now K = gt = a has metric dual 1-form

K =-Uexp(W)e’ — V,e!

and using this one finds that, on a sphere defined by u and r
constant,

1 1 1 .
— | 8(xdK)=—356 —(U® +U*W =W
167 /s (xdK) & </52{2( y+

‘ 1 ‘
- Vio,W — Ee_ZWV’ vj}ﬂ@”), (52)

with W = 0,W and W' = 9, W. The expression for [ iz0
is more complicated but if we assume that V! N% and
W =1+ 0(), in order to ensure asymptotic flatness, it
takes the asymptotic form

/iﬁe_i/ {5M+5W oW’
52 87 Js2
+<1——>5W}“3+0<>. (53)
r r

Adding (52) and (53) the SW terms cancel and

&(lﬁa(m@) +/SZ ic0

1

{2(6M —MSW)
8z 52

1
+r[6W =M’ =26(MW')] - r*6W'}e* + 0 (—) . (54)
r

Demanding that the metric is asymptotically flat imposes
the conditions

1
M(u.r.9.9) = m(u, 9.0) + o<_),

o) =209) (1)

% </S25(*dK)) +/S2 izt

(5m +ow)e? + 0< > (55)

giving

e
In general the Bondi mass is defined to be

1

—/ m(u, 9, @) sin dddde, (56)

M(u) g

and here we invoke the linearized equations of motion, at
order - the Einstein equations actually require that W ~ %
50 6W ~ % also and 6w = 0.

Finally

lé—ﬂ<A25(*dK)> +A2 ik9:6M+0<%>, (57)

so Wald’s expression indeed equals the variation of the
Bondi mass. Again, since K is killing, the general formal-
ism ensures that any value of r could have been used in the
calculating the left-hand side of (57) and the answer would
always be the same.

V. CONCLUSIONS

The phase space formulation of a dynamical system is
ideally suited to the discussion of conserved quantities and
symmetries of relativistic systems which are invariant under
diffeomorphisms, such as general relativity, are no excep-
tion. For general relativity the symplectic form € was
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derived by Witten and Crnkovi¢ in [1] and reformulated by
Lee and Wald where it was shown in [3] to have the
Darboux form in asymptotically flat space-times. This
conclusion is not changed when a cosmological constant
is included.

For stationary solutions of Einstein’s equations, when %
is Killing, @ in (38) is a 2-form on the space of solutions
which is independent of the surface [more generally
(n — 1)-dimensional submanifold] ¢ in M on which it is
calculated.

If the solution is that of an asymptotically flat stationary
space-time @ is the variation of both the ADM mass and the
Brown-York mass, when X is spacelike and yields the
Bondi mass when X is an appropriately chosen lightlike
hypersurface respectively. The analysis here lends further
support to the suggestion that Lee and Wald’s expression
®[e, Lye,6¢] in Eq. (38) thus serves to unify the
different definitions of mass in general relativity that appear
in the literature and is a universal expression for the
variation of the mass associated with a stationary solution
of any diffeomorphism invariant theory.

From a mathematical point of view the construction fits
very neatly into a double complex that captures the
cohomology of the various forms involved, details of this
mathematical structure are given elsewhere [8].
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APPENDIX A: DIFFERENTIAL FORM
NOTATION

1. Connection and curvature

For a given metric let e denote a set of associated
orthonormal 1-forms (a tetrad in four dimensions). Our
conventions are that orthonormal indices are raised and
lowered with

100 0
|0 100
@=T"=1 09 01 0

0 00 1

When 1-forms are wedged together we use the short-hand
notation

ealaZ"'an — eal /\ eal /\ BRERNYAN ean'

i, denotes contraction with the orthonormal vector metric
dual to e“ so, e.g.,

i, = obet — 55e”.

The associated torsion free connection 1-forms can be
expressed in terms of the e* as

(e”iaihdec - iudeh + ihdeu)v (Al)

N —

Wgp =

where d is the exterior derivative. The covariant exterior
derivative is denoted D, in terms of which the torsion free
condition is

De® = de® + o, A e’ = 0. (A2)

The curvature 2-forms are

— c _ cd
Rab - da)ab + Wy~ N Ocp = Rabcde ’

2
where R ., are the components of the Riemann tensor in
the chosen orthonormal basis. The components of the
associated Ricci tensor, R,,, and the FEinstein tensor,
G, can be extracted from

Ry A %e%¢ = (2R, — RS8,) * e = —2G}, €,
where R = R“, is the Ricci scalar and = is the Hodge
duality operator.

If the metric is varied infinitesimally the orthonormal
1-forms must change,

e? — e% + de”.

Demanding that the connection 1-forms also change so as
to preserve the torsion free condition implies that

5(De®) = Dée® + 8(w;) A e’ =0

allowing éw,, to be determined from w,;, and de? through

Sw,y, = = (eCiyipDée. — i,Dde;, + i,Dde,). (A3)

N =

The variation in the curvature 2-forms is

SR,y =d(6wap) + @, Abwey + )¢ A bw,. = D(6w),,-
(Ad)

APPENDIX B: EXPLICIT EXPRESSION
FOR 6 AND o IN EINSTEIN GRAVITY

From (A3), keeping only symmetric variations,
1
0(e, be) = 8—(DbSa’7 — 0,8,b) €. (B1)
T

For completeness we give here the explicit form of @ under
two variations, 6; and 6, with
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(81)%,=(81¢%,)(e”")", and
(82)%, = (8,8%) ("),
w(eav61 €a,52€2) :é{(‘gl )bcDa (S2)bc - 2(Sl )bCDL‘(SZ)ha

+81Dy(82)5+(81)5 048, — 19,8, } * e
—(1o2), (B2)

where S| = (), is the trace of (S), and similarly for
S,. The explicit form of w is not very useful but of course it
vanishes if either (), or (S,),, is zero, in particular this
is the case if either of the variations is generated by a
Killing symmetry.

1. Spacelike foliation

For a space-time M with metric g,, and coordinates
x# foliate M with constant time hypersurfaces. Let x* =
(z,x*) where a = 1, 2, 3 and ¢ is a time coordinate. We use
the standard ADM decomposition: assume that r = const
are spacelike hypersurfaces, %,, and denote the induced
metric on X, by h,(t). The four-dimensional line element
decomposes as

ds? = Gudxtdx’ = Gy dt? 4 2g,,dtdx® + gaﬂdx"’dxﬂ

= —N2d£2 + hyy(dx® + N°dt)(dx? + NPdr),  (B3)

where g, = —=N* 4 hyyN°NP, g1y = gopNP and hyp = gop.

The orthonormal 1-forms e“ for the metric g can be
expressed in a coordinate basis as

e’ = e, dx!
while
el =e',dx%,

with i = 1, 2, 3, are orthonormal 1-forms for /4. Then
e, =e', and

i

. . N
" =Ndt and e =7¢ +Ne°, (B4)

with N’ = e ,N* the orthonormal components of the shift
vector. The connection 1-forms on X, are defined in the
usual way

de+a' ;AT =0

with d = ¢'0; the exterior derivative on X, at constant z.
In this gauge

. (N O Sy v 0
e,,_<N,. E,.ﬂ), ( >a—<_% (,é_l)a), (85)

and the unit vector normal to X, 7, has orthonormal
components n* = (1,0,0,0) so the metric dual 1-form
is n =n,e* = —e’.

Metric variations are described by

SN
a N 0

A b = ;7”5 “ Al )
N J

with A?; = (5¢',)(¢™")?;. This can be decomposed into
symmetric and antisymmetric parts

(B6)

Sij=Agjy = % (Bjj+4j).  Ay=Ap :%(Aij —Aj).
If we define the shift 1-forms as
N = hyyNedx! = N
then'”
SN = (6N);e! with (3N); = &N, + N;A/;,  (B7)
and
Al :A"O:Ei"’zNQ:%((SN"—A"ij):%((&V)"—ZS"/-N/).

(B8)

The vector K = g has contravariant components

K* =(1,0,0,0), so K= (N,N') and the metric dual
1-form is
K =-Neé’ + N;e'. (B9)

Under the diffeomorphism generated by % the change in the
metric components is 9,g,,, and we define

), = e, (e ),

where "= 0,, so

and
i Ny
e =eqdx" =1e,

where

2N is invariant under spatial gauge transformations,
A;j=A;j, (6N); =0, so SN' = —N*A;; under such a gauge
transformation.
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Tl] - 'él(l('é—l )(lj.

If £ = K is Killing then

(B10)

in this basis, so haﬂ, N%and N all vanish. However N is not
necessarily zero, only N% = 0 and ¢/ = 0, and

N' = ¢l Ne

so the orthonormal triad ¢’ are not necessarily time

independent, even if the metric & is. While z(;;) is zero
when % is Killing T(ij] need not be, rather N%=0 so
N,’ - T[ Nj = 0

In general the connection 1-forms in the gauge (B5) are"

Wo; = —aiNeO—i—l(a = Tn)el
0i N N {ij} {ij}
~ 1
Wjj = Wjj —ﬁ( lij] T T[;j])eo, (B14)

where o;j; and o|;; are the shear and vorticity of the shift
vector,

[

1 ~ -
Olij] = E(DiNj - D;N;),

U{U} = §< iNj + DjNi),
with
Gij :BIN] :aiNj+a)jk,iNk (BlS)

the covariant derivative of the shift functions on Z,.
The extrinsic curvature of X, is

(5116 - nanc)(ébd - nbnd) (Dcnd + Dcnd)'

N =

Kap =

In the time-gauge, n, = (—1,0,0,0), and

Dny = Oqhy + n@pe g = —po 4
SO
”By definition
— o~ Nk
Cl),-j = a),-j,ke = a),-j’k (ek - Weo) (BIZ)
SO
1 i~
;0 _N(a[ij] + 7 + N @y 1) (B13)

0 O
Kap = ( ) with
0 Kij

1 1
Kij = 5 (wi0; + wjo;) = N (T{ij} - O'{ij})- (B16)
We can rewrite (B14) as
o;N A
Wy = — Ilv eO - Kl'jel (B17)
~ 1 0
@y = @y = (o) + 7). (B18)

Under an infinitesimal variation," with A°; = 0 main-
taining the gauge (BS),

(dou)y = =20 =y

(5w0i>j = —5’<ij - KikAkj (BZO)
(6w;j)y = —%(am + 7 + (6@;;)N*)
(60;;) = (60;)- (B21)

Having performed the variation we can now set 7(;;; = 0
for a stationary solution, but 7(;;) in (B18) is still arbitrary,
though it must always drop out of any physical quantities.

2. Exact expression for @[K]

First we collect together all the pieces we need to
calculate Q
(1) Firstly

/ ig(6wa, A xe)
=2 [ igl(60,), +e)
0%,

0%,

= N,(kj S + k) } = €, (B22)

where 8k = k', is the trace of the variation of the
extrinsic curvature of ¥, in M.

(2) Next we need foz, igd* (e’ A Se,). This can be
evaluated using

“Note that

owy, = 5wah.cec + wab.céec = (éwab,c + wab,dAdc)eC’

= (5wab)c = 6a)ab,(r + wab.dAd(r' (B19)

Swyp . is not a tensor while (6w, ), is.
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for any p-form «a, to write

/ igd* (e’ A de,) = / Li*(e” A be,) = / 0,(e” A be,) = / 9,(Agi — Ay) * eV = —/ 9,(A; * %)
0%, 0%, 0%, 2 0%,
= —/ (a[Al‘ + TJ]Al - TZJA]) x eOi = —/ (3,Ai - T[U]A]) * eOi, (B23)
0%, 0%,
where in the last step we have assumed that % is Killing so z;;5; = 0. Now on shell
5‘tA,- = 57,’0 + T[U]AJ
when % is Killing15 for e* (so N=0, N*=0= 7o = 0, as well as 7;;) = 0). In this case (B23) is simply
/ Li (e A Se,) = —/ (61;9) * €. (B24)
0%, 0%,
(3) The final piece we need to calculate Q is & f *dK. First
dK = ﬁ(ath - ZaijN] + Nl + Tj,»N])eO’ + U[ij]el]

2 A . . 1. . .
= *dK = / (28,N ——UUNJ +_(N, + TjiNj)> *k 60[ = / (28,N+ ZKiij +_(Nl _Tiij>> * 80’.
%, %, N N o3, N

When K is Killing 7/ = & (N' — 7/ ,N7) = 0, but in general
S(N' = N;7'7) = Not'y + (6N)7'y = Not'y  onshell

does not vanish.
Therefore, on shell,

() 0%,
0%,

where
Xij :SKU—F [K, A]U‘FK”S (B26)

with § = §*; and [k, A],; is the commutator of the matrices k;; and A;;.
Assembling (B22), (B24) and (B25) one finds

1
Qle?, Le®, 5e%] = 67 s {2ix (6w, A xe®)izd * (e* A Se,) + 5% dK}

1

“Note that, although 7/, = 0 when g is Killing, we do not assume that 57/, = 0. We do not assume that A%, has the same symmetries
as the unperturbed metric.
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Now

—D;(NA/) — (O;N)S;/
and Q[e“, Lize?, 5e] should be gauge invariant and hence
independent of A;/. We might expect

/6 . D;(NA/) x % =0 (B28)

as it is the integral of a divergence on 0%, (the integral
over e forces e’ to be normal to J%,, and hence j is
restricted to be a tangential index). This can be proven
more rigorously using a straightforward application of
Frobenius’ theorem but we omit the details. Invoking
(B28) Eq. (B27) can be rearranged to

Qle?, Lie?, be’]
= [ NBsI - 0,5) + (@ON)S — (9N)S)

87 Jox,

+ XN = Ni(kpeS™* + 61)} * €. (B29)

Assuming that X, can be foliated into two-dimensional
surfaces ¢, ,, parametrized by r, we have

®le?, Le?, de’]

1 ~ . .
= | AND;S/ = 0,5) + (ON)S = (9;N)s;!

n Orr

+ XN/ = Ni(k ™% + 6ic)} o+ e (B30)

is guaranteed to be independent of ¢ and r if K= % is
Killing.

APPENDIX C: CONNECTION 1-FORMS IN
BONDI-SACHS GAUGE

We list here the connection 1-forms for asymptotically
flat metrics in Bondi-Sachs the gauge as defined in (50) and
(51) in the text. First write

f=UexpW and g= U'exp(W)

with f(u, r,9,¢) and g(u, r, 9, @) tending to one as r — oo
in terms of which

e’ = fdu+ gdr, e' = gdr. (C1)

We also have

el =re' —Vidu (C2)

with ¢ (i = 2, 3) orthonormal 1-forms for the 2-sphere
metric with r and u constant. In terms of the round unit
metric on the 2-sphere it is convenient to choose a gauge in
which

i — Cij/e\i
with
cio_ <e7 coshd e77sinho >
! e’sinhd e coshod
and
e? = do, 3 = sin 8dg,

det C = 1, but we shall not need this explicit form.
The connection 1-forms arising from (C1) and (C2) can
be calculated from (A1), they are'®

1. 1
Wy = —(G+Vd,g)(e® —e') —Z-¢°
01 fg(g 9)( ) 7
1 (0,f Oig Vﬁ) j
- = __+_ el’
2<f g fg
@ __aifeo l(aif_%_ﬂ>e1
Y 2\ f g9 fg
15 j
—}(D{ivj} + 7)€’
0,9 1 1<8if 0i9 V;) 0
w; =—e += —-——+—e
"y 2\ f g fg
1~ 1/8; ;
(G PV +run) =\ e ) )¢
1. 1~

1
iy =@y + (D = 7)(e” — ) = ppe’

f
where =0, ' = 9,, 9; = (¢71)%,0, and

pij — (C/C_l)ij.

w;; = ; j,kEk are the connection 1-forms associated with ¢
on the 2-sphere and D ; the associated covariant derivative.
With f = Ue" and g= U~'e" these expressions are
used to calculate @ in Sec. IVA 3.
Note that we have not assumed any symmetries, in
particular it has not been assumed that K = 0, is Killing.

When 0, is Killing g and z;;, are zero, but in any case these

do not appear in ®(K) at large r.

'fij}  denotes symmetrization, with normalization
(ij + ji); [ij] denotes antisymmetrization, with normalization

(ij = ji)

R —b | —
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