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Abstract 
 

Phthalocyanines (Pcs) are an important class of dye molecules, capable of incorporating a 

wide range of metal atoms into their macrocyclic cavity and can be heavily substituted on 

their outer carbons. These highly stable molecules play an important role not only in the 

commercial dye industry, but have also fuelled the development of many other 

technologies due to their attractive physical and chemical properties. Given their potential 

as light harvesting molecules, dye lasers and in photodynamic therapies, it is important to 

have a detailed understanding of the optical properties of the phthalocyanines. The matrix-

isolation technique provides an excellent opportunity to perform a detailed spectroscopic 

study of these molecules. Isolation of a molecule in an inert gas solid such as the rare gases 

or N2 at cryogenic temperatures allows for the acquisition of highly resolved spectra with 

very narrow bandwidths and the absence of hot bands or rotational bands. Furthermore, the 

positions of the bands are only slightly shifted from gas phase values due to the weak 

interaction between the host and the guest species. The aim of the work presented in this 

thesis is to provide novel insights into the spectroscopy of matrix-isolated phthalocyanines, 

with particular attention given to the gallium phthalocyanine chloride (GaPcCl) molecule. 

The most significant findings in the current work pertain to the luminescence spectroscopy 

and amplified emission of matrix-isolated GaPcCl. A vibrational analysis is performed on 

the ground electronic state of the molecule (as well as the related molecules MgPc and 

AlPcCl), which is used to assign the vibronic bands observed in emission and excitation. 

The infrared absorption spectra of matrix-isolated MgPc, AlPcCl and GaPcCl are recorded 

in the region from 400 to 4000 cm-1 in solid Ar and N2. Comparison of the spectroscopic 

results with predictions from large basis set ab initio density functional theory (DFT) 

calculations allow for mode assignments to be made. The most intense bands in the spectra 

correspond to A2u (A1) and Eu (E) modes associated with out-of-plane and in-plane 

motions of the macrocycle and hydrogens of MgPc (AlPcCl/GaPcCl). The high frequency 

modes arising from the C-H stretching modes were not observed in either matrix, but have 

been tentatively assigned in results from KBr discs. Two metal dependent vibrational 

modes were observed for AlPcCl; one at 491 (488) cm-1 in Ar (N2), and another at 519 cm-

1 in both Ar and N2. A single metal dependent vibrational mode was observed in MgPc, 

located at 505 (504) cm-1 in Ar (N2). The remaining metal dependent modes for these two 
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molecules, and all of those from GaPcCl, lie in the low frequency region below 400 cm-1 

and out of the range of the infrared detectors. The Raman scattering data recorded for 

MgPc, AlPcCl and GaPcCl in KBr discs are also analysed and found to be quite similar. 

The Raman active modes tend to correspond to in-plane distortions of the macrocycle, with 

the most intense bands being of B1g (B2) symmetry for MgPc (AlPcCl/GaPcCl). The 

Raman scattering spectra of GaPcCl are noted for being very similar to the fluorescence 

data.  

The visible luminescence spectra of GaPcCl trapped in N2, Ar, Kr and Xe matrices are 

recorded and analysed. The visible absorption in the region of the Q band clearly show the 

effect of matrix shifts in different hosts, although no gas phase data exists for comparison. 

Resolved vibronic bands are observed to the blue of the 0-0 transition of the Q band, where 

there is evidence for site structure. The less resolved B bands are recorded in the UV 

region, and are weaker than the fully allowed Q transition. A set of very weak bands are 

observed to the red of the B bands in each host. The vertical excitation energies and 

oscillator strengths of GaPcCl (as well as a number of other M-Pc and M-TAP molecules) 

are calculated with TD-DFT utilizing the B3LYP hybrid functional and 6-311++G(2d,2p) 

basis set. The theoretical results correctly predict the trend of the strong Q band in the 

visible and the weaker B band in the UV region of the spectrum. The predicted bands are 

typically blue-shifted with respect to the experimental results. A number of very weak 

bands were consistently predicted in the 350 – 500 nm region for all of the M-Pcs and M-

TAPs. These features are also observed in the experimental absorption spectra of matrix-

isolated GaPcCl and warrant further investigation. 

Emission spectra of matrix-isolated GaPcCl are recorded with pulsed dye laser excitation. 

Vibronic bands in emission extend up to ~1600 cm-1 from the 0-0 transition. A comparison 

of the absorption (excitation) and emission spectra shows obvious mirror symmetry, 

indicating the molecule has a similar structure in its ground and excited states. A 

vibrational analysis of the excited electronic state is performed given the similar vibronic 

structure in emission (and absorption/excitation) and the ground state Raman modes. 

Emission lifetimes are measured and found to be in the 2.3 – 2.6 ns range which is 

expected for a strongly absorbing dye molecule. The lifetimes are thermally stable and not 

strongly host dependent but do exhibit a small wavelength dependence. The existence of 

multiple sites of isolation is revealed in emission, with Ar matrices showing the best 

examples of this due to the narrow bandwidths of its emission peaks. Sites are also 
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observed in Kr and Xe, but are less resolved than in Ar. The broad emission bands 

observed in N2 also indicate the presence of multiple but unresolved sites. Sites are also 

evident in excitation, where the position of the 0-0 band (and thus the vibronic bands) shift 

depending on which emission wavelength is being monitored. 

With a moderate increase in the laser intensity, the laser induced fluorescence spectroscopy 

of GaPcCl trapped in rare gas and nitrogen matrices exhibits some unusual behaviour. In 

all matrices, a huge increase in the intensity of one particular emission band is observed 

when pumping the S1 (Q) ← S0 transition. This band involves a vibrational mode of the 

ground state, located at 1540 cm-1 (for GaPcCl/Ar) and from DFT calculations is assigned 

to the most intense Raman active mode involving an out-of-phase stretching of the 

bridging Cα-Nm-Cα bonds. Many of the characteristics of amplified emission (AE) are 

exhibited by this vibronic transition, and thus the threshold conditions and lifetime of this 

emission band are investigated. The narrow bandwidths of the AE bands allow for the 

identification and classification of phonon structures in emission and excitation, as well as 

the resolution of individual sites. A Wp function is used to analyse resolved phonon 

structure (the zero phonon line and phonon side bands) of GaPcCl/Ar AE spectra. 2D 

Excitation-emission spectra are employed to reveal the excitation and emission features in 

each host material. Ar matrices give the richest spectroscopy, showing a continuum of sites 

between two dominant species. The isolated monomer is abundant in this host, although a 

significant amount of aggregates are also present. Kr matrices tend to contain less of the 

isolated monomer and higher amounts of the aggregate, whereas Xe appears to contain 

only the aggregate species. Both Kr and Xe contain two dominant features, similar to what 

is observed in Ar. The N2 matrix differs from the inert gas matrices in that only a single 

dominant feature is present, although it is evident that this feature contains several 

unresolved sites located very close in energy. 

DFT calculations are performed on a series of M-TAPs and M-Pcs to investigate the effect 

the metal atom has on the structure of the porphyrin scaffold. Two situations are observed 

– one in which the metal fits comfortably into the macrocycle cavity and another where the 

metal is forced to sit above the plane of the porphyrin ring. As the metals bind to all four of 

the pyrrole nitrogen atoms the symmetries of these structures are found to be D4h and C4v 

for the planar and non-planar molecules respectively. Analysis of several metals with 

different atomic radii shows that the size of the atom is the sole property governing 
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whether or not the macrocycle can incorporate a given metal. The non-planar structures 

also show evidence of a doming of the porphyrin macrocycle, which gets progressively 

more pronounced as the size of the metal atom increases. Where experimental values are 

available, DFT calculations agree to within 3% of measured bond lengths and angles. 

Calculations on the M-PcCl and M-Pc+ molecules (M=Al/Ga) show that a counter-ion can 

pull the metal from the central cavity and cause a small doming effect. 

DFT calculations are used to analyse the occurrence of reverse isotope shift ratios (ISR) in 

H/D substitution of the free-base tetrapyrroles, whereby the frequency ratio νH/νD is less 

than 1. The reverse ISR effect is found to be most evident in the out-of-plane bending 

modes (B2g and B3u symmetry) involving some N-H motion for the four molecules studied; 

porphyrin (H2P), tetraazaporphyrin (H2TAP), tetrabenzoporphyrin (H2TBP), and 

phthalocyanine (H2Pc). This effect was analysed by following the evolution of the normal 

mode frequencies with incremental variation of the H atom masses from 1 to 2 amu. This 

method allows direct, unambiguous mode correlations to be established between the light 

and the heavy isotopologues. When the NH(D) motion is predominant, the H to D 

frequency evolution decreases in a continuous manner for a particular normal mode. In the 

case of two modes of the same symmetry and whose frequencies are similar, their 

frequency evolutions could cross, depending on the extent of NH(D) motion involved in 

them. The evolution diagrams may show avoided crossings of various extents, which 

thereby reflects the degree of the NH(D) motion in the modes. The reverse ISR effect is 

directly correlated to these avoided crossings.  
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Chapter I: Introduction 
 

I.1: Porphyrins and Phthalocyanines 
Porphyrins are a class of important bio-molecules and are a part of what gives nature much 

of her colour. Often referred to as the Colours of Life1, they are responsible for giving 

plants their bright green colour in the form of chlorophyll2, and mammalian red blood cells 

their distinctive crimson red colour when found in the form of haemoglobin3 (Figure I.1). 

Both of these metallo-proteins are involved in energy transfer processes in plants and 

animals and have directly allowed life to populate, thrive in and shape the planet into the 

place we know and live in today. The word porphyrin originates from the Greek word for 

purple, πορψύρα, which is the colour of some of the earliest discovered porphyrins.  

 

Figure I.1: Molecular structure of the chlorophyll c1 and heme molecules (top left and 
right respectively) and the effect these molecules have on the appearance of the cells they 
occupy (bottom). The images of the plant and mammalian red blood cells were taken from 
Reference 2 and Reference 3 respectively. 
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Porphyrins get their intense colours from the conjugation on the central ring of the 

tetrapyrroles. These chromophores are aromatic according to Hückel’s definition4, as they 

are planar and have 4n+2 conjugated π-electrons. The molecules absorb light strongly in 

the visible region of the spectrum, and depending on the substituents and metals occupying 

the macrocycle cavity, the absorption maxima can shift quite significantly, giving this class 

of pigments a wide range of intense colours. 

The simplest porphyrin, free-base porphine (P), is a cyclic tetrapyrrole with four linking 

methine carbons. More complex porphyrins, such as the bio-molecules mentioned above, 

contain this relatively simple structure with various substituents on the β-carbons, allowing 

large protein scaffolds to be built around the pigment moiety. Phthalocyanines (Pcs) are 

synthetic counterparts of the porphyrins, where the bridging carbons have been replaced by 

nitrogens. An important property of porphyrins and phthalocyanines is that two protons in 

the central cavity of the ring can be replaced with a metal, bonded to the four pyrrole 

nitrogens. It is thought that approximately 70 different metals can occupy the cavity in 

phthalocyanine5. These are centres of chemical activity and play a crucial role in energy 

transfer processes in life. For example, the heme molecule has a central iron atom which 

acts as an oxygen transporter in mammalian respiration. In chlorophyll the central metal is 

magnesium, which acts as a binding site for water – the electron source in photosynthesis. 

While colour is their most striking property, the porphyrins have other useful properties 

which make them ideal for use in living organisms and in man-made materials. Porphyrins 

and especially the phthalocyanines are very stable molecules, and do not degrade at high 

temperatures or when exposed to intense light. They are generally insoluble in most 

common solvents except in strong acids or when functionalised with sulfonate groups.  

I.1.I: Structure of Porphyrins and Phthalocyanines 

The structure of porphine is relatively simple, consisting of four pyrrole rings connected by 

bridging (methine) carbon atoms to form a 16-membered macrocycle. The 

tetraazaporphyrin (TAP) molecule differs from this structure only in the meso positions, 

where the bridging carbons have been replaced by nitrogens. Porphine and TAP are the 

parent molecules to the larger and more stable tetrabenzo porphyrin (TBP) and 

phthalocyanine (Pc) molecules, where benzo annulations to the pyrrole rings form 

isoindole subunits instead (Figure I.2). 
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The phthalocyanine anion (Pc2-) can act as a tetra-dentate ligand capable of complexing 

with a wide variety of metal atoms via the four pyrrole nitrogens, forming metallo-

phthalocyanine (M-Pc). The anion is also capable of bonding two hydrogen atoms (as 

shown for the free-base molecules in Figure I.2) or two small metal cations (such as Li2 or 

Na2). Similarly, TBP and the parent molecules P and TAP are also capable of these 

interactions, although the number of possible M-P and M-TAP systems have not been 

studied to the same extent as their more stable benzene annulated counterparts. 

 

Figure I.2: Structures of the ‘free-base’ analogues of porphine (H2P), tetraazaporphyrin 
(H2TAP), tetrabenzo porphyrin (H2TBP) and phthalocyanine (H2Pc). The two hydrogen 
atoms occupying the central cavity can be replaced by a selection of different metal atoms. 

 

I.1.II: Synthesis of Phthalocyanine and Tetraazaporphyrin 

Phthalocyanine was first reported in 1907 by Braun et al.6 In 1927 Swiss researchers trying 

to convert o-dibromobenzene into phthalonitrile7 accidentally formed an iron containing 

complex as a by-product. They commented on the stability of the contaminant, but did not 

fully characterise it. In 1928 researchers from Scottish Dyes Ltd. (later ICI) working on the 

synthesis of phthalamide observed a blue contaminant and characterised it to be copper 

phthalocyanine1, 8. Scottish Dyes went on to patent copper phthalocyanine as Monastral 

Blue pigment in 1928. Linstead and co-workers did much of the work in deducing the 

structure, reactivity and properties of free-base and metal phthalocyanines9,10,11,12,13,14,15. It 
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was Linstead who also realised the compounds formed in 1907 by Braun et al. were also 

phthalocyanines. 

Many synthetic routes exist to form free-base and metal phthalocyanine8,16,17. Four of the 

most commonly used routes to metal phthalocyanine are shown in Figure I.3. Scheme (I) is 

similar to the synthesis used by Linstead and patented by Scottish Dyes Ltd. This reaction 

uses phthalonitrile, copper and CuCl2, with the Cl atom acting as the nucleophile in the 

reaction.  

 

Figure I.3: Schematics showing some of the most widely used synthetic routes to metal 
phthalocyanine (M-Pc).  

 

Scheme (II) uses diimidoisoindole as the precursor instead of phthalonitrile, although it is 

itself derived from phthalonitrile. The process shown in Scheme (III) involves using 

phthalic anhydride and urea with ammonium molybdate as the catalyst. This is a low cost 

synthesis and is commonly used in the production of pigments. Scheme (IV) uses 

nitrobenzene and 2-cyanobenzamide as an approach for making functionalised 

phthalocyanines, due to the ease of functionalization of the precursor molecules18. Free-

base phthalocyanine can be easily prepared from M-Pc. This involves removal of the metal 
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from M-Pc by treating it with strong acids11,16,18, or using the precursors used in metal 

phthalocyanine in conjunction with bases and reducing agents16. 

By contrast, the synthesis of the tetraazaporphyrins is much more difficult than that of the 

phthalocyanines. This may be due to steric effects of the reagents used in the 

phthalocyanine synthesis or the instability of the reagents used in tetraazaporphyrin 

synthesis. The first reported synthesis of tetraazaporphyrin comes from Linstead19 in 1952. 

This work produced a number of different M-TAPs, as well as free-base TAP. Shown as 

Scheme (V) in Figure I.4, the synthesis involved stirring maleic dinitrile in the presence of 

magnesium metal to form MgTAP. Substitution of the Mg metal was straightforward and 

could yield a number of different M-TAP compounds. Free-base tetraazaporphyrin was 

formed by refluxing MgTAP in acetic acid to eliminate the magnesium. In 1999 Makarova 

et al. discovered an alternate route to H2TAP20. Scheme (VI) shows Makarova’s reaction 

of succinonitrile with lithium dimethylaminoethylate (LiOR) in an excess of alcohol 

(ROH). 

 

Figure I.4: Two possible synthetic routes to H2TAP. Scheme V involves using magnesium 
as a scaffold to build the porphyrin followed by removal of the metal from the inner cavity. 
Scheme VI is a direct synthesis of the molecule, eliminating the need for the metal based 
intermediate. 

 



                                                                                                             Chapter I: Introduction 

6 
 

Several different synthetic routes exist for the Group XIII metal phthalocyanine chlorides, 

some of which are presented in Figure I.5. Scheme VII shows the earliest reported 

synthesis of AlPcCl from Owen and co-workers21 in 1962. The synthesis involves 

refluxing phthalonitrile with AlCl3 in quinoline at 175°C for 1.5 hours. A variation on this 

synthesis was later reported by Linsky and co-workers22 to prepare GaPcCl. It is also 

possible to use phthalonitrile and AlCl3 in an assortment of different solvents and with 

various catalysts to improve the yield23. An indirect synthetic route is shown in Scheme 

VIII24, in which a metal substitution is performed on CuPc. This high yielding process 

involves dissolving the CuPc in a molten salt (NaCl) containing AlCl3 as the reagent and 

stirring at 240°C for 6 hours. Scheme IX outlines the preparation of GaPcCl25 from 1,3 

diiminisoindoline and GaCl3. Finally, Scheme X shows the synthesis performed by Wang 

et al.26 to produce AlPcCl in large quantities. 

 

Figure I.5: Some of the synthetic routes used to produce the metal phthalocyanine chloride 
molecules AlPcCl and GaPcCl. 

 

I.1.III: Applications of Phthalocyanines 

Phthalocyanines have been the subject of a diverse range of studies due to their usefulness 

in existing technologies and their potential in novel applications. The most obvious use for 
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these coloured molecules is as dyes (about 25% of commercially produced dyes are 

synthetic porphyrins or porphyrin derivatives27), but they are also found to be useful in the 

manufacturing of CD-R media28. Aluminium phthalocyanine chloride is of considerable 

historical significance in the development of laser systems; it was the first molecule used 

as a dye laser29 when a solution of AlPcCl dissolved in ethanol was pumped by a pulsed 

ruby laser to produce tuneable laser light.  

Phthalocyanines also have useful properties which can be applied to solving chemical 

problems. The metal in the centre of the porphyrins can act as a very good catalyst in redox 

reactions, similar to its function in heme in nature. Furthermore, the choice of metal 

chelated to the porphyrin can alter the selectivity of the reaction it will catalyse. By 

choosing different substituents on the beta or meta positions, stereo selective porphyrin 

catalysts can also be produced30,31. Due to their strong absorption in the near UV and 

visible regions of the electromagnetic spectrum, phthalocyanines are also useful light 

harvesting molecules for use in dye sensitised solar cells32,33,34. They have also been 

incorporated into photodynamic therapy treatments35,36,37 and oxygen sensors38. More 

recently they have been investigated for use as non-linear optics39, qubits for quantum 

computing40 and as single molecule transistors which have approached the limit of 

Moore’s law41. Tetraazaporphyrins, while not as extensively studied as the 

phthalocyanines, have also been investigated with the goal of practical applications42.  

I.1.IV: Electronic Absorption of Phthalocyanines and 
Tetraazaporphyrins 

The colour of porphyrins comes from the electronic π to π* transitions in the macrocyclic 

ring, and not from the metal centre. A good indication of this can be seen in the free-base 

porphyrins and free-base phthalocyanines, which have colouration as strong as their metal 

containing counterparts. The UV-Vis absorption spectra of porphyrins contain two main 

structures; an intense band in the near UV called the Soret or B band, relating to a 

transition into the second electronic excited state (S2  S0), and some weaker bands in the 

visible region called the Q (or quasi-allowed) bands relating to a transition into the first 

electronic excited state (S1  S0). The Q bands can show splitting depending on the 

symmetry of the molecule; D4h symmetry metallo-porphyrins show one Q band with some 

intense vibronic bands, whereas lower symmetry D2h free-base porphyrins show a splitting 

of the Q band into a lower energy Qx and a higher energy Qy band. Phthalocyanines show a 

similar electronic absorption profile to that of porphyrins, except the ‘Q band’ (usually in 
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the red region of the spectrum) carries the greater intensity, with weaker bands accruing in 

the UV region. The label “Q band” is perhaps misleading for phthalocyanines, in as much 

as the transition is fully allowed and stronger than the Soret band. It is still used partly for 

historic reasons to show the relationship between the absorption spectra of the porphyrins 

and the phthalocyanines. 

The ‘Four-Orbital Model’ proposed by Martin Gouterman in the 1960s was the first 

successful theoretical model for describing the electronic absorption properties of 

porphyrins and phthalocyanines43,44,45. Gouterman’s model involved predicting the orbital 

energies with extended LCAO-MO Hückel theory and then using configuration interaction 

(CI) to predict the orbital contributions to the electronic transitions in porphyrins. The 

theory considers the absorptions bands to be transitions between the two highest occupied 

molecular orbitals (HOMOs) and two lowest unoccupied molecular orbitals (LUMOs). The 

two LUMOs, c1 and c2, are considered degenerate (as is the case with metallo porphyrins), 

and the two HOMOs, b1 and b2, are considered ‘accidentally degenerate’. Applying the CI 

method to the four single electron transitions of these orbitals (b1c1, b1c2, b2c1 and b2c2) 

leads to the formation of two pairs of degenerate electronic state transitions: 

௬ܤ =  ଵ
ଶ
(ܾଵܿଵ + ܾଶܿଶ), ௫ܤ =  ଵ

ଶ
(ܾଵܿଶ + ܾଶܿଵ). 

 ܳ௬ =  భ
మ
(ܾଵܿଵ − ܾଶܿଶ), ܳ௫ =  భ

మ
(ܾଵܿଶ − ܾଶܿଵ).      Eq I.1 

The first pair of transitions (By and Bx in Equation I.1), have a positive combination of the 

orbital contributions and the transition dipole moments of the contributions are added 

together to produce a strongly allowed transition at higher energies. These transitions make 

up the Soret or B band. The second pair (Qx and Qy in Equation I.1) combine negatively, 

causing the transition dipole moments for the individual contributions to cancel, yielding a 

forbidden transition. By lifting the degeneracy of the HOMO orbitals slightly (Figure I.6), 

the orbital coefficients do not completely cancel and the transitions become weakly 

allowed. The Gouterman four-orbital model correctly predicts the high energy, strongly 

absorbing Soret bands and the lower energy, weakly absorbing Q bands observed in the 

electronic absorption spectra of metallo-porphyrins. In the free-base porphyrins, the 

degeneracy of the LUMOs is lifted, resulting in the splitting of the B band into By and Bx 

bands and the Q band into Qy and Qx bands, another result observed experimentally. 
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Figure I.6: Schematic of the Gouterman ‘Four-Orbital Model’ for free-base and metallo-
porphyrin systems. The central model is the porphyrin anion (P2-), where both HOMOs and 
LUMOs are considered degenerate. The same rules can be applied to the benzo-annulated 
counterparts of the systems shown. 

 

The four-orbital model can also be applied to the structurally related tetraazaporphyrins. 

Replacing the meso-carbons with nitrogens has a considerable effect on the molecular 

orbitals. Figure I.6 shows that the HOMO orbitals (b1) are strongly influenced by the atoms 

in the meso positions. The electronegative nitrogen atoms in TAP/Pc lower the energy of 

b1 relative to b2. The energy of both LUMOs are lowered because of the contribution of the 

meso atoms to the overall MO energy. The benzene rings in phthalocyanine also have the 

effect of lowering the energy of all orbitals, but the b1 orbital has its energy lowered the 

most. The overall effect of these energy changes on the HOMOs and LUMOs is the energy 

of the Q transitions are lowered for the TAPs and Pcs, and the contributions from the b1c1 

and b1c2 single orbital transitions in the CI equations are reduced. The Q transitions 

therefore become dominated by the b2c1 or b2c2 transitions, with very large transition 

dipole moments and are strongly allowed. A study using TD-DFT46 shows that this model 

breaks down for phthalocyanine in the region of the Soret band. 
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Figure I.7: The molecular orbitals described by the Gouterman four-orbital model for 
H2TAP (hydrogen atoms not shown). Orbital shapes and parities have been determined by 
DFT calculations in the current work. It can be seen that the meso positons of the b1, c1 and 
c2 orbitals contribute significantly to the MO and these positions are sensitive to changes. 

 

I.2: Matrix-Isolation 
The first experiments which might be considered as true matrix-isolation were conducted 

by Vegard47,48,49, who studied the emission spectra of solid gases and their relationship 

with the aurora borealis. Pioneering work on ethanol glasses by Kautsky50 was soon 

followed by phosphorescence studies of aromatic molecules trapped in low temperature 

glassy media by Lewis51. The term “matrix-isolation” was coined by two of the pioneers of 

the field, George Pimentel52,53 and George Porter54. Matrix-isolation commonly refers to 

the isolation of a (usually) reactive guest species in an excess of an (usually) inert host gas. 

The process ideally involves having the guest species completely surrounded by host gas 

atoms/molecules and hence isolated from all other members of the guest species. In order 

to achieve complete isolation of the guest species, there are usually 102 to 105 host particles 

for every guest particle. Preparation of matrix samples involves co-depositing the species 

of interest (which may be atoms, molecules, ions, free radicals or other reactive species) 

with the host gas onto an optical window. The sample can then be studied at the leisure of 
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the spectroscopist, without worrying about the reactive species degrading or reacting with 

other nearby species. The term has somewhat developed recently to a more general 

technique of trapping guest species in a rigid host material and preventing diffusion. 

Materials which can form effective matrices include crystals, clays, zeolites, polymers, 

boric acid glasses and frozen solutions, such as low temperature alkanes. From this point 

on, the term matrix-isolation will refer only to trapping a material in an inert gas host 

unless otherwise stated.  

Initially matrix-isolation was seen as an effective method to study short lived species; the 

cryogenic temperatures used in the method are advantageous in the study of reactions, 

phase changes, charge transfer processes and reactive species (such as radicals). It quickly 

became apparent, however, that this method was also extremely useful in the study of non-

reactive atoms and molecules. Spectra of matrix isolated molecules are often more simple 

than in the gas phase due to molecules being non-rotating (although this is not always the 

case55), and more resolved than in solution due to the weak interaction between the host 

and guest species. Furthermore, due to the low temperatures necessary for matrices to 

form, transitions in molecules only occur from the very lowest energy level.  

I.2.I: Matrix Hosts  

When performing spectroscopic studies it is important to choose a host material that will 

not absorb in the spectroscopic region of interest. For this reason, the rare gases make ideal 

hosts for matrix-isolation experiments. These atoms are transparent over a wide spectral 

range, from the far infrared (IR) all the way to the vacuum UV. N2 also makes for an 

excellent host material owing to its transparency and inertness. Reactive molecular gases 

(such as H2, D2, CH4, CO) can also be used to study low temperature reactivity and 

photochemistry of certain species, but are not useful for IR or Raman studies due to having 

strong absorptions in this spectral region. 

The present work utilises Ar and N2 matrices for IR experiments and Ar, Kr, Xe and N2 

matrices for luminescence experiments. Rare gases are useful model solids due to their 

inertness and simple packing arrangements56 and N2 often gives rise to very sharp IR bands 

for matrix-isolated molecules. The rare gas atoms all have closed outer electron shells, and 

these form face centred cubic (fcc) cells upon condensation (Figure I.8). Van der Waals 

interactions are the predominant force holding the structure together. The lattice is made up 

of cubo-octahedral (Oh) sites with each atom having its 12 nearest neighbours at a distance 
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of ܴ and 6 of the next nearest neighbours at a distance of ܽ. The distance ܽ is the lattice 

parameter and defines the size of the unit cell. The nearest neighbour distance ܴ is related 

to ܽ by Pythagoras’s rule; ܴ = ܽ/√2. 

 

Figure I.8: Face centred cubic (fcc) packing of condensed rare gas atoms. The distance ‘ࡾ’ 
shows the distance of a given atom to its 12 nearest neighbours. The distance ‘ࢇ’ shows the 
distance to the 6 next nearest atoms. 

 

I.2.II: Matrix Effects  

It was not long after matrix-isolation was used in spectroscopic studies that subtle 

interactions between the host and the guest species were observed57. The matrix can 

perturb the vibrational and especially the electronic bands relative to the gas phase. Three 

distinct, but related types of matrix effect exist; matrix shifts, matrix splitting and matrix 

broadening. In order to understand the origin of these effects, the interactions which allow 

for rare gases and inert molecules to form crystalline matrices must be discussed. 

The Noble gases and homogeneous diatomic molecules such as N2 have fully occupied 

outer shells and have no permanent electric dipole moment. Small changes in the electron 

density due to motion of the electrons around the nucleus can cause weak instantaneous 

dipole moments. For an isolated atom or molecule the sum of these short-lived dipole 

moments will average out to zero. Where more than one atom or molecule are close 

enough in space a dipole can be induced. If atom ܣ has an instantaneous dipole moment of 
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ܧ ,, an electric field is generatedߤ =  ଷ. This electric field can polarize aݎ/ߤߙ

neighbouring atom ܤ, inducing a dipole moment ߤ =  ଷ, where α is theݎ/ߤߙ

polarizability of atom ܤ and ݎ is the distance between the atoms58. The two dipoles attract 

each other, lowering the energy between them. The dipole moment ߤ can then polarize its 

neighbours, inducing more dipole moments causing more attractive forces. As the electron 

distribution of atom ܣ changes with respect to time it will create new dipole moments with 

different direction and magnitude, and these will induce a new change in the polarity of 

atom ܤ, synchronising the change in polarity throughout the entire system (e.g. the atoms 

in a crystalline matrix). This synchronisation means that the overall dipole moment of the 

system does not average zero, creating a force of attraction between the atoms. These 

attractions caused by induced dipoles are called London interactions and are dominant at 

longer distances. At shorter distances the electrostatic repulsion caused by the overlap of 

electron clouds of atoms dominates, abiding by the Pauli exclusion principal. The same 

forces are present on neutral molecules with no permanent dipole moment. Together these 

forces make up the van der Waals interaction, which can be expressed using the Lennard-

Jones potential58: 

ܷି =  భమ
భమ − ల

ల            Eq. I.2 

where ܥଵଶ represents the repulsive energy and ܥ represents the dispersive energy. These 

van der Waals interactions have an effect on the vibrational and electronic spectra of 

molecules trapped in inert gas solids59. 

I.2.III: Matrix Effects and Vibrational Spectra  

The absorption of IR radiation by a molecule causing a molecular vibration is often 

compared to two atoms joined together by a spring. Considering a diatomic molecule, 

which only has one vibration; it is possible to approximate this system as being a harmonic 

oscillator. The potential energy, (ܸ), of the vibration of a diatomic molecule can be 

calculated within the harmonic approximation by, 

ܸ(݊) = ଵ
ଶ

ݎ)݇ −  )       Eq. I.3ݎ

where ݇ is force constant, ݎ is the distance between the two nuclei and ݎ is the 

equilibrium bond length. If such a molecule is then placed in a rigid cage of size ܦ made 

up of inert atoms or molecules, then Equation I.3 must be modified to account for the 
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attractive and repulsive forces of the host60. Combining the repulsive term of the Lennard-

Jones potential gives a vibrational energy of, 

ܸ௨௦௩ =  ଵ
ଶ

݇൫ݎ − ൯ݎ + ܦ)ଵଶܥ −  ଵଶ      Eq I.4(ݎ

and doing the same with the attractive term of the Lennard-Jones potential gives, 

ܸ௧௧௧௩ =  ଵ
ଶ

݇൫ݎ − ൯ݎ − ܦ)ܥ −       Eq. I.5(ݎ

The repulsive interaction has the effect of decreasing the length of the bond of the 

molecule in the matrix, thus increasing its vibrational energy relative to the gas phase 

vibrational energy. The attractive forces have the opposite effect, increasing the bond 

length of the molecule and lowering its vibrational energy relative to the gas phase60. 

These differences between the vibrational energies of the matrix-isolated molecule and the 

molecule in the gas phase are known as matrix shifts. 

Matrix shifts on the vibrational energies of a molecule are sensitive to the choice of the 

host material. The different polarizabilities of the host affect the magnitude of their 

attractive and repulsive forces, and this in turn will affect how much the vibrational energy 

of the guest molecule gets perturbed. The trend for the rare gases, going down the group, 

sees the atoms having a higher polarizability, and this leads to stronger attractive and 

repulsive forces, meaning the heavier atoms exhibit larger matrix shifts on their guests61. 

Helium and neon have polarizability volumes of 0.205 Å3 and 0.396 Å3 respectively, and 

generally have the smallest effect on the vibrational frequencies of matrix isolated 

molecules. Xenon has a much larger polarizability volume of 4.044 Å3 and has a more 

pronounced matrix shift than the smaller host atoms61. Other parameters which can affect 

the vibrational frequencies include the cage size and different sites within the matrix. The 

cage size is mostly dependent on the size of the guest molecule, with larger molecules 

requiring larger cages. The extent to which a molecule is constrained in its site affects how 

much the attractive and repulsive forces interact with the molecule. Molecules residing in 

larger host sites will have a reduced interaction compared to smaller sites. It is possible for 

multiple different sites to exist within the matrix, each with a different interaction with the 

guest and this can lead to the splitting of bands. This so called ‘site splitting’ can 

complicate spectra by the addition of many extra bands. 
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The matrix effects on the vibrational spectra of diatomic molecules are equally observed in 

normal modes in larger molecules. Polyatomic molecules can experience both red shifts 

(caused by attractive forces) and blue shifts (caused by repulsive forces) due to the 

different positions of the atoms relative to the matrix for a given mode. The direction of the 

displacement of the atoms during a vibration can affect the vibrational frequency in the 

same way. The polarizability of a given bond may also be considered, with highly 

polarizable bonds (such as C=O) experiencing a more pronounced shift than lower 

polarizable bonds (such as C=C). The presence of multiple sites, size of sites and the 

orientation of the molecule in a given site all affect the direction and the magnitude of 

matrix shifts and matrix splitting. 

I.2.IV: Matrix Effects in Electronic Spectra 

The simplest electronic transition is absorption from the ground state (ܧ) to the first 

excited state (ܧଵ), such as an atom or molecule in the gas phase for example. The energy of 

this transition can be calculated by ܧ(ܧ) = ଵܧ  −  . The reverse process of emissionܧ

whereby ܧଵ relaxes to ܧ is given by ܧ(ܧா) =  assuming no external forces are (ܧ)ܧ߂

acting on the system, as shown by the blue arrows in Figure I.9. When a molecule is placed 

in the crystal lattice of an inert gas, external forces need to be considered which lead to 

matrix shifts, matrix splitting and matrix broadening. Van der Waals interactions between 

the guest and host perturb the molecular orbitals, shifting the transition energies in both 

absorption and emission relative to the gas phase positions.  

Another effect of placing the molecule in a lattice is the coupling of the lattice phonons 

with the vibronic energy levels of the guest species. Electron-phonon coupling has the 

effect of broadening the absorption bands and shifting the transition energy. Transitions 

can occur from ܧ(ߥ) to ܧଵ(ߥ). In this instance ܧ߂(ܧ) in the solid phase is going to be 

larger than ܧ߂(ܧ) in the gas phase. ܧଵ(ߥ) can undergo non-radiative relaxation to 

 ,(ߥ)ܧ followed by emission to the phonon coupled ground state vibronic level ,(ߥ)ଵܧ

and finally non-radiative relaxation back to ܧ(ߥ), as shown by the red arrows in Figure 

I.9. The sum of the radiative transfer processes will show that ܧ߂(ܧ) = (ߥ)ଵܧ  −  (ߥ)ܧ

is now greater than ܧ߂(ܧா) = (ߥ)ଵܧ −  and (ܧ)ܧ߂ The difference between .(ߥ)ܧ

 is known as the Stokes shift and is equal to the sum of the non-radiative (ாܧ)ܧ߂

relaxation energies. 
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Figure I.9: Energy level diagram showing the electronic transitions between the ground 
and excited states, E0 and E1 respectively. 

 

Coupling to multiple phonons can lead to a broadening of bands in both emission and 

excitation. Weak electron-phonon coupling produces an intense narrow band in excitation 

known as the zero phonon line (ZPL) and little or no Stokes shifts is present in the 

emission. Matrix bands will almost always appear broader than those recorded in the gas 

phase, even in cases where there is only weak electron-phonon coupling. This broadening 

arises from overlapping ZPLs residing in different matrix sites. Resolution of the emission 

and excitation spectra of these different sites may be achieved by using very narrow 

excitation wavelength ranges, such as laser light. Laser induced fluorescence (LIF) is often 

used to resolve the site selective transitions of a matrix sample62. Vibrational effects 

induced by the matrix will also have an effect on the electronic spectra by altering the zero 

point energy of the ground and excited electronic states relative to the gas phase, affecting 

the energies of the vibronic bands observed in emission and excitation. 

When compared to solution phase electronic spectra, matrix-isolated molecules give very 

sharp bands. Solvent-solute interactions include hydrogen bonding, dipole-dipole 

interactions or London forces. These interactions distort the vibronic structure of the 
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molecule as the dipole moment of the solute aligns with the dipole moment of the solvent. 

This interaction changes the energy of the ground or excited state, allowing the molecule to 

absorb over a wider range of frequencies, almost like an averaging of the transition 

energies leading to the broadening of the absorption band. The weak interaction between 

the host and the guest species in an inert gas solid means that for a given site there will 

only be a single set of vibronic energy levels, culminating in narrow absorption bands. Due 

to the cryogenic temperatures used in the technique, no thermally excited molecules reside 

in the matrix, simplifying the spectra further. The degree of inhomogeneous broadening is 

much lower than that observed in solution, allowing for individual sites of isolation to be 

observed, each of which can be excited using LIF63. A comparison of a solution phase and 

a solid state electronic spectrum of a porphyrin molecule is shown in Figure I.10.  

 

Figure I.10: Electronic absorption spectra of a porphyrin molecule in solution (red trace) 
and in a solid gas matrix (blue trace). The interaction between the solvent and solute is 
stronger than the host-guest interaction in the matrix and culminates in a red shift on the 
solution phase spectrum. The broad bands in solution also hide the vibronic structure 
which is evident in the matrix. 
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I.3: Density Functional Theory 
The vibrational spectra of Pcs and TAPs are relatively complicated. The M-TAPs, M-Pcs 

and M-PcCls contain 93, 165 and 168 normal modes respectively. In order to perform a 

detailed analysis of the normal modes of these molecules, high level density functional 

theory (DFT) calculations have been employed. Density functional theory is one of the 

most widely used theoretical methods for calculating the ground state properties of 

molecules and has been shown to predict the vibrational energies of porphyrin and 

phthalocyanine systems with a high degree of accuracy64.  

I.3.I: Density Functional Theory 

Density functional theory (DFT) finds its origins in Thomas-Fermi (TF) theory65,66. 

Developed in 1927, this is DFT in its purest form, only relying on the electronic density, 

 as an input. The kinetic energy is approximated to be that of a uniform electron gas ,(࢘)ߩ

(UEG) and the interaction of the electrons was modelled using electronic Coulomb 

repulsion. It was not until 1964, however, when Hohenberg and Kohn developed their 

famous theorem67 that DFT was truly born. Their work proved that the ground state energy 

of an electronic system can be completely determined by (࢘)ߩ and there is a one-to-one 

correspondence between the external potential and the density. The electron density is 

given by the function: 

(࢘)ߩ = ܰ ଵݎଶ݀|ߖ|∫ …        Eq. I.6ݎ݀

The electron density is a property that can be observed experimentally, and the molecular 

properties of a system can be shown to be calculated from (࢘)ߩ. The total electron density 

is dependent only on three spatial variables (x,y,z): 

(࢘)ߩ = ,ݔ)ߩ  ,ݕ  Eq. I.7       (ݖ

The second of the Hohenberg-Kohn theorems proves that the minimum energy of a given 

state of a system is a functional of the exact electronic density: 

ܧ = [ߩ]ܧ =  Eq. I.8       [(࢘)ߩ]ܧ

From Equation I.7 and Equation I.8 it can then be concluded that for a value of 

,ݔ) ,ݕ   .ܧ ,there can be only a single value for the energy(ݖ
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The implementation of orbitals into DFT methods, as proposed by Kohn and Sham led to 

the development of Kohn-Sham density functional theory (KS-DFT). The idea behind KS-

DFT is to split the kinetic energy functional into two parts; one which can be calculated 

exactly, and a small correction term. Re-introducing orbitals into the DFT model increases 

the complexity from 3 to 3N variables, but the kinetic energy problem associated with 

orbital-free methods is fixed. In this sense KS-DFT is closely related to the Hartree-Fock 

(HF) method, with identical formulas for the kinetic, electron-nuclear and Coulomb 

electron-electron energies68. 

The key to KS theory is to calculate the kinetic energy under the assumption of non-

interacting electrons, even though this is not the case. The difference between the exact 

kinetic energy and what is calculated is very small and the remaining kinetic energy can 

thus be included in the exchange-correlation term. The KS equation69 for a system of N 

electrons is given by: 

[ߩ]ி்ܧ = [ߩ]ܶ +  ேܸ[ߩ] + [ߩ]ܬ +  Eq. I.9       [ߩ]௫ܧ

where ܶ[ߩ] is the kinetic energy of the electrons, ேܸ[ߩ] is the nucleus-electron attraction, 

-is the exchange [ߩ]௫ܧ is the Columbic repulsion between the electrons and [ߩ]ܬ

correlation (ܿݔ) energy functional which includes the non-classical interactions between 

the electrons. One of the main challenges in developing DFT methods is finding suitable 

approximations for ܧ௫ . Orbital-free DFT models require approximations to the kinetic, 

exchange and correlation functionals, whereas KS theory only requires an approximation 

for the exchange-correlation energy functional. The exchange-correlation energy is 

typically 10 times smaller than the kinetic energy term, meaning KS theory is far less 

sensitive to inaccuracies in the functional compared to orbital-free models. While orbital-

free theory is a true density functional theory (3 variables), Kohn–Sham methods are 

independent particle models (3N variables), analogous to Hartree Fock theory, but are still 

much less complicated than many-particle (correlation) wave function models. 

I.3.II: Exchange-Correlation Functionals 

In order to perform reliable calculations with DFT it is necessary to know the exchange-

correlation energy, ܧ௫[ߩ]. This term can be defined once the exact energy of a system is 

known. By tuning ܧி்[ߩ] to match the exact energy, ܧ௫[ߩ] can be calculated by 

subtracting the non-interacting kinetic energy, the ENe and J potential energy terms. 
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[ߩ]௫ܧ = [ߩ]ܶ) − ௌܶ[ߩ]) + [ߩ]ܧ) −  Eq. I.10   ([ߩ]ܬ

Where ௌܶ is the kinetic energy calculated from a Slater determinant and ܧ  is the total 

electron repulsion. The first term in Equation I.10 is the kinetic correlation energy and the 

second term denotes the potential correlation and exchange energy. The difference between 

various DFT methods then, is the choice of functional form for the exchange–correlation 

energy. It can be proven that the exchange–correlation potential is a unique functional, 

valid for all systems, but an explicit functional form of this potential has been elusive, 

except for special cases such as a uniform electron gas70. 

The exchange-correlation energy may be divided into the sum of its exchange energy and 

correlation energy functionals: 

[ߩ]௫ܧ = [ߩ]௫ܧ +  [ߩ]ܧ

Eq. I.11 

A variety of different functionals have been developed to determine the exchange and 

correlation energies. Most of these functionals fit into the following categories: 

Local Density Approximation (LDA): In LDA it is assumed that the density locally can be 

treated as a uniform electron gas. These functionals depend only on (࢘)ߩ where ε௫ is the 

exchange-correlation energy of the UEG: 

௫ܧ
[ߩ] =  ∫ (࢘)ߩ ε௫((࢘)ߩ)݀ଷ࢘    Eq. I.12 

Generalized Gradient Approximation (GGA): In GGA functionals the energy is dependent 

not only on the electron density, but also on derivatives of the density (࢘)ߩߘ: 

௫ܧ
ீீ[(࢘)ߩ] =  ∫ (࢘)ߩ)݂  Eq. I.13  ࢘ଷ݀((࢘)ߩ)ߘ

Meta-GGA: The extension of GGA functionals, which are dependent on higher order 

derivatives of the electron density with the Lapacian (ߩ2ߘ) representing the second order 

term: 

௫ܧ
ିீீ[(࢘)ߩ] =  ∫ (࢘)ߩ)݂  Eq. I.14   ࢘ଷ݀((࢘)ߩଶߘ(࢘)ߩ)ߘ

Hybrid-GGA: Hybrid functionals contain the exact Hartree-Fock exchange in the exchange 

functional: 
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௫ܧ
௬ௗ = ௫ܧ 

ுி + ܧ
ி்    Eq. I.15 

I.3.III: The B3LYP Functional 

LDA functionals were well known to have a large overbinding tendency. In 1993 Bekke71 

noticed that GGA functionals, while not as dramatic as LDAs, still have a tendency to over 

bind. To overcome this problem he proposed the hybrid B3PW91 functional, which can be 

written as: 

௫ܧ
ଷௐଽଵ = ௫ܧ

 + ௫ܧ)ܽ
ுி − ௫ܧ

) + ௫ܧ߂ܾ
଼଼ + ܧ߂ܿ

ௐଽଵ    Eq. I.16 

Where the semi-empirical coefficients are ܽ = 0.20, ܾ = 0.72 and ܿ = 0.8 and were fitted to 

experimental atomization energy data. The functional is a hybrid of the exact Hartree-Fock 

exchange energy, ܧ௫
ுி  and local density approximation exchange and correlation energies, 

௫ܧ
  and ܧ

 . Becke’s gradient corrected exchange functional72, ܧ߂௫
଼଼, and the Perdew-

Wang gradient corrected exchange functional73, ܧ߂
ௐଽଵ, are also included. 

Stephens et al.74 modified the B3PW91 basis set by including the LYP gradient corrected 

correlation functional, of Lee, Yang and Parr (LYP)75, in place of PW91 to make the 

B3LYP functional. It has the form:  

௫ܧ
ଷ = ௫ܧ

 + ௫ܧ)ܽ
ுி − ௫ܧ

) + ௫ܧ߂ܾ
଼଼ + ܧ)ܿ

 − ܧ
ௐே) + ܧ

ௐே   Eq. I.17 

The functional also incorporated the local correlation energy functional, ܧ
ௐே , by Vosko, 

Wilk and Nusair (VWN)76, which is used to determine the ratio of local and gradient 

corrected correlation functionals using the ‘ܿ’ coefficient. The coefficients ܽ, ܾ and ܿ hold 

the same values for B3LYP as with the B3PW91 functional. 

I.3.IV: Basis Sets 

A basis set is a set of mathematical formulae which represent the atomic/molecular orbitals 

of a system. Two types of basis functions are commonly used in electronic structure 

calculations: Slater Type Orbitals (STOs) and Gaussian Type Orbitals (GTOs). Slater type 

orbitals77 take the general form: 

ௌ்ைߟ = [ݎߞ−] ିଵexpݎܰ ܻ,(ߠ, ߶)    Eq. I.18 

where ܰ is a normalization factor, ݎ is the distance from the nucleus, ݊ is the principal 

quantum number, ߞ is the orbital exponent (which determines how compact or diffuse the 
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function is) and ܻ, represents the angular parts of the function in terms of spherical 

harmonics. The exponential dependence on the distance between the nucleus and electron 

mirrors the exact orbitals for the hydrogen atom. STOs generally give good 

approximations of exact functions, but are inefficient to compute for all but the simplest of 

systems. 

GTOs can be written in terms of Cartesian coordinates in the form: 

ை்ீߟ =  Eq. I.19     [ଶݎߙ−] expݖݕݔܰ

where ܰ is the normalization factor and ߙ is the orbital exponent. The exponents ݈, ݉ 

and ݊ represent the angular momentum of the orbitals through the relationship ܮ = ݈ +

݉ + ݊, where ܮ = 0 denotes an s-function, ܮ = 1 denotes a p-function, ܮ = 2 denotes a d-

function, etc. The ݎଶ dependence in the exponential makes the GTOs inferior to the STOs 

in two ways. Firstly, GTOs have a zero slope at the nucleus (in contrast to STOs, which 

have a discontinuous derivative at the nucleus), which leads to them having problems 

representing behaviour near the nucleus. The second problem is that the GTO falls off too 

rapidly at further distances from the nucleus compared with an STO, which leads to a poor 

representation of the tail of the orbital. These disadvantages mean that approximately three 

times as many GTOs are required to obtain a similar level of accuracy as a given number 

of STOs. The large number of GTOs required to accurately describe a system is overcome 

by the ease at which the integrals can be computed, and because of this they are generally 

preferred to STOs. 

After the type of function (STO/GTO) has been chosen, the next important consideration in 

a calculation is the size of the basis set. A minimal basis set contains the smallest number 

of functions possible to describe all of the electrons on the neutral atom(s) in the system. 

For example, hydrogen only requires a single s-function to describe its electron, whereas 

the first row atoms (such as carbon) require more extensive basis sets, employing a two s-

functions (1s and 2s) as well as a set of p-functions (2px, 2py and 2pz). One of the problems 

with minimal basis sets is that they do not discriminate between the valence and the core 

electrons. Minimal basis sets can be improved upon by doubling all of the basis functions 

to produce a double-zeta (DZ) basis set. This will employ two s-functions for hydrogen (1s 

and 1s’) and four s-functions (1s, 1s’, 2s and 2s’) and two sets of p-functions (2p and 2p’) 

on the first row atoms. The advantage of DZ basis sets over minimal basis sets is they have 
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a tight and diffuse set of orbitals and this allows for description of the system more 

accurately, taking into account that the electron distribution is not equal in every direction. 

Further improvement to accuracy can be obtained by introducing split valence basis sets, 

which only doubles the valence orbitals. The core orbitals which are close to the nucleus 

are not involved in bonding and do not require as extensive a description. Building on this 

idea, basis sets can be improved by including triple-zeta (TZ), quadruple-zeta (QZ) and 

higher order zeta values with split valence orbitals. Diffuse functions can be included in 

the basis set, which allow for the orbitals to extend further away from the nucleus. 

Polarization functions can also be included, which describe orbitals with higher orbital 

angular momentum than is present in the ground state. 

The 6-311++G(2d,2p) basis set is a triple split valence basis, where the core orbitals are a 

contraction of six primitive GTOs (6-). The valence orbitals are split into three functions, 

represented by three, one and one primitive GTOs (311) respectively. Diffuse functions 

(++) and polarization functions (2d,2p) have been incorporated into the basis set which 

allow for d-polarization of the p-functions, and p-polarization of the s-functions.  

I.3.V: Time-Dependent DFT 

Early work on time-dependent DFT (TD-DFT) dates back to the 1970s78,79 and early 

1980s80,81, where a group of studies culminated in the formation of the Runge and Gross 

(RG) theorem82. The RG theorem is an extension on the Hohenberg-Kohn theorem67 to 

time-dependent external potentials. The work proves a one-to-one correspondence between 

the time-dependent electron density ࢘)ߩ, ,࢘)and the external potential ܸ௫௧ (ݐ  This .(ݐ

allows for the construction of a time-dependent extension, ܸ(࢘,  of a static Slater ,(ݐ

Kohn-Sham like potential, ܸ(࢘), which generates a Slater determinant of non-

interacting wave functions, ߮(࢘,  which satisify the time-dependent Schrödinger ,(ݐ

equation, given by: 

൬− ଵ
ଶ

ଶߘ + ,࢘)[ߩ]ௌߥ  ൰(ݐ ߮(࢘, (ݐ = ݅ డ
డ௧

߮(࢘,  Eq. I.20   (ݐ

The time-dependent electron density ࢘)ߩ,  :is then determined by (ݐ

,࢘)ߩ (ݐ = ∑ |߮(࢘, ଶே|(ݐ
    Eq. I.21 

for an N electron system. The KS potential ߥௌ[ߩ](࢘,  :is given by (ݐ
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,࢘)[ߩ]ௌߥ (ݐ = ,࢘)௫௧ߥ (ݐ + ∫ ′࢘݀ ఘ(࢘ᇱ,௧)
|ᇱ࢘ି࢘|

+ ߥ  ,࢘)  Eq. I.22   (ݐ

which includes the time-dependent external potential ߥ௫௧(࢘,  the Coulombic electron ,(ݐ

repulsive potential and the time-dependent exchange-correlation potential, ߥ ,࢘)  The .(ݐ

exchange-correlation potential can be described as: 

ߥ ,࢘)[ߩ] (ݐ = ,࢘)[ߩ]ௌߥ (ݐ − ,࢘)ߥ (ݐ − ,࢘)[ߩ]ுߥ  Eq. I.23   (ݐ

where ࢘)ߥ, ,࢘)[ߩ]ுߥ is the external time-dependent field and (ݐ  is the time-dependent (ݐ

Hartree potential generated by [ߩ](࢘,  ;(ݐ

,࢘)ுߥ (ݐ = ∫ ݀ଷ࢘′ ఘ(࢘ᇱ,௧)
|ᇱ࢘ି࢘|

   Eq. I.24 

The computational simplicity of the time-dependent KS scheme makes it a more desirable 

system than time-dependent Hartree-Fock or time-dependent configuration interaction83. 

I.3.VI: Limitations of DFT 

The successes of DFT are well documented, but there are some well-known problems 

associated with the technique. Weak interactions are not well described – van der Waals 

forces for example. Rare gas atoms have a purely repulsive energy curve when computed 

by DFT whereas in reality there should be a slight force of attraction84. Exchange-

correlation functionals which do not contain self-interaction corrections often experience 

problems describing systems containing loosely bound electrons, such as for anions or 

atoms with low electron affinities. Description of the excited states is problematic due to 

the absence of a wavefunction. Another method must be employed such as TD-DFT, 

which itself has its own host of problems. Electron-correlation is inherently localised and 

as such cannot describe long range charge transfer processes85. Furthermore, the potential 

energy curves on charge transfer states do not comply with the expected 1/R dependence 

on the charge separation distance, R 86,87. 

 

I.4: Research Motivations 
The motivation behind the research conducted in present work is to gain novel insights into 

the spectroscopy of matrix-isolated phthalocyanines and advance the literature for this 

important class of dye molecules. Over the past few years, many studies have been carried 
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out on the vibrational and electronic spectroscopy of matrix-isolated porphyrins and 

phthalocyanines, encompassing molecules such as H2P88,89, H2TBP90, H2TAP91,92, 

MgTAP93, H2Pc94 and ZnPc64,95, and have been performed by numerous research groups 

from around the world. The infrared absorptions of MgPc96 and AlPcCl97,98 have been 

investigated using various methods, although these two molecules have never been studied 

while isolated in inert gas solids. To the best of the author’s knowledge, the IR absorption 

of GaPcCl has never been recorded. 

The major experimental portion of the work conducted in this thesis focuses on the 

spectroscopy of matrix-isolated gallium phthalocyanine chloride (GaPcCl), which differs 

from the molecules mentioned above (with the exception of AlPcCl) in two key regards. 

Firstly, the macrocycle is slightly domed, with the Ga atom lying above the ring, and 

secondly, the presence of a Cl- counter-ion. The non-planar metal phthalocyanine chlorides 

have not been investigated in the matrix before, so it is interesting to see how the visible 

spectroscopy of GaPcCl is affected by its ‘domed’ structure, especially since porphyrins 

and phthalocyanines get their intense colours from the aromaticity (conjugation) of the 

macrocycle ring. Amplified emission was originally observed for the structurally related 

molecule AlPcCl29 in solution, and more recently for matrix-isolated H2Pc, ZnPc94 and 

H2TAP92. This leads to the obvious question as to whether or not GaPcCl can also exhibit 

this non-linear optical property. The narrow bandwidths of AE allow for the 

characterisation of the features in emission and excitation. The Cl atom also gives the 

molecule a permanent dipole moment, something which has not been a factor in any of the 

previous matrix studies on porphyrins and phthalocyanines. This produces a strong force of 

attraction over a range of distances and may have an effect on the number of dimers and 

clusters that GaPcCl form in the matrix compared to the previously studied planar 

porphyrins and phthalocyanines. 

 

I.5: Spectroscopy of Matrix-Isolated Phthalocyanines 
The current study concerns the vibrational and electronic spectroscopy of several 

phthalocyanine systems. The infrared (IR) spectra of magnesium phthalocyanine (MgPc), 

aluminium phthalocyanine chloride (AlPcCl) and gallium phthalocyanine chloride 

(GaPcCl) have been studied in the inert gas hosts Ar and N2. Raman scattering spectra of 

these three molecules have also been recorded in KBr discs as part of the ground state 
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vibrational analysis. These relatively large molecules contain 57, 58 and 58 atoms 

respectively which have in 165, 168 and 168 vibrational modes respectively. While a 

detailed vibrational analysis of so many modes appears difficult, the high symmetry of 

these molecules significantly reduces the number of bands observed experimentally. 

Spectral simulations generated using density functional theory (DFT) were employed to 

facilitate the analysis and assignment of the complex vibrational structure of the recorded 

spectra.  

The accuracy of the DFT results presented for the vibrational analysis of several porphyrin 

systems allowed for a purely theoretical study to be conducted. An unusual effect was 

observed upon isotopic substitution of the inner hydrogen atoms on free-base porphyrins 

and phthalocyanines with deuterium whereby the νH/νD ratio of certain vibrational modes 

was observed to be less than 1. Due to the simple mass dependence of a vibrational mode, 

ν, a theoretical investigation was conducted to determine the behaviour of the inner 

hydrogen based vibrational modes by running DFT calculations on the system with 

hydrogen masses between 1 and 2 amu. 

Visible absorption and emission spectra were recorded of GaPcCl isolated the inert gas 

hosts N2, Ar, Kr and Xe at cryogenic temperatures with steady state spectroscopy 

techniques. The Q and B bands are identified in each host solid. Laser induced 

fluorescence was used to study the emission and excitation spectra of these molecules with 

a tuneable dye laser capable of exciting into the region of the Q band. Emission lifetimes 

were measured by recording time-resolved emission spectra. Due to the similar selection 

rules for the vibronic bands present in fluorescence and the Raman active modes of these 

systems, experimental and theoretical Raman results were used to analyse and assign the 

vibronic bands present in emission. The non-linear optical process of stimulated emission 

was investigated by increasing the laser intensity and the optical densities of the sample. 

This phenomenon was observed in all of the matrices used in the current study. The 

vibrational mode associated with this process is identified with the DFT Raman 

calculations. Phonon structure was observed in emission and excitation spectra of the AE 

bands of GaPcCl/Ar and was described by performing a Wp lineshape analysis. The narrow 

amplified emission bands were used to study the sites and features present in samples of 

matrix-isolated GaPcCl.  
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I.6: Thesis Layout 
The following section summarises the arrangement and content of the upcoming chapters 

of the thesis. Chapter II introduces the experimental and theoretical aspects of the work. 

The matrix-isolation apparatus and spectrometers are described in detail, as well as how 

samples were prepared. This chapter also provides details of the hardware the quantum 

chemical calculations were run on, the software used and the general procedure for running 

a set of calculations. The equations and fitting procedures used to implement the Wp 

lineshape analysis are also given here. 

Chapter III presents a vibrational analysis for a selection of metal tetraazaporphyrin and 

metal phthalocyanine molecules using both experimental and theoretical techniques. A 

theoretical study of the effect of the metal atom size on the ground state structure of the M-

TAPs and M-Pcs (M = Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, AlCl and GaCl) was conducted. 

Geometries were found to be either planar with D4h symmetry, or non-planar with C4v 

symmetry. Non-planar structures revealed the metal lying above the plane of the porphyrin 

ring, and a ‘doming’ of the rest of the structure. A detailed vibrational analysis of three 

phthalocyanine molecules (MgPc, AlPcCl and GaPcCl) was performed using FTIR and 

Raman spectroscopy. Matrix infrared (IR) spectra have been recorded on these three 

molecules isolated in solid Ar and N2 at cryogenic temperatures as well as room 

temperature KBr pellets. Room temperature Raman spectra of these molecules have been 

recorded in KBr discs. DFT calculations have been conducted on these systems and 

showed excellent agreement with experimental spectra. DFT results were then used to 

conduct a detailed analysis of the experimental bands. 

Chapter IV presents a theoretical study on free-base porphine (H2P) and some closely 

related tetrapyrrole molecules (H2TAP, H2TBP and H2Pc) using DFT. This chapter 

analyses the effect of H/D substitution of the inner hydrogen atoms on the vibrational 

spectra of the aforementioned molecules. It was observed that some vibrational modes 

exhibited a reverse isotope shift ratio (ISR) where the νH/νD ratio is less than 1. The effect 

was most pronounced in the B2g and B3u out-of-plane bending modes involving some N-H 

motion. The interesting modes were tracked by changing the mass of the inner hydrogen 

atoms from 1 to 2 amu in increments of 0.05 amu. This analysis showed that vibrational 

modes of the same symmetry and similar energy which involved N-H motion exhibited 

avoided crossings, yielding the reverse ISR effect. 
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In Chapter V the visible spectroscopy of GaPcCl trapped in various inert gas hosts is 

investigated using steady-state and time-resolved techniques. Absorption spectra were 

recorded in several inert gas hosts and compared to solution phase data and TD-DFT 

predictions for the Q and B bands. Emission and excitation spectra were recorded with CW 

lamp sources and pulsed laser excitation in the region of the Q band. The vibronic bands 

observed in emission are compared to the ground state Raman data. Good agreement 

between these spectra (as well as with the predictions made by DFT calculations in 

Chapter III) allows for the assignment of the vibrational modes in emission. Mirror 

symmetry between the emission and absorption/excitation spectra also allow for the 

vibronic bands of these spectra to be assigned. Emission lifetimes were measured and 

compared to calculated values from the extinction coefficient and TD-DFT results. 

Amplified emission was observed in high concentration matrix samples.  

Chapter VI focusses on the process of amplified emission of GaPcCl isolated in inert gas 

hosts in more detail. The vibronic band associated with the process was identified. 2D-

excitation-emission plots are employed to investigate the sites present in the matrices N2, 

Ar, Kr and Xe. It was found that the number of sites and features capable of exhibiting AE 

in a matrix can vary significantly depending on the host. The main features present in each 

host are assigned and discussed using excitation and emission ‘slices’ from the 2D-EE 

plots. A Wp function is fitted to the experimental data in order to determine if any phonon 

structure is exhibited in a given host. A temperature dependence study on the AE bands of 

GaPcCl in the matrix is also performed. 

Chapter VII contains the conclusions and summarises the most significant findings of the 

work carried out. 
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Chapter II: Methods  

(Experimental and Theoretical) 

 

II.1: Introduction 
The experimental portion of this work involved the spectroscopy of phthalocyanines 

isolated in inert gas solids. This chapter will describe the apparatus used to achieve matrix-

isolated samples doped with phthalocyanines as well as the conditions used in the 

preparation of these samples. A description of the instruments used for the recording of 

Fourier-transform infrared (FTIR) spectra will be given. The setup for measuring spectra in 

the UV/Vis region with steady-state and time-resolved techniques will also be presented. 

Finally, the setup used for performing high level quantum chemical calculations to 

complement the experimental portion of the work will be outlined, as well the general 

procedure for running a calculation. Experiments were carried out in the Low Temperature 

Laboratory in the Department of Chemistry at Maynooth University of Ireland unless 

otherwise stated. 

 

II.2: Matrix-Isolation Apparatus  
The matrix-isolation (MI) apparatus used in FTIR and Ultraviolet/visible (UV-Vis) 

experiments is shown in Figure II.1. Matrix-isolation experiments require high vacuum to 

prevent heat exchange and the deposition of atmospheric gases, so two similar pumping 

systems were incorporated into the two matrix rigs to achieve these conditions. The FTIR 

experimental setup used an Edwards RV5 rotary backing pump to achieve a pressure of < 5 

x 10-3 mbar and was monitored using an Edwards Pirani PRE10K gauge head with an 

Edwards Pirani 501 gauge. An Edwards 100/300M Diffstak oil diffusion pump was used to 

achieve a pressure of 10-7 mbar at room temperature, measured with an Alcatel CF2P 

penning gauge capable of reading between 10-3 and 10-7 mbar. This setup was capable of 

reaching pressures of < 10-7 mbar with cryo-pumping when the sample window of the 

apparatus was cooled down. The Diffstak design of the diffusion pump increases the ability 

of the pump to condense diffusion oil, relative to standard diffusion pump designs, and 

negates the need for an liquid nitrogen cold trap.  
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The UV-Vis experimental setup used an Edwards RV3 rotary pump to get to a base 

pressure of < 5 x 10-3 mbar, monitored using a Granville-Phillips Series 275 Convectron 

gauge1. It then could achieve a high vacuum using an Edwards E02 Speedivac oil diffusion 

pump capable of reaching 10-7 mbar at room temperature and < 10-7 mbar at cryogenic 

temperature. Pressures below 10-3 mbar were measured with an Alcatel CF2P penning 

gauge. An Edwards liquid nitrogen (L-N2) cold trap was attached to the diffusion pump to 

prevent contamination of the matrix apparatus with diffusion pump oil vapour when under 

operating conditions. An Edwards QSBR quarter swing valve allowed the isolation of the 

vacuum manifold from the pump system, which allowed venting the system up to 

atmospheric pressures without contaminating the pump oil.  

 

Figure II.1: Schematic for the matrix isolation apparatus showing the pumps and pressure 
gauges used in the system. 
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A schematic of the APD Cryogenics closed-cycle helium displex system used to generate 

the cryogenic temperatures required to form solid matrices of inert gases, is presented in 

Figure II.2. Operation of the unit involves pumping helium gas at 270 psi from APD 

Cryogenics HC-2 compressor2 into an APD Cryogenics DE-202 two-stage refrigeration 

unit3 through a dedicated gas line. A Gifford-Mc Mahon refrigeration cycle removes heat 

from the system by expanding the compressed helium within the two stages. Warm helium 

is recycled by returning the to the displex compressor through another gas line. The first 

refrigeration stage is capable of reaching a temperature of ~77 K while the second stage 

was able to attain temperatures of 10 - 13 K, depending on whether or not a radiation 

shield was used. A nickel plated copper holder was mounted to the end of the second 

refrigeration stage, capable of holding a ¾” sample window. An indium seal was used to 

hold the sample window in the copper holder and ensure a good thermal contact. The 

temperature at the window was monitored and controlled by a Scientific Instruments 9600-

1 heater and silicon diode4 attached to the copper holder. Three 380 mm x 4 mm external 

windows were attached to the vacuum manifold with Viton O-ring seals. Potassium 

bromide (KBr) windows were used in the FTIR experiment due to its transmission range of 

approximately 43,500 – 250 cm-1. The spectral region of interest used in FTIR experiments 

was typically 4,000 – 400 cm-1. The UV/Vis experiment employed calcium fluoride (CaF2) 

windows with a transmission range of 77,500 – 850 cm-1. The spectral region of interest in 

these experiments was approximately 50,000 – 10,000 cm-1. 
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Figure II.2: APD Cryogenics closed-cycle helium displex system. Sample temperatures of 
~10 K were achieved on the cold windows using the two stage refrigeration system shown. 

 

II.3: Gas Handling System 
Several different host gases were used for matrix-isolation experiments and were 

controlled with a dedicated gas handling system (GHS) on each experimental apparatus, 

shown in Figure II.3. The gas handling systems on both experiments worked on the same 

principals but were distinct from one another. Vacuum was achieved on the FTIR system 
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using the same pump set-up as the rest of MI apparatus i.e. an Edwards 100/300M Diffstak 

oil diffusion pump backed with an Edwards E2M-18 rotary pump. The pumps were 

attached to the GHS with via an MKS ¾” angle valve (AV-075M). When filled with a host 

gas, the pressure inside the GHS were monitored using two MKS Type 626 Baratron® 

gauges with pressure ranges of 0-10 and 0-1000 torr. A vacuum of ~10-8 mbar was 

maintained in the UV-Vis GHS using a Pfeiffer Balzers TPU-180H turbo-molecular pump5 

backed by an Edwards E2M-18 rotary pump. The pumping system was attached to the 

GHS via an AEI MV38 all-metal angle valve. Gas pressures within the GHS were 

monitored using two Tylan General Capacitance Diaphragm Gauges; a model CDLD-11 

with a pressure range of 0-10 torr and a model CDLD-31 with a pressure range of 0-1000 

torr. A Granville-Phillips type 203 variable leak valve6 was used to control the gas flow in 

both experiments and was attached to the vaporisation apparatus via a length of ¼” VCR 

tubing. This valve was also used to isolate the GHS from the rest of the vacuum manifold. 

Gases were stored in lecture bottles and attached to the gas handling system with ¼” VCR 

tubing. 
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Figure II.3: Schematic of the gas handling system used in the matrix-isolation apparatus. 

 

II.4: Phthalocyanine Vapour Generation 
Aluminum phthalocyanine chloride (AlPcCl), gallium phthalocyanine chloride (GaPcCl), 

and magnesium phthalocyanine (MgPc) were purchased from TCI Chemicals, Santa Cruz 

Biotechnology Inc. and Sigma Aldrich respectively and were used without further 

purification. Matrix samples were prepared by resistive heating of the phthalocyanines to 

around 350 °C and using the flowing host gas to entrain the Pc vapour for deposition onto 
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a cryogenically cooled window. An oven mounted to the matrix rig was used to generate 

the phthalocyanine vapour and is presented in Figure II.4. Phthalocyanine powder was 

compacted into a hollowed out screw and fitted into a cylindrical stainless steel crucible. 

The crucible contained a 2 mm aperture at 90° to the screw running the entire length of the 

cylinder into which gas was flowed through. The crucible was connected by a Swagelok 

compression seal to a 1⁄4” gas inlet line, which in turn was connected to the GHS. The gas 

flow was directed towards the sample widow with a stainless steel nozzle attached to the 

outlet of the crucible, located 5 cm from the sample window. The oven was heated by a 

resistive heating wire which was coiled around the crucible and temperature monitored by 

an n-type thermocouple. A calibration curve for this type of thermocouple is shown in 

Figure II.5. To prevent heat loss, the entire assembly was surrounded by a stainless steel 

heat shield. 

 

Figure II.4: Diagram of the heating apparatus used to vaporise M-Pc powder for matrix-
isolation experiments. 
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Figure II.5: Calibration curve for the n-type thermocouple used to monitor the 
temperature of the phthalocyanine oven during a deposition for matrix-isolation 
experiments. 

 

II.5: Sample Deposition 
Matrix-isolated samples of AlPcCl, GaPcCl and MgPc were prepared by co-depositing the 

phthalocyanine vapour with an inert gas onto a cryogenically cooled sample window. The 

inert gases used in the current work included the rare gases Argon, Krypton and Xenon, as 

well as the molecular gas Nitrogen. The gases were controlled using the GHS described 

above. The window temperature used during the deposition depended on the melting point, 

Mp, of the host gas being used, which are shown in Table II.1. In general the window 

temperature was not allowed to exceed ¼ of the Mp of the host gas.  
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Table II.1: Host gases used in the preparation of matrix-isolated phthalocyanine samples 
in the current work. Their melting points (Mp) and refractive indices are also reported. 

Host Gas 
Chemical 

Purity 
Supplier Mp (K)7 

Refractive 

index8 
Argon (Ar) 99.998% BOC 83.8 1.29 
Krypton (Kr) 99.559% Linde Gas 115.79 1.28 
Xenon (Xe) 99.999% Linde Gas 161.4 1.49 

Nitrogen (N2) 99.999% Linde Gas 63.15 1.22 

 

Prior to the co-deposition of the host gas/phthalocyanine mixture onto the sample window, 

a layer of pure gas was deposited onto the sample window to prevent a film of 

phthalocyanine forming after evaporation of the sample. To achieve isolation of the Pc as a 

monomer, large gas flows (4 torr/min) and window temperatures of ~ 20 K were required. 

Samples were deposited onto the matrix window at 10 – 22 K for Ar and N2 matrices. 

Slightly higher temperatures of 10 – 35 K were used for the heavy rare gas matrices Kr and 

Xe, in order to avoid the formation of highly scattering samples. Deposition times for the 

UV-Vis experiments were typically 30 minutes. Deposition times for FTIR experiments 

were longer (60 – 120 minutes) owing to weaker oscillator strengths of vibrational 

transitions compared to those of electronic transitions. Concentrations of M-Pc in the host 

matrix were controlled by adjusting the oven temperature and gas flow. Spectra were 

typically recorded at 10 K unless a temperature specific phenomenon was being 

investigated. 

 

II.6: Fourier Transform Infrared (FT-IR) Measurement 
A Bruker Optics IFS 66/S FTIR spectrometer9 was used to record all Fourier transform 

infrared (FTIR) absorption spectra of matrix-isolated samples. A schematic of the 

spectrometer is shown in Figure II.6. A silicon carbide Globar® was used as a mid IR 

(MIR) light source. The amount of light entering the spectrometer was controlled by a 

rotating aperture wheel with openings from 0.25 to 12 mm in diameter. The MIR beam 

was directed into a Michelson interferometer through a Ge/KBr beamsplitter10 with a range 

of 7,800 – 370 cm-1. The beamsplitter directs half of the light onto a stationary mirror and 

half onto a moving mirror. Both beams are then recombined and sent towards the sample 
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compartment and detectors11. Two detectors were used in the current work; a Deuterated 

L-alanine doped triglycine sulphate (DTGS) detector with a spectral range between 11,000 

and 250 cm-1, and a liquid nitrogen cooled mercury cadmium tellurium (MCT) detector 

with a spectral range between 8,000 and 800 cm-1. The DTGS detector has a wider spectral 

range and works at room temperature, but is about 100 times less sensitive than the MCT 

detector. Switching between the two detectors is controlled by a hinged mirror. 

 

Figure II.6: Schematic of the Bruker IFS 66/S infrared spectrometer. 

 

The mechanism on which the moving mirror operates is a cylindrical air bearing. The 

advantage of using an air bearing over a mechanical bearing is a massive reduction in 

friction between the mirror and the mirror path and hence reduces errors during scans. A 

constant flow of dried air was delivered to the air bearing in the IFS 66/S, supplied by a 

Balston 75-47 FTIR purge gas generator. The same air supply was also used to purge the 

sample compartment with dry air to reduce the atmospheric contaminants (H2O and CO2) 

in the IR spectra recorded and to protect the water sensitive KBr optics. The position of the 

moving mirror was controlled by a Helium-Neon (HeNe) laser with an output of 632.8 nm. 

The laser beam was directed through a beamsplitter into the interferometer below the axis 

of the MIR beam. The rest of the beam was split into three and sent towards the detectors 

parallel to the IR beam to act as a positioning guide for the sample. The sample 

compartment was modified to incorporate the matrix-isolation apparatus. The lid for the 
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sample compartment was removed completely and the MI apparatus placed inside with the 

sample window positioned at the focal point of the laser beams, ensuring the IR beam 

would pass through the sample. Because the lid was removed, the purge in the sample 

compartment was broken. This was remedied by constructing a purge line from rubber 

tubing and connecting the external windows of the MI apparatus to the spectrometer and 

purging with a Peak Scientific Instruments PG28L air drier. This ensured the entire optical 

path was free of atmospheric contaminants and the KBr windows were protected. 

One of the key components in the generation of IR spectra is the interferometer. A 

simplified diagram of an infrared Michelson interferometer is shown Figure II.7. Light 

from the mid-IR light source is passed through the beamsplitter. Half of the light is 

transmitted onto the moving mirror and the other half is reflected onto the stationary 

mirror. The moving mirror travels continuously along one axis, increasing and decreasing 

the path length which the beam has to travel. Both beams are then passed back through the 

beamsplitter where they are recombined and focussed onto a detector, which records the 

intensity of the recombined light coming from the interferometer12,13. 

 

Figure II.7: Schematic of a Michelson interferometer. 
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An interferogram, I(δ), is produced by plotting the intensity of the recombined beams as a 

function of the moving mirror position. The difference in path length between the 

stationary and moving mirrors is known as the Optical Path Difference (OPD) or optical 

retardation, δ14. The recombining IR beams interfere with each other either constructively 

or destructively which will determine the intensity of the beam for a given mirror position. 

When the pathlengths between the mirrors is zero, all wavelengths of the MIR beam will 

interfere constructively and a large intensity will be detected. This is known as the zero 

path difference (ZPD). As the optical path elongates wavelengths will interfere both 

constructively and destructively, resulting in a lower intensity signal being detected. A 

typical interferogram of a broadband source is presented in the left-hand panel of Figure 

II.8 showing the characteristic ‘centre-burst’ shape with large intensity interference at the 

centre of the interferogram and lower intensity at the wings. 

 

Figure II.8: Conversion of an interferogram into an infrared spectrum following the 
application of a Fourier transform operation. 

 

An accurate measurement of the position of the moving mirror is necessary, and is 

achieved by directing a laser beam from the HeNe along the same optical path as the IR 

beam. The laser beam experiences the same process as the IR beam of being split in two, 

passed through the interferometer, recombined and sent to a separate detector. Due to the 

laser light being monochromatic, a perfect sine-squared pattern interferogram should be 

generated as the optical path changes, as shown in the lower plot of Figure II.8. The fringes 

of the laser interferogram are then used to calibrate the position of the moving mirror and 
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to indicate when the detector should record a signal, as shown by the vertical dashed lines 

in Figure II.8. 

All of the spectral information of a scan is contained within an interferogram, but cannot 

be seen directly without performing a mathematical operation on the signal known as a 

Fourier transform. A mathematical transform to convert an interferogram, I(δ), into a 

wavenumber spectrum, (ݒ̅)ܫ, may be expressed by the integral:  

(ݒ̅)ܫ = ∫ (ߜ)ܫ cos(2ߜݒ̅ߨ) ∞ାݒ݀

ିஶ    Eq. II.1 

where ̅ݒ is the frequency in wavenumbers and δ is the optical retardation of the moving 

mirror. The transform works on the principal of two sine waves of the same frequency 

interfering either constructively or destructively. The intensity at a given frequency is 

dependent on the difference in the phases of the two waves which is determined by the 

path length each wave has travelled (i.e. δ = α1 – α2 where α1 and α2 are the phase angles of 

the two waves).  

Equation II.1 is not easy to use in practice because experimental interferograms are not 

recorded continuously, but rather are condensed into a finite number of points, N. To 

perform a transformation on an experimental interferogram of N points a discrete Fourier 

transform15 is applied and may be given by: 

(ߥ̅߂݇)ܵ = ∑ exp ቀଶగ(ߜ߂݊)ܫ
ே

ቁேିଵ
ୀ    Eq. II.2 

where k and n are the spectral and interferogram points and the spectral resolution ߥ̅߂ =

 Algorithms known as Fast Fourier Transforms (FFTs) have been developed in .ߜ߂ܰ/1

order to solve Equation II.2, the most common of which is the Cooley-Tuckey FFT16. A 

well-known issue with applying a Fourier transform to a condensed interferogram is the 

‘picket fence’ effect, in which some of the frequencies in the interferogram do not 

correspond with the sample points ݇ߥ̅߂ of the discrete Fourier transform. This will result in 

a spectrum with missing frequencies; almost as if it is being viewed from behind a picket 

fence. This is particularly troublesome for matrix infrared experiments, where vibrational 

bands tend to be quite narrow. A ‘zero filling’ technique can be used to overcome this 

effect, which involves adding zeros to the end of the interferogram, increasing the number 

of points per wavenumber in the final spectrum. This does not introduce errors into the 

spectrum as the overall instrumental lineshape has not been changed. Extensive zero filling 
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is required for matrix-isolated and gas phase IR spectra as the band widths are sufficiently 

narrow that they may be missing entirely from a spectrum. An eight order zero filling was 

used in the matrix IR experiments in the current work. 

In order to obtain a complete spectrum from an interferogram, the optical retardation 

sampled must range from -∞ to +∞. This is clearly not feasible in reality, so experimental 

interferograms are recorded within the finite range (-δ to +δ); a truncation of the infinite 

interferogram. Mathematically, a finite interferogram may be considered as a convolution 

of the infinite interferogram by applying a function with values of 1 from -δ to +δ and 0 

outside these limits. This simplest function is called a Boxcar function and is the process of 

apodization15. A Fourier transform applied to a Boxcar apodized interferogram will result 

in broad spectral lines and the generation of oscillating side-lobes (leakage) which can be 

clearly seen in the top left panel of Figure II.9. 

 

 

Figure II.9: The effect of various apodization functions on the DFT transformed 
interferogram of a monochromatic light source. Shown inset are the shapes of the 
apodization functions and their effect on a finite interferogram of a monochromatic light 
source (red-dotted trace). 
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The leakage problem can be improved upon by choosing a different apodization function 

which gradually brings the ends of the interferogram to zero. A selection of different 

apodization functions are shown in the remaining panels of Figure II.9, each of which has 

varying degrees of success at reducing leakage. A simple triangular function (top middle of 

Figure II.9) improves on the boxcar function by applying linear functions from 0 to 1 

between the centre and the ends of the interferogram. The trapezoidal function (top right of 

Figure II.9) is a modified boxcar function situated between two breakpoints with linear 

functions applied towards the ends of the interferogram. The Happ-Genzel or Hamming 

function (bottom left of Figure II.9) consists of a cosine wave function fitted to a boxcar 

function, with the parameters optimized to diminish leakage. The three- and four-term 

Blackmann-Harris functions (bottom middle and right of Figure II.9 respectively) are 

similar to the Happ-Genzel function with multiple parameters that reduce the interferogram 

smoothly to zero at the ends of the interferogram. The n-Term Blackmann-Harris functions 

are particularly effective at reducing leakage, however, the payoff for this is that the 

resulting spectral lines are broadened which reduces the resolution of the spectrum17. 

Recorded interferograms tend not to be perfectly symmetric. This asymmetry stems from a 

number of sources; phase delays due to the optics, detector or electronics, sampling 

positions not coinciding with the ZPD and longer sampling of one side of the interferogram 

than the other. A phase correction can be applied to improve the quality of the 

interferogram; it attempts to remove sine components introduced by asymmetry in order to 

determine the spectral intensities correctly. One of the most common phase corrections 

employed by FTIR spectroscopy is the Mertz algorithm18, which works by first calculating 

a low resolution phase spectrum by performing a Fourier transform on a small amount of 

data centred on the ZPD. Once the Fourier transform has been performed on the entire 

interferogram, the low resolution phase spectrum is used to correct the FT spectrum by 

interpolation. Another problem associated with applying a Fourier transform to a finite 

interferogram is known as aliasing, where a mirror image of the spectrum is produced. 

When Equation II.3 is applied to an interferogram containing N data points taken at optical 

path differences of ݔ߂, a spectrum of N points will be generated with a resolution of  ߥ߂. 

The correct spectrum will be produced for the first N/2 points, and mirrored over the 

second N/2 points. The ‘folding’ or ‘aliasing’ of the spectrum occurs about the Nyqvist 

wavenumber, νf, given by,  
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ߥ = ߥ߂2/ܰ =  Eq. II.3    ݔ߂1/2

with replication of the spectrum and its mirror image occurring over all integer multiples of 

N. When the range of the spectrum exceeds the Nyqvist value (i.e. when the maximum 

wavenumber νmax > ߥ), aliasing can occur in the low energy region of the spectrum with 

the intensities of the signals greater than ߥ . In the Bruker IFS 66/S spectrometer, the 

sampling positions determined by a HeNe laser with a wavelength of λ = 1/15,798.002 cm-

1 occur at the zero crossing points λ/2 leading to a minimum sampling spacing ݔ߂  = 

1/31,596.004 cm-1. Substituting this value for ݔ߂into Equation II.3 yields a result of ߥ  

= 15,798.002 cm-1. The value for ߥ  is the maximum bandwidth that can be measured 

without overlapping occurring, but is much larger than the bandwidth observed in MIR 

absorptions. It is useful to instead use an m-fold integer multiple of ݔ߂, reducing the size 

of the interferogram (e.g. 2 x ݔ߂ = 15,798.002 cm-1 ― ߥ  = 7899.001 cm-1).  

II.7: Luminescence Measurements 
In the analysis of the matrix isolated GaPcCl samples, two classes of visible luminescence 

spectroscopy were employed: steady-state spectroscopy using continuous lamp excitation 

and time-resolved spectroscopy using pulsed laser excitation. The following section 

describes the optical set-up, detectors and excitation sources used for both types of visible 

spectroscopy. 

II.7.I: Steady-State Spectroscopy 

The spectrometer set-up used for the recording of steady-state luminescence spectra is 

shown in Figure II.10. A 30 W, GE DZA tungsten (W) lamp was used for continuous lamp 

excitation in the 300 to 900 nm range and a Hamamatsu L631016 deuterium (D2) lamp19 

with a Cathodeon C713 power supply20 was used was used for higher energy excitations in 

the 180 - 500 nm region. An Acton Research Corporation (ARC) SpectraPro-300i 

monochromator21 with a focal length of 300 mm was used to produce monochromatic light 

from the two lamps for the recording of absorption and excitation spectra. The 

monochromator was installed with a high resolution 1200 grooves/mm grating blazed at 

300 nm which was used extensively, and a lower resolution 300 grooves/mm grating also 

blazed at 300 nm, which was not used in the current work. Calibration of the 

monochromator was performed using the atomic lines from a mercury pen lamp22. The 
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ARC SpectraPro-300i monochromator had a resolution of 0.1 nm at 435.8 nm when fitted 

with the 1200 grooves/mm grating.  

Light exiting the absorption/excitation monochromator was focused onto the CaF2 sample 

window through the external windows (also made from CaF2) using a 1” focusing lens. For 

the recording of absorption spectra, the monochromatic light transmitted through the 

sample was focused onto a Hamamatsu R928 Photo-Multiplier Tube (PMT)23 using a 1” 

collecting lens. The absorption spectra, ܣ, was determined by using the equation, 

ܣ = −log (ܫ/ܫ)    Eq. II.4 

where ܫ is the intensity of the light entering the sample from the monochromator  and ܫ is 

the intensity of the light transmitted through the sample. The apparatus outlined above is 

an example of a single beam experiment. In order to obtain an absorption spectrum an 

transmittance spectrum of the sample, (ܫ), and another of a ‘blank’ matrix of similar 

thickness, ( ܫ) were recorded and the absorption determined using Equation II.4. 

Emission spectra were recorded by monitoring the sample at right angles to the excitation 

axis through an ARC SpectraPro-500i monochromator24 with a focal length of 500 mm. 

The emitted light was focussed by a 1” collecting lens. This monochromator was installed 

with three diffraction gratings; a 1200 grooves/mm grating blazed at 300 nm, a 600 

grooves/mm grating blazed at 600 nm and a 150 grooves/mm grating blazed at 300 nm. 

This ‘emission’ monochromator was calibrated with the atomic lines from a mercury pen 

lamp and was capable of a resolution of 0.04 nm when fitted with the high resolution 

grating. Emission spectra were recorded using a Hamamatsu R928-P PMT cooled to -20°C 

in a Products for Research Photocool S600 cooled-housing25. The ARC NCL control unit 

and SpectraSense software package were used to control both spectrometers and the data 

acquisition from the PMTs. 
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Figure II.10: Schematic of the ARC luminescence spectrometer setup used to record 
steady-state spectroscopy. Absorption, emission and excitation spectra were recorded with 
the setup shown above. 

 

II.7.II: Time-Resolved Spectroscopy 

Time-resolved emission and excitation spectra were recorded using the set-up shown in 

Figure II.11. A Quantel YG 980E-10 Nd:YAG laser26 operating at 10 Hz was used as a 

pulsed excitation source. A Neodymium (Nd) doped Yttrium Aluminum Garnet (YAG) 

crystal acts as the gain medium excited by flash-lamps within a resonator cavity. A Q-

switch is used to control the nanosecond pulsed output of the laser with the optimum laser 

output achieved with a flash-lamp/Q-switch delay of 242 µs. The fundamental output of 

the Nd:YAG is 1064 nm with 2nd, 3rd and 4th harmonic wavelengths of 532, 355 and 266 

nm  respectively generated using suitable optics. The energy of the 532 nm 2nd harmonic 

output was measured at 110 μJ for the current experiments. 
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Figure II.11: Schematic of the Quantel YG 980E-10 Nd:YAG laser and the Quantel TDL-
90 dye laser setup used for recording time-resolved spectra with the Andor iStar iCCD 
device. 

 

Tuneable visible laser light was produced using a Quantel TDL-90 dye laser27 pumped by 

the 2nd harmonic (ω2) of the Nd:YAG. Excitation of the dye is achieved through one of 

three stages with the TDL-90 dye laser; the oscillator, pre-amplifier and amplifier, with 

each stage yielding increasing laser intensity. Typically, the oscillator stage was used to 

study fluorescence spectroscopy and the pre-amplifier stage for investigating amplified 

emission in samples. The amplifier was only used in scenarios where amplified emission 

was difficult to achieve. 

 As laser dyes tend to have broad emission bands, the dye laser may be tuned using a 

diffraction grating to select a particular wavelength within the dye laser emission range. A 

mixture of 66% DCM28 and 33% LDS 69829 (both manufactured by Exciton) in ethanol 

was used for the visible excitation of GaPcCl, which has an absorption maximum in the 

665 – 680 nm region. The output curve for this dye mixture is shown in Figure II.12 and is 

in the correct range for selectively exciting into the 0-0 band of GaPcCl isolated in various 
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matrix hosts, as well as some of the vibronic bands to the blue of the band origin. A table 

of the properties of this dye mixture as well as its components is shown in Table II.2.  

 

Table II.2: Characteristics of the dye materials used for time resolved-spectroscopy 
experiments using the TDL Dye Laser. 

Dye 
Absorption 

Max (nm) 

Fluorescence 

Max (nm) 

Dye Laser 

Range (nm) 
100 % DCM 472 639 615-666 

100 % LDS 698 476 690 645-730 

66% DCM, 33 % LDS 698 - 658 620-710 

 

 

Figure II.12: Output of the 66% DCM 33% LDS 698 dye mixture in ethanol excited with 
the 532 nm output of the Nd:YAG laser. The broad output range allows for a wide range of 
experimental phenomena to be investigated without the need for changing the dye. The 
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absorption spectrum of GaPcCl/Ar is overlaid to demonstrate the good overlap between the 
dye output and the strongest matrix absorption bands of GaPcCl. 

 

Time-resolved emission was monitored using the same ARC SpectraPro-500i 

monochromator used for the monitoring of steady-state emission described above. Time-

resolved emission was also recorded at right angles to the incident light, with the exciting 

laser radiation entering through the window where the absorption PMT is located during 

steady-state spectroscopy (Figure II.10). The mirror directing the emitted radiation in to the 

emission PMT is removed, allowing the light to be directed onto an Andor Technologies 

iStar iCCD (Intensified Charged Coupled Device) camera30. The iStar iCCD (Model DH 

720-25F-03) comprises of a two-dimensional array of 256 rows x 1024 columns (262,144 

pixels or 0.25 megapixels) photo-sensors on a silicon based semiconductor chip. Each 

pixel has an effective area of 26 μm2, giving the CCD an active area of 25 mm x 6.7 mm, 

made up from 960 x 256 pixels. The CCD was cooled to -12°C by a Peltier integral fan 

cooling system in order to reduce noise in recorded spectra. The operation of the iStar 

iCCD was controlled via a PC equipped with a CCI-101 control card and the Andor Solis 

software. This software was also used to control the ARC SpectraPro-500i monochromator 

via an RS232 cable. 

The iCCD is a multichannel detector in which each column of pixels simultaneously 

detects a different wavelength of diffracted light, allowing it to act as a multiplexing 

detector. The resolution of the iCCD is determined by two things; the diffraction grating 

being used in the monochromator and the number of pixels in the device. The dispersal 

range and resolution obtained using the Andor iStar iCCD mounted to the SpectraPro-500i 

monochromator with the three different diffraction gratings are shown in Table II.3. The 

iCCD camera was mounted on the SpectraPro-500i and positioned so that the dispersed 

light and focal plane of the camera were aligned. 
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Table II.3: Diffraction gratings mounted on the ARC spectraPro-500i monochromator and 
their dispersal ranges. The resolution values quoted are the highest achievable when used 
in conjunction with the Andor iStar iCCD camera. 

Diffraction Grating 
Dispersal  

Range (nm) 
Resolution (nm) 

1200 g/mm; Blz 300 nm 40 0.04 
600 g/mm; Blz 600 nm 80 0.08 
300 g/mm; Blz 300 nm 320 0.32 

 

A wavelength calibration was performed on the iCCD in order to have an accurate 

representation of the energy of light collected. An initial calibration was performed in two 

regions prior to the current work getting underway; a calibration in the UV spectral region 

using the Hg 1S0―3P1 emission line at 253.6521 nm, generated using a low pressure 

mercury arc pen lamp and in the visible region using the Na 2S1/2―2P3/2 and 2S1/2―2P1/2 

emission lines at 588.995 and 589.5924 nm respectively, generated using a sodium hollow 

cathode lamp31. The monochromator was centred on one of the atomic emission lines (e.g. 

588.995 nm using the Na hollow cathode lamp) and the pixels off-set so that the central 

wavelength displayed coincided with the spectral line. The camera was rotated so that each 

of the pixels along a column of the CCD detected the same wavelength and the lines 

observed were as narrow as the resolution of the grating and monochromator allowed. 

Because a ‘global’ calibration of the CCD was not possible, and the two lamps used for the 

initial calibration were not in the region of interest, a custom calibration was performed in 

the 680 – 760 nm range using the Ar I emission lines from the sodium lamp described 

earlier. The Ar lines on each region were identified based on their rough position and 

relative intensity from Table II.4 and assigned a pixel number. The exact wavelengths of 

the Ar lines from the NIST database32,33 were then assigned to each line in the spectrum 

and a cubic polynomial function was fitted to the data, which amended each pixel to the 

correct wavelength value (to within 0.1 nm) for a given wavelength centre. The procedure 

was performed in 5 nm intervals to ensure the entire spectroscopic region of interest was 

calibrated correctly. A spectrum of an ‘raw’ and a corrected spectrum of the Ar lines is 

shown in Figure II.13, and the positions of the uncalibrated and calibrated data are 

compared to the exact wavelength values in Table II.4. 
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Figure II.13: A spectrum of the Ar (I) emission lines (red trace) recorded with the 
uncalibrated iCCD after the initial calibrations in the UV and visible regions using the Hg 
and Na emission lines respectively. The spectrum shown by the blue trace was recorded 
after measuring the Ar lines and performing a cubic calibration over the entire region 
shown (a wide range is shown with the 600 grooves/mm grating). The calibrated Ar (I) 
lines are accurate to greater than 0.1 nm of the values reported in the NIST database, 
shown by the dotted lines. 
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Table II.4: Wavelengths (in nm) and relative intensities of the persistent Ar I lines 
obtained from the NIST database used to calibrate the Andor iCCD camera in the 680 – 
760 nm region. The measurements of the uncalibrated and calibrated iCCD device are 
shown for comparison. The difference between the calibrated iCCD values and the true gas 
phase values are also shown. 

Ar emission 
wavelength (nm) 

iCCD 
Uncalibrated 

iCCD 
Calibrated Difference 

667.72821 664.42 667.73 0.00179 
675.28339 672.38 675.27 -0.01339 
687.12891 684.93 687.12 -0.00891 
693.76642 692.02 693.8 0.03358 
696.54309 694.97 696.56 0.01691 
703.02509 701.8 702.98 -0.04509 
706.72180 705.78 706.72 -0.00180 
714.70422 714.34 714.74 0.03578 
720.69800 720.65 720.66 -0.03800 
727.29358 727.73 727.3 0.00642 
735.32928 734.99 735.39 0.06072 
737.21179 738.27 737.17 -0.04179 
738.39801 739.56 738.39 -0.00801 
750.38690 751.27 750.48 0.09310 
751.46521 752.39 751.54 0.07479 

 

A schematic of the image intensifier used to amplify the signal detected by the CCD is 

shown in Figure II.14. When a photon enters the iCCD through the input window it hits a 

photocathode, which produces an electron. The electron is directed towards a micro 

channel plate (MCP) by an electric field. When it hits the MCP it sends a flow of electrons 

down the honeycomb channels of the MCP which in turn produce secondary electrons. 

This causes 10,000 fold amplification of the electron produced by the initial photon. The 

shower of electrons from the MCP is accelerated by a potential difference and directed 

towards the P43 phosphor coating on the fibre-optic window of the intensifier. The 

phosphor coating emits photons which hit the photosensitive pixels on the iCCD, detecting 

them as a change in charge proportional to the intensity. A spectrum is then generated by 

adding the charge from each column of pixels together by a series of horizontal transparent 

electrodes and is removed from the CCD by an efficient charge transport (or charge 

coupling) process known as ‘vertical binning’34. Finally, the electrode signal is transferred 

to an on-chip amplifier and then an analogue/digital (A/D) converter on a CCI-010 control 

card. Recorded spectra were viewed using the Andor SOLIS software. 
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Figure II.14: Cross section of the Andor iStar iCCD camera showing the main 

components used in its operation. 

 

Laser excitation combined with iCCD detection is capable of achieving much better 

resolution than what is possible with steady-state spectroscopy. This is because of the high 

sensitivity of the CCD detector, and due to the monochromatic light of the laser, it is 

possible to excite into a single site of isolation and observe very narrow fluorescence 

bands. Lamp excitations are limited by the resolution of the monochromator and tend to 

excite into a broader range of sites. A comparison of a CCD scan with laser excitation and 

a PMT scan with lamp excitation are shown in Figure II.15. While the lamp scan is 

adequate at observing the main fluorescence bands, the resolution is too low to observe the 

site structure present in emission. 
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Figure II.15: Comparison of an emission spectrum of GaPcCl/Ar recorded with the iCCD 
(blue trace) and the PMT (red trace). The region between 15,000 – 14,500 cm-1 was 
recorded with an excitation wavelength of 659 nm and the region between 14,800 – 13,300 
cm-1 with an excitation wavelength of 670 nm. 

 

Time-resolved emission spectra were used to determine the emission lifetimes of excited 

species in the matrix. It was possible to record time-resolved and time-gated emission 

spectra with the iCCD by synchronising the timing of the laser pulse and controlling the 

temporal gate width of the iCCD camera. The iCCD and laser were synchronised by 

triggering the camera with the TTL output from the Q-switch pre-pulse of the YG 980 

Nd:YAG laser. A digital delay generator (DDG) on the iCCD software was used to achieve 

the time gating on the iCCD and controlled when the photocathode was to be switched on 

or off. By varying the delay between the TTL pulse and activation of the photocathode 

and/or varying the time duration (gate width) when the photocathode is switched on, time-

gated emission spectra were recorded using the iCCD. Time-resolved emission spectra 

were obtained by recording a series of time-gated spectra, setting a suitably short gate 

width (5 ns) and stepping in time. The time-resolved emission spectrum (TRES), shown in 
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Figure II.16, is built from individual time-gated emission spectra recorded in known 

temporal slices. Emission lifetimes were determined by analysis of the time-resolved 

emission. The temporal profile of an emission feature was found by taking a ‘kinetic slice’ 

through a time-resolved spectrum, extracting a plot of the emission intensities at a 

particular wavelength against time. Decay times were determined by fitting single 

exponential functions, modelling the rise and decay function of the temporal profile. The 

fits were convoluted with the temporal profile of the pulsed laser to extract the excited 

state decay times, which were typically accurate to ±0.1 ns. 

 

Figure II.16: Example of a time-resolved emission spectrum of GaPcCl/Ar recorded with 
the Andor iStar iCCD detector. A ‘kinetic slice’ taken through one of the emission bands 
can be used to determine the emission lifetime of the excited state species. 

 

2D excitation-emission spectra were generated using the same method described above, 

without the delay between the TDL pulse and activation of the photocathode, and a longer 

gate width (100 ns) was used. Instead of having a constant wavelength output from the dye 

laser, it was scanned over a range of wavelengths at a constant rate (0.002 nm/s) using the 
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TDL90 software. This then allowed each scan number on from the 2D excitation-emission 

plot to be correlated back to its excitation wavelength. Every scan in this 2D spectrum now 

corresponds to an emission spectrum recorded with a unique excitation wavelength and can 

be extracted from the 2D plot. An example of this is shown by the red line and the top 

spectrum in Figure II.17. Taking a ‘kinetic slice’ through the spectrum will now generate 

an excitation spectrum instead of a temporal profile. An excitation spectrum is shown in 

Figure II.17 which was generated by extracting a kinetic slice through the emission band 

indicated by the green line. 

 

Figure II.17: Example of a 2D Excitation-Emission plot recorded with the CCD by 
scanning the dye laser. Emission is shown on the x-axis and excitation on the y-axis. 
Intensity is plotted as a contour map. The red line shows a slice through the emission 
direction, the spectrum corresponding to which is shown on the top panel. The green line 
shows a slice through the excitation direction, with the corresponding spectrum on the side 
panel. 
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II.8: Raman Spectroscopy 
Raman spectroscopy was performed at the Focas institute in the Dublin Institute of 

Technology using a HORIBA Jobin YVON LabRAM HR 800 Dual Microscope 

spectrometer fitted with Andor EMCCD and Synapse CCD detectors. Excitation was 

achieved with continuous wave (CW) laser light with an output of 532 nm or 660 nm. The 

532nm laser is an M-PC 3000 DPSS (Diode Pumped Solid State) laser and the 660nm is a 

SMD (Surface Mounted Diode) 6000 laser, both of which are manufactured by Laser 

Quantum, out of Stockport, UK. Accumulation times were set to 10-30 seconds and several 

accumulations were performed to reduce the noise contribution. Numerous spots were 

examined on the surface of the KBr disc to ensure an even dispersion of material 

throughout the sample. Raman bands were recorded up to energies of 1700 cm-1.  

Due to the strong absorption of the phthalocyanines in the red region of the visible 

spectrum, Raman spectra recorded with the 660 nm laser line contained a strong 

fluorescence background. This was ‘corrected’ by fitting a Gaussian curve to the 

fluorescence band and subtracting it from the spectrum. An example of this correction is 

shown in Figure II.18, where the red trace shows the Raman spectrum containing the broad 

fluorescence band and the blue trace shows the spectrum after subtracting the fluorescence 

band out. Fluorescence was not a problem with the 532 nm line, where the phthalocyanines 

tend to have little or no absorption. 
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Figure II.18: A raw Raman spectrum (red trace) showing a strong fluorescence 
background. The excitation wavelength of the laser was 660 nm. A corrected Raman 
spectrum (blue trace) was generated by fitting a Gaussian curve to the fluorescence 
background. 

 

A calibration issue is known to exist on the Raman spectrometer following experiments 

conducted 12 months apart. Because the calibration is performed with a single laser line, a 

degree of uncertainty is introduced if the CCD is not correctly calibrated in the first place. 

The calibration problem affects the high frequency modes of the Raman spectra recorded 

for AlPcCl and GaPcCl.  

 

II.9: Density Functional Theory  
Throughout this work quantum mechanical (QM) calculations were employed extensively 

both to complement experiments and as a standalone method for investigating phenomena 

which could not be deduced experimentally. All QM calculations were implemented using 
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the Gaussian-0335 suite of programs running on a Linux workstation with two AMD 

“Barcelona” 64-bit quad core processors running at 2.0 GHz and with 16 GB RAM. 

Density functional theory (DFT) was the preferred method in the current work as it is well 

known to describe the ground state of molecules to a high degree of accuracy. The B3LYP 

functional and 6-311++g(2d,2p) basis set were used for most of the work, unless otherwise 

stated. Some of the fundamental aspects of DFT have been described in Chapter I. The 

following section outlines the array of different calculations performed as part of the 

current work, as well as some of the theory behind how they are implemented by the 

Gaussian-03 program. 

II.9.I: Geometry Optimizations 

A geometry optimization was performed as the first step in each theoretical investigation. 

Not only does an optimization yield accurate structural information about the molecule 

being studied, it acts as a precursor for all of the other steps performed thereafter. The 

geometry optimisation attempts to find an equilibrium structure by locating a minimum on 

the potential energy surface (PES) of the molecules atomic coordinates. A minimum is 

found by calculating the first derivative of the energy with respect to the atomic 

coordinates, known as the gradient. A stationary point is found when the gradient is equal 

to zero and the forces are also equal to zero. A stationary point may not necessarily be the 

global minimum but may be a local minimum or saddle point on the PES. The energy and 

gradient are calculated at each point and are used to determine how far and in what 

direction to move the atoms in order to find a minimum. An initial guess for the second 

derivative matrix (Hessian matrix) is computed from the connectivity derived from the 

atomic radii and a simple valence force field36. The Hessian matrix determines the 

curvature of the PES at a point and is used to help determine the next step to be taken. The 

optimization is said to have converged when the absolute minimum on the PES has been 

found. Gaussian 03 incorporates the Berny algorithm37 using GEDIIS38 into geometry 

optimizations, which has four convergence criteria to be satisfied; the maximum force and 

root-mean-square of the forces must be close to zero and the maximum displacement and 

root-mean-square of the displacements for the next step must be small. The cut off 

threshold points for the convergence criteria are set by the user for each optimisation. Tight 

convergence criteria were used throughout this work with the max and RMS energy 

thresholds of 1.5 x 10-5 and 1.0 x 10-5 a.u. respectively while the max and RMS 

displacement thresholds were of 6.0 x 10-5 and 4.0 x 10-5 a.u. respectively. 
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Optimizations were performed by reading in the initial molecular geometry as a set 

Cartesian coordinates and the connectivity to denote how the atoms are bonded to one 

another. In special cases such as the highly symmetric phthalocyanines the point group of 

the molecule can be assigned and set which radically reduces computational time as the 

calculation will be constrained to work within that framework. For example, MgTAP 

belongs to the highly symmetric D4h point group. Each of the four pyrrole sub-units must 

all have the exact same geometric properties and all must be equidistant from the Mg 

moiety in order for the D4h symmetry to be maintained. Therefore, instead of needing to 

minimize the energy for each bond length and angle (dihedrals will all be zero in a planar 

molecule) individually, DFT needs only to calculate the parameters for the symmetry 

unique atoms. This significantly reduces the computational cost and speed of preforming 

calculations of fairly large systems like phthalocyanine. 

An array of basis sets is stored internally in the Gaussian program, but these do not always 

suffice for the system being studied. The 6-311g basis set does not sufficiently describe the 

orbitals on atoms with an atomic number higher than 36 (Kr). Instead, a custom basis set 

must be placed onto these heavier atoms at the users’ request. The custom basis sets used 

throughout this work were all supplied by the Basis Set Exchange39. A mixture of basis 

sets was used on systems combining both light and heavy atoms; 6-311++g(2d,2p) on the 

lighter atoms, and  def2-TZVPP40,41 on the heavier atoms. Calculations involving atoms 

heavier than Kr also tended to have convergence problems, so ‘very tight’ convergence 

criteria were applied to these optimizations as well as specifying an ultrafine grid. 

II.9.II: Vibrational Analysis 

A vibrational analysis was performed immediately after a geometry optimization to 

validate the result. Vibrational frequencies are computed by determining the second 

derivatives of the energy with respect to the Cartesian nuclear coordinates and then 

transforming into mass weighted coordinates. This transformation is only valid at a 

stationary point (i.e. the energy minimum) so it is important to use the same level of theory 

in both the optimization and frequency calculations. A frequency job performed on the true 

ground state structure will yield no imaginary frequencies upon completion. A single 

imaginary frequency points to a transition state structure, while more than one imaginary 

frequency indicates an unstable structure.  
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Frequency calculations are performed within the harmonic approximation and therefore 

tend to overestimate the energy of even the fundamental vibrational modes. The harmonic 

oscillator method approximates the movement of nuclei during a vibration as a simple 

oscillation around an equilibrium distance with equal restoring forces upon compression 

and stretching but in reality, their vibrations have an anharmonic motion where the 

restoring forces are different for compression and stretching and whose potential is better 

described using the Morse potential as shown in Figure II.19. As the value of a vibrational 

level, n, gets larger, the discrepancy between the values of the vibrational mode, νn, 

calculated within the harmonic and anharmonic approximations increases. 

 

Figure II.19: Plot showing the shape of a harmonic and an anharmonic oscillator. The 
different shape of the curves also has an effect on the vibrational energy of the 
fundamental modes of a molecule. 

 

For comparison with experimental results a scaling factor was applied to the predicted 

harmonic frequencies. Two such scale factors were applied; 0.98 for frequencies below 

2000 cm-1 and 0.95 for frequencies above 2000 cm-1. While it is possible to implement an 
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anharmonic correction with Gaussian-03, it is a computationally expensive task and yields 

only a modest improvement on scaled harmonic frequencies.  

The infrared intensity of an infrared mode ݅ is determined from the integrated absorption 

coefficient and using the harmonic oscillator approximation, may be given by  

ܫ
ூோ = ேగௗ

ଷమ ቚ ௗఓ
ௗொ

ቚ
ଶ
    Eq. II.5 

where ܰ is the total number of molecules per unit volume expressed as Avogadro’s 

number (mol-1), ݀ is the degeneracy of normal mode ݅ and ܿ is the speed of light. The 

absolute infrared intensity |݀ߤ/݀ܳ|ଶ is the square of the derivative of the electric dipole 

moment ߤ with respect to the mass weighted normal coordinates, ܳ. The absolute infrared 

intensity is the only molecular parameter used in determining the IR intensity and may be 

given in the non-SI units of (D/Å)2amu-1. However, it is usually converted to the SI derived 

units for absorption intensity of km mol-1 (where 1 (D/Å)2amu-1 = 42.2561 km mol-1), 

which are commonly used when comparing experimental results. 

Raman activities are not calculated by default in Gaussian 03, and must be specified in the 

input section with the keyword ‘freq=Raman’. Raman activities are produced by numerical 

differentiation of the dipole derivatives with respect to the electric field. Raman intensities 

can be calculated from the computed Raman activities by applying the following 

equation42:  

ܫ
ோ = (ఔబିఔ)రௌ

ఔ
    Eq II.6 

Where C is a constant, ߥ and ߥ denotes the frequency of the incident light and a normal 

mode ݅, ܵ is the Raman scattering computed from DFT and ܤ is the Boltzmann 

distribution of the normal modes. 

II.9.III: Isotopic Substitutions and Internal Modes 

When a frequency job has been completed it is relatively easy to compute the frequencies 

of a range of different isotopes as the electronic properties of the molecule are unaffected 

by changing the mass of an atom. This means the same optimized geometry will hold true 

for any given isotope substituted into the molecule. A simple mass dependence on the 

vibrational frequency of a normal mode,  ߥ, does exist however, and is given by the 

expression: 
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= ߥ ଵ
ଶగ

ට 


     Eq. II.7 

in which ݇ is the force constant and ݉ is the mass of the isotope. It is evident from 

Equation II.7 that increasing the mass of an atom will reduce the vibrational frequency of 

the normal modes associated with that atom whereas decreasing its mass will have the 

opposite effect. 

The internal modes can also be determined easily once the vibrational analysis has 

successfully completed. The ‘freq=internal’ command must be included in the input 

section in order for the internal modes to be printed out at the end of a job. An internal 

mode will show which bond lengths, angles and dihedrals move for a given normal mode. 

The percentage contribution of each parameter associated with the vibration is also given. 

II.9.IV: Time Dependent DFT 

Time dependent DFT calculations were used to study the excited molecular states. The 

ground state geometry is always used as the starting point for a TD-DFT calculation. By 

default Gaussian 03 will compute the first 10 singlet excited states, although triplet states 

can also be calculated. Due to the degeneracy of many of the orbitals and the presence of 

forbidden states it was often the case that 10 excited states was too small to obtain all of 

the relevant data. In general the first 50 singlet excited states were calculated in order to 

obtain information about the Q and the B transitions for the phthalocyanines. The 

significant results outputted by a TD-DFT calculation include the transition energy 

between the ground and excited states, the oscillator strengths and the molecular orbitals 

involved in each transition. The linewidths of the calculated spectra could be altered 

depending on the system being compared to, and was typically chosen as 80 cm-1 for 

comparison with experimental matrix spectra. 

II.10: The ࢃ Function – Lineshape Analysis 
A ܹ  line fitting analysis was applied to the high resolution emission and excitation bands 

recorded for GaPcCl at cryogenic temperatures in order to gain an insight into the true 

band structure of the electronic transition in inert matrices. The ܹ  function is an analytic 

expression capable of describing the line shapes of narrow optical bands, especially those 

exhibiting zero phonon lines (ZPL). Narrow peaks such as the ZPL are often evident in 

spectra recorded in inert gas solids43, due to weak interactions between the host and guest 
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species and the low temperatures used in the matrix technique. The ܹ  function pertains to 

the so-called single configurational-coordinate (SCC) model, which predicts the Franck-

Condon factors (intensity distribution) for phonons (p) with a single frequency, ħ߱, 

coupling to the electronic transition with a strength ܵ.   

 

Figure II.20: A generalized schematic of the single-configurational-coordinate (SCC) 

model. In the current lineshape analysis a single frequency has been used, ħ߱ (ħ߱௨ =

 ħ߱௩). 

 

A schematic of the SCC model for a luminescence centre is shown in Figure II.20. The 

diagram presents the ground and excited electronic state potentials as two displaced 

parabolas, labelled u and v respectively. The ground state minimum is located at ݔ = 0 and 

the excited state minimum is at ݔ = ܽ. The values ܵ௨ħ߱௨ and ܵ௩ħ߱௩ give the energy 

difference between the two parabolas at their minima, 0 and a respectively in units of the 

phonon energies. A reasonable estimate of the energy difference between the two 

electronic states is given by the zero-phonon energy, ℎߥ௭,௨ఔ ≡  ௭,ఔ௨. The broadness ofܧ 

the resulting optical band is determined by the displacement of the two parabolas. For ܽ 

close to zero, i.e. small displacement, the optical bands will be narrow. For larger values of 

ܽ, i.e. greater displacements of the two parabolas, broader optical bands will occur. 

In the limiting situation of equal force constants occurring in the ground and excited states, 

a single coupling frequency, ħ߱, exists as well as a single coupling strength S. In this 
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situation an analytic expression, first derived by Huang and Rhys44 and generally called the 

ܹ  function, provides the intensity distribution of the phonon lines.  This function has been 

described in detail by Struck and Fonger45, and takes the following form: 

ܹ = ܵ−)ݔ݁ < 2݉ + 1 >) ∑ (ௌழவ)ೕ(ௌழଵାவ)శೕ

!(ା)!
ஶ
ୀ୫ୟ୶ (,ି)   Eq. II.8 

where  is the phonon number, ܵ is the electron-phonon coupling strength and ݆ is the 

range of the sum, determined by the coupling strength and the temperature. In this equation 

< ݉ > is Planck’s measure of temperature, given by: 

< ݉ > = ݔ݁)/1 ቀ− ħఠ
்

ቁ − 1)   Eq. II.9 

Equation II.8 can be simplified by incorporating a Bessel function, giving it the form: 

ܹ = ݔ݁ ቀ−ܵ ଵା
ଵି

ቁ ܫ/ଶିݎ ቀ2ܵ భ/మ

ଵି
ቁ  Eq. II.10 

In this expression (ݔ)ܫ is a modified Bessel function of variable order . The summation 

form of the modified Bessel function46 used in the current calculations is given by the 

expression: 

(ݔ)ఈܫ =  ∑ ଵ
!(ାఈାଵ)

ቀ௫
ଶ
ቁ

ଶାఈ
ஶ
ୀ    Eq. II.11 

The variableݎis the Boltzmann factor, and is given by: 

ݎ =  Eq. II.12     (ܶ݇/ħ߱−) ݔ݁

which is related to Planck’s measure of temperature, < ݉ >, by: 

< ݉ > =  
ଵି

     Eq. II.13 

The sum rather than the Bessel form of the ܹ  function is used in the current work in order 

to maintain numerical accuracy in the weak electron-phonon characteristics of the recorded 

emission/excitation spectra.  It is given by:  

ܹ = ݔ݁ ቀ−ܵ ଵା
ଵି

ቁ ቀఏ
ଶ
ቁ


∑ ቀఏమ

ସ
ቁ


/[݆! )߁ + ݆ + 1)]ఏ

ୀ   Eq. II.14 
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The sum is truncated at ߠ, the next integer greater than ߠ + 1, where at a given 

temperature, T, of fixed argument ߠ = ݎ2ܵ
భ
మ/(1 −   The extent of the sum increases(ݎ

with the electron-phonon coupling strength S and the temperature. The Gamma function, 

)߁ + ݆ + 1), is such that ߁(݊) = (݊ − 1)! for all positive integer values of ݊. Hot bands, 

 corresponding to phonon annihilation (instead of phonon generation) are not given by ,−

Equation II.14. They are calculated separately with the following equation: 

ܹି  = ݔ݁ ቀ− ħఠ
்

ቁ ܹ     Eq. II.15 

in which  is the phonon number and ܹ is of the form shown by Equation II.14. All ܹ  

plots shown in the current work were generated with Equation II.14, with the hot bands 

calculated with Equation II.15. The code used to generate the ܹ  function in Genplot is 

given in the Appendix at the end of this Chapter. The results obtained with Equation II.14 

are shown in Figure II.21, and when compared with those obtained from Equation II.8 

were found to agree identically.  

 

Figure II.21: Plots of the optical band shapes calculated with the ࢃ function 
incorporating different values for the coupling strength, S, and temperature, <m>.  Note 
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that the intensities of the S0=1 and S0=9 lines have been multiplied by 2 and 4 respectively 
to aid comparison.      

 

The shapes of the optical bands predicted by the ܹ  function are plotted in Figure II.21 for 

a variety of different conditions, namely three electron-phonon (e-p) coupling 

strengths, ܵ, and two temperatures, < ݉ >. With weak e-p coupling, when ܵ is small 

(calculated for ܵ = 1/9) the lineshape is extremely narrow at low temperatures as depicted 

by the blue stick spectrum shown in the left hand region of Figure II.21. The lineshape 

consists of a dominant zero phonon line (located at pu=0) with only very weak phonon-side 

bands (PSB) present. The intensities of the PSBs decrease rapidly with increasing phonon 

number. At higher temperatures, shown by the red curve, it is evident that the first hot band 

(pu = 1) gains appreciable intensity.  For medium ܵ values (ܵ = 1) shown in the middle 

section, a pronounced asymmetry is evident on the low temperature band, with the ZPL 

and first PSB having the greatest intensities. At higher temperatures the curves become 

more Gaussian like. With strong electron-phonon coupling (calculated with a value of ܵ = 

9 in the ܹ function), the lineshape shown by the right hand region of Figure II.21 closely 

resembles a Gaussian distribution, even at the lower temperature. By definition, the ZPL is 

always located at pu = 0. It is evident from Figure II.21 that changing the coupling strength 

has a pronounced effect on the intensity of the ZPL, being dominant when ܵ = 1/9 and 

barely identifiable when ܵ = 9. 

The ܹ  fit allows the position of the ZPL of a given species/site to be identified as well as 

the strength of the electron-phonon couplings. This is achieved by determining the phonon 

frequency, ħ߱, which is the energy difference between the maximum of the ZPL and that 

of the first phonon side band (PSB). The highly resolved excitation and emission spectra 

recorded for matrix-isolated GaPcCl exhibit a well-defined ZPL and PSB, allowing for an 

accurate value of ħ߱ to be extracted. The temperature at which the spectrum is recorded is 

an experimental parameter. The appropriate value for S is obtained by adjusting its value 

such that the ܹ  function correctly matches the relative intensities of the ZPL and PSB. 

When convoluted with a spectral bandwidth and plotted against experimental spectra, it 

allows for the identification of several features in the spectrum such as additional PSBs and 

hot bands, as shown in Figure II.22.  
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Figure II.22: Band shapes of the ࢃ function plotted at various temperatures with an S 
value of 1/9, a ħ࣓ of 1 cm-1, a fwhm of 0.125 cm-1. The linewidth was chosen to match the 
spectral resolution of the dye laser and the emission monochromator described earlier. As 
the temperature increases additional features are evident in the spectra, which eventually 
take on a Gaussian distribution. 

 

The plot with S0 = 1/9 is a good approximation for the optical transitions of matrix-isolated 

GaPcCl, pertaining to the weak electron-phonon coupling constant observed 

experimentally. For each temperature shown in Figure II.22, the ZPL is centred on pu = 0, 

with PSBs located on positive integer values, and hot bands located on negative integer 

values. At low temperatures (<m> = 1/9) the ZPL dominates and the first PSB has a 

moderate intensity. Subsequent PSBs and hot bands are barely visible at this temperature. 

At mid-range temperatures (<m> = 1), the ZPL still dominates, but the first PSB appears 

stronger, and the first of the hot bands has gained considerable intensity. A second PSB is 

evident as well as a second (very weak) hot band. With the conditions used in the current 

work, it is likely that the experimental data will most closely match the line shapes in 

Figure II.22 obtained with a low or medium value for <m>. At higher temperatures (<m> = 

9), the curve takes on a more Gaussian like appearance, with several PSBs and hot bands 
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showing up with significant intensities. This will not be an issue experimentally due to the 

extremely low temperatures used in the matrix-isolation technique. The actual values for 

each parameter used in the ܹ  fit on the experimental data are provided in Chapter VI, 

where the results of the analysis performed on the amplified emission bands of GaPcCl in 

both emission and excitation will be presented.  

While the ܹ  function is a powerful tool in the analysis of experimental spectra, it does 

have limitations. The most significant of these is that the function is working within the 

SCC model, meaning the coupling phonon frequencies of the ground and excited electronic 

states are identical. This implies ħ߱ will be the same in absorption and emission, 

something which is not always the case experimentally. ܹ  functions can only be used in 

conjunction with low temperature experimental work, as the function has a tendency to 

lose its structure at higher temperatures (as shown in Figure II.21 and Figure II.22). The 

current work applies the ܹ  function in an analysis of amplified emission data, which, 

because of its non-linear optical origins, is not as straightforward to interpret as normal 

fluorescence. Additional effects, such as the threshold dependence of AE, may affect the 

intensities of particular bands, and this is not accounted for in the SCC model.  
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II.12: Appendix 
The following appendix shows the coding used to generate the ܹ  fits given by Equation 

II.14 and Equation II.15. 

/* Creating a Wp lineshape with a Bessel function. 
/* Set variables 
setv T=9.80  
setv hw=3.9  
setv fw=1.20  
setv k=0.6950387  
setv beta=hw/(k*T)  
setv mt=1/(exp(beta)-1)  
setv S=0.2 
setv theta=2*S*(exp(-beta/2)/(1-exp(-beta))) 
eval mt  
eval theta  
 
/* Set up an ascending series sum for the Bessel function 
create y=0.0  -range 0.0 30.0 -points 31 
arch bes  
def thetam=ceil(theta)+1 
def nmax=thetam 
alloc j integer let j=0 
:loop 
create y=(theta^2/4)^j/(j!*Gamma(x+j+1)) -range 0.0 30.0 -points 31 
let y=y+bes:y 
arch bes 
let j=j+1 
IF j<=nmax goto loop 
create y=(bes:y)*(theta/2)^x -range 0.0 30.0 -points 31  
arch besj 
 
/* Wp function given by Struck and Fonger at low temperature 
create y=(exp(-S*(2*mt+1))*((1+mt)/mt)^(x/2))*(besj:y)  -range 0.0 30.0 -
points 31 
arch Wp  
arch wpx 
 
/* W-p function used to calculate Hot bands 
create y=exp(-x*beta)*(Wp:y)  -range 0.0 30.0 -points 31 
let x=-1*x 
arch wpe 
 
retr Wp -append 
arch Wp 
sort -strict 
arch Wp 
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Chapter III: Vibrational analysis of Metal 
Tetraazaporphyrins and Metal Phthalocyanines 

 

III.1: Introduction 
This chapter focuses on the ground state structures and vibrational spectra of selected 

metal tetraazaporphyrins (M-TAPs), metal phthalocyanines (M-Pcs) and metal 

phthalocyanine chlorides (M-PcCls). Ground state geometries are calculated using high 

level DFT calculations. Vibrational spectra (Infrared and Raman) of MgPc, AlPcCl and 

GaPcCl recorded in various hosts are compared with DFT predictions. The results to be 

presented concern two topics; the structural dependence on the metal centre and the 

vibrational spectra of the molecules. Four-fold rotational symmetry is observed in all cases, 

giving the molecules either D4h or C4v symmetry. Comparisons with experimentally 

determined crystal structures are presented where data are available. Group theory was 

used to correlate the vibrational modes of the D4h and C4v molecules. Infrared and Raman 

spectra of MgPc, AlPcCl and GaPcCl are presented and analysed in detail. The Raman 

active modes of GaPcCl will be compared to the matrix emission spectra in Chapter V. An 

analysis of the IR and Raman spectra of MgTAP and CaTAP, with D4h or C4v symmetry 

respectively, is conducted in order to elucidate information about the modes which become 

active under reduced symmetry. This effect is also observed experimentally with MgPc 

and AlPcCl. 

 

III.2: Computational details 
In the present study the density functional method was utilised with the 6-311G++(2d,2p) 

basis set for both geometry optimisation and the calculation of the vibrational frequencies. 

The B3LYP functional is known to be an effective choice for calculating ground state 

molecular vibrational frequencies and when used with a large basis set, generates accurate 

infrared intensities. Moreover, as demonstrated in a previous study1 on free-base 

tetraazaporphyrin (H2TAP), the Raman intensities are also reliable.  Another advantage of 

this method is that it runs efficiently on multi-processor computers.  The present 

calculations were conducted with the Gaussian-03 suite of programmes running, (as 

described in chapter II) on a Linux workstation with two quad-core processors. All of the 
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calculated vibrational frequencies presented in this work are, unless stated otherwise, 

unscaled values obtained within the harmonic approximation. 

A set of geometry optimizations was performed on the M-TAPs and M-Pcs (M = Be, Mg, 

Ca, Sr, Ba, Zn, Cd, Hg, AlCl or GaCl).  All molecules were given an initial D4h symmetry 

and were allowed the freedom to optimize to whichever symmetry was determined to be 

most energetically stable. A vibrational analysis was performed on the optimized structures 

to confirm that the ground state geometries had been achieved for each system. Raman 

activities were computed for MgPc, ZnPc, AlPcCl and GaPcCl and were transformed into 

Raman intensities (cf. equation II.6) for comparison with experimental results. Raman 

activities were also calculated for MgTAP and CaTAP to investigate how the metal centre 

affects the Raman active modes. 

 

III.3: Experimental Methods 
The Infrared spectroscopy of three M-Pcs/M-PcCls was examined in inert gas matrices at 

cryogenic temperatures. The setup for this experiment has been described in Chapter II. 

MgPc, AlPcCl and GaPcCl were purchased from Sigma Aldrich, TCI chemicals and Santa 

Cruz Biotechnologies Inc. respectively and were used without further purification. Matrix 

samples were prepared by heating the phthalocyanine to 330°C and flowing the host gas 

(Ar or N2) over the vapour to accumulate the material on a KBr window held at 13 K. 

Sample deposition times were typically 2 hours to ensure acceptable absorption strengths. 

Infrared spectra were recorded with a Bruker IFS/66s infrared spectrometer with a DTGS 

detector with a resolution of 0.5 (or 1) cm-1. The range examined was 4000 – 400 cm-1. 

Raman spectroscopy of AlPcCl, GaPcCl and MgPc in KBr pellets was performed in on a 

HORIBA Jobin YVON HR800 spectrometer with Andor and Synapse detectors. Excitation 

was achieved by a 532 nm or 660 nm CW laser. The phthalocyanines typically absorb 

strongly in the red, so spectra contained traces of fluorescence and resonance Raman lines. 

These effects were minimized by the use of the 532 nm line. Accumulation times were set 

to 10-30 seconds depending on the area on the disc being examined. Several accumulations 

were performed to reduce the noise contribution. Numerous spots were examined on the 

surface of the KBr disc to ensure homogeneity of the samples. Raman bands were recorded 

up to energies of 1700 cm-1.  
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III.4: Results 
III.4.I: Geometries 

Geometry optimizations performed on the systems mentioned above show the molecules 

take up one of two possible arrangements; a planar geometry belonging to the D4h point 

group, or a non-planar geometry belonging to the C4v point group. The structures of a non-

planar M-TAP and M-Pc molecule are shown in Figure III.1, with labels on the symmetry 

unique atoms. The structures of the related molecules AlPcCl and GaPcCl and their TAP 

counterparts are shown in Figure III.A1. A summary of the key geometric parameters of 

the computed metal porphyrins are given in Table III.1. AlPcCl and GaPcCl were also 

investigated due to the wealth of experimental results available on these molecules 

compared to the other C4v porphyrin systems. The symmetry is not affected by the addition 

of the aryl rings onto the pyrrole subunits upon going from TAP to Pc. It appears that the 

size of the metal atom is the only factor which determines the symmetry the molecule 

possesses.  

 

Figure III.1: The top down view in D4h and C4v symmetry and side view in C4v symmetry 
of M-TAP and M-Pc. The labelling system shows the symmetry unique atoms the 
molecules possess. A ‘doming’ of the macrocycle is evident from the side view, which is 
more pronounced for M-Pc than M-TAP. The Nm atom labels have not been shown on the 
side views in order to see the extent of the doming on the pyrrole and isoindole atoms of 
TAP and Pc respectively. 
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A vibrational analysis was performed on the optimized geometries. In no instances were 

imaginary frequencies observed, indicating that the ground state geometry had been found 

by the optimization. Vibrational frequencies and infrared intensities were computed for all 

molecules. Raman activities were only calculated for comparison with experimental values 

(where available) and for the MgTAP and CaTAP molecules to allow for a symmetry 

analysis of the Raman modes. 

 

Table III.1: The symmetries and key geometric parameters of the M-TAP and M-Pc 
systems studied. The M-N bond lengths and height of the metal above the N4 plane are also 
shown. (The N4 plane is the plane on which the four central N atoms lie).                                                                   

 

 

M-N Bond 

length (Å) 
Height above 

N4 plane (Å) 
BePc 

D4h 

1.874 0 
BeTAP 1.851 0 
MgPc 2.002 0 

MgTAP 1.986 0 
ZnPc 1.999 0 

ZnTAP 1.979 0 
AlPc+ 1.915 0 
GaPc+ 1.954 0 
AlPcCl 

C4v 

1.981 0.451 
GaPcCl 2.220 0.506 
CdPc 2.157 0.606 

CdTAP 2.154 0.674 
HgPc 2.027 0.973 

HgTAP 2.211 0.836 
CaPc 2.283 1.052 

CaTAP 2.325 1.128 
SrPc 2.431 1.334 

SrTAP 2.423 1.354 
BaPc 2.595 1.617 

BaTAP 2.586 1.627 
 

III.4.II: Infrared Spectroscopy 

The matrix infrared absorption spectra of MgPc, AlPcCl and GaPcCl were recorded in 

solid Ar and N2 at cryogenic temperatures as well as in room temperature KBr pellets. 

Experimental results have been compared with DFT results scaled by a factor or 0.98 in the 

region below 2000 cm-1. The infrared spectra of MgPc in the aforementioned hosts are 

presented in Figure III.2. A high degree of agreement is evident between the experimental 
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spectra and the DFT results, indicating the theoretical model describes the experimental 

values well.  Small shifts (< 5 cm-1) exist between some bands upon changing the matrix, 

but due to the agreement with band intensities, it is possible to correlate the peaks. Because 

of the relative inertness of the matrices, vibrational bands are expected to be very close to 

their equivalent gas phase positions. Shifts in the KBr pellet are more pronounced than in 

the matrix, possibly due to a stronger interaction between the guest molecules and the host. 

The band widths of the vibrational modes are strongly dependent on its environment. The 

matrix spectra show well resolved, narrow lines in comparison to the KBr spectrum. These 

narrow lines are the result of the low temperatures used to record spectra of highly isolated 

molecules and lower concentrations of aggregates; conditions that cannot be achieved in 

KBr samples.  

 

Figure III.2: Infrared absorption spectra of MgPc recorded in N2, Ar and KBr hosts as 
well as results predicted using DFT calculations. DFT calculations have been scaled by a 
factor of 0.98 to account for anharmonicity. Experimental spectra are largely free of 
contaminants, combination bands and overtones. Small amounts of matrix-isolated carbon 
dioxide2 (CO2) and water3 (H2O) are present 667 cm-1 and 1600 cm-1 respectively and have 
been highlighted with asterisks. 
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The DFT results presented in Figure III.2 (red trace) predict the vibrational modes 

observed in the experimental matrix and KBr spectra with a high level of accuracy. The 

vibrational frequencies of scaled DFT results match the N2 data (blue trace) the most 

closely, as demonstrated by the ‘Δ’ column in Table III.2. While the DFT generally 

matches most of the vibrational modes excellently (within 2 cm-1 of matrix values), rather 

large discrepancies from experiment are noted; as much as 10 cm-1 is some cases. The high 

frequency modes pertaining to the C-H stretches (region not shown in Figure III.2, but will 

be shown later) were only observed definitively in the KBr sample. In the matrix samples 

broad, unresolved bands were located the C-H stretch region, but could not be conclusively 

assigned as the C-H stretching modes. The broadening of peaks in this region could be due 

to site effects, since the C-H bonds of the aryl group are located on the outer part of the 

ring.  As a result, these stretching modes are most sensitive to the trapping environment (as 

revealed by a pronounced KBr – matrix shift.) Although it is the most likely scenario, these 

peaks have not been definitively assigned as the C-H stretching modes due to the poor 

resolution in this region and the fact that they have not been observed in either matrix host. 

A full list of the fundamental vibrational modes of MgPc in the various hosts is given in 

Table III.2, along with the results from DFT calculations. From this it can be seen that 

there is excellent agreement between the theoretical and experimental spectra.  
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Table III.2: Infrared absorption energies of MgPc recorded in various hosts. All values are 
given in wavenumbers (cm-1). DFT values have been scaled by a factor of 0.98 below 2000 
cm-1 and 0.95 above 2000 cm-1. Symmetry labels assume the molecule belongs to the D4h 
point group with the z-axis passing through the Mg atom perpendicular to the plane of the 
porphyrin ring. The ‘Δ’ column lists the difference between the scaled DFT and N2 results 
in the region below 2000 cm-1, and between scaled DFT and KBr results in the region 
above 2000 cm-1. 

N2 Ar KBr DFT     

x 0.98 

Δ           

(cm-1) 

DFT        

Raw 
Sym 

- - - 419.22 - 427.77 EU 
- - 431.04 438.17 - 447.11 A2U 

503.72 505.13 508.78 504.57 -0.85 514.87 EU 
577.06 577.14 573.38 578.01 -0.95 589.81 EU 
649.55 650.60 637.92 649.76 -0.21 663.02 EU 
736.46 734.57 730.16 736.05 0.41 751.07 A2U 
755.96 756.59 755.20 755.31 0.65 770.73 EU 
782.67 781.56 776.94 783.10 -0.43 799.08 A2U 
804.83 - 803.30 803.79 1.04 820.19 EU 
893.03 892.98 889.61 891.45 1.58 909.64 EU 
955.50 947.33 947.66 959.24 -3.74 978.82 A2U 
1006.12 1005.55 1006.82 1009.44 -3.32 1030.04 EU 
1062.66 1063.06 1058.75 1061.03 1.63 1082.69 EU 
1088.82 1087.71 1082.41 1080.67 8.15 1102.73 EU 
1117.94 1117.95 1116.59 1115.09 2.85 1137.85 EU 
1166.89 1166.26 1165.89 1165.08 1.81 1188.86 EU 
1187.01 1186.50 - 1185.50 1.51 1209.70 EU 
1287.02 1286.18 1285.52 1292.67 -5.65 1319.05 EU 
1316.98 1312.80 - 1319.09 -2.11 1346.01 EU 
1331.33 1331.20 1331.53 1332.58 -1.25 1359.78 EU 
1410.24 1409.48 1408.43 1403.86 6.38 1432.51 EU 
1454.12 1454.84 1455.76 1456.60 -2.48 1486.33 EU 
1480.72 1482.77 1483.37 1474.43 6.29 1504.52 EU 

- - - 1478.72 - 1508.90 EU 
1584.30 1593.16 1586.50 1582.30 2.00 1614.59 EU 
1613.00 1612.55 1610.82 1608.25 4.75 1641.07 EU 

- - - 3015.06 - 3173.75 EU 
- - 3022.14 3027.99 -5.85 3187.35 EU 
- - 3049.00 3041.14 7.86 3201.20 EU 
- - 3079.88 3044.32 35.56 3204.55 EU 

 

The infrared spectra of the C4v molecule AlPcCl in various hosts, and as calculated by DFT 

are presented in Figure III.3. A strong similarity between the spectra recorded in different 

media is evident. In the same manner as MgPc, subtle shifts are observed on the vibrational 

modes upon changing the matrix, and these shifts are even more pronounced in KBr. The 

weaker intensity modes were only observed in matrix samples, most likely due to the 
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narrow linewidths of the bands. The scaled DFT results again show excellent agreement 

with experimental values. Differences from the experimental spectra are typically less than 

5 cm-1, but examples of shifts closer to 15 cm-1 have been observed, as demonstrated in the 

Δ column of Table III.3. Several intensity mismatches arise in the spectra (particularly 

obvious around 1350 cm-1), but overall the intensities match up very well between 

experiment and theory. In a similar manner to MgPc, the C-H stretching region was less 

clear-cut to assign. These bands have only been observed in KBr and have been correlated 

with the DFT results. In the two matrix environments only broad bands were observed in 

this region and could not be definitively assigned. A full list of the vibrational modes in the 

various matrices as well as DFT results is presented in Table III.3.  

 

Figure III.3: Infrared absorption spectra of AlPcCl recorded in N2, Ar and KBr hosts as 
well results predicted by with DFT calculations. DFT calculations have been scaled by a 
factor of 0.98 to account for anharmonicity. CO2 and H2O contaminants have been 
highlighted with asterisks. 
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Table III.3: Infrared absorption energies (in cm-1) of AlPcCl in various hosts. DFT values 
have been scaled by a factor of 0.98 below 2000 cm-1 and 0.95 above 2000 cm-1. The Δ 
column shows the difference between experimental and calculated results, as described in 
Table III.2. 

N2 Ar KBr 
DFT       

x 0.98 

Δ       

(cm-1) 

DFT 

Raw 
Sym 

432.22 433.43 - 434.29 -2.07 443.16 A1 
488.25 490.78 - 473.50 14.75 483.16 A1 
497.58 496.33 - 491.41 6.17 501.44 E 
519.47 519.38 515.32 517.28 2.19 527.84 E 
576.04 575.75 574.87 575.53 0.51 587.27 E 

- 587.05 - 589.38 - 601.41 A1 
640.71 639.15 639.42 639.33 1.38 652.38 E 
646.27 646.59 645.74 645.99 0.28 659.17 E 

- 727.32 - 728.22 - 743.09 E 
740.75 738.62 729.48 738.69 2.06 753.76 A1 
760.56 760.40 763.20 758.15 2.41 773.62 E 
778.80 777.35 - 778.02 0.78 793.89 E 
786.21 784.80 774.80 786.20 0.01 802.24 A1 
804.76 799.96 - 801.73 3.03 818.09 E 
829.22 835.32 - 833.45 -4.23 850.46 A1 
906.76 906.43 903.43 902.76 4.00 921.18 E 
969.07 955.10 - 960.62 8.45 980.23 A1 

1000.70 999.64 1013.58 1008.12 -7.42 1028.69 E 
1074.07 1072.76 1064.91 1065.42 8.65 1087.16 E 
1081.37 1080.40 1071.51sh 1074.67 6.70 1096.60 E 
1122.61 1122.11 1119.45 1120.12 2.49 1142.98 E 
1129.27 1133.68 - 1132.48 -3.21 1155.59 A1 
1167.71 1167.73 1167.93 1166.24 1.47 1190.04 E 
1185.27 1209.71 - 1196.27 -11.00 1220.68 E 
1293.14 1292.26 1286.52 1298.48 -5.34 1324.98 E 
1333.64 1343.99 1348.96 1323.26 10.38 1350.26 E 
1337.03 1336.46 1332.63 1338.31 -1.28 1365.62 E 
1414.75 1409.45 - 1401.27 13.48 1429.87 A1 
1430.68 1430.14 1424.85 1427.55 3.13 1456.69 E 
1475.43 1477.04 1478.41 1478.39 -2.96 1508.56 E 
1493.42 1490.79 - 1489.94 3.48 1520.34 E 
1521.95 1521.12 1501.60 1515.19 6.76 1546.11 E 
1590.49 1592.95 - 1589.57 0.92 1622.01 E 
1618.45 1611.88 1609.62 1609.84 8.61 1642.69 E 

- - 3014.24 3017.38 -3.14 3176.18 E 
- - 3029.98 3030.38 -0.40 3189.88 E 
- - - 3030.45 - 3189.94 A1 
- - 3042.99 3045.06 -2.07 3205.33 E 
- - 3049.12 3047.80 1.32 3208.21 E 
- - - 3047.96 -2.07 3208.38 A1 
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Figure III.4 presents the IR absorption spectra of GaPcCl in various hosts, as well as a DFT 

prediction. The matrix samples show very strong similarities in terms of both band 

positions and intensities, however, small shifts in the energies of the bands are apparent 

upon changing the host. A peculiar baseline is observed in the N2 spectrum. This arises due 

to internal reflections in the matrix which are seen due to a difference in the sample 

thickness of the working and the blank samples. The KBr spectra agrees well with the 

matrix results, albeit the peaks are much broader and the resolved structure is lost as peaks 

blend together or form shoulders. There is good agreement between the predicted and the 

experimental spectra, with DFT predicting the band positions to within 5 cm-1 in most 

instances although certain modes differ by more than 10 cm-1 (which can be seen in the Δ 

column of Table III.4) but this may be an effect of using a constant scaling factor 

throughout the entire region of the spectrum. The amount of correction required to account 

for anharmonicity generally increases with increasing vibrational frequency, as shown by 

the Morse potentials in Figure II.18.  

The C-H stretching modes were not observed clearly in any host, including KBr. This may 

again be explained by virtue of the hydrogens being on the outer part of the molecule, and 

the intensity of the modes is being diminished by interactions with the matrix. Based on the 

MgPc and AlPcCl results, it is expected that they would have been observed in the KBr 

spectra, but this was not the case. 
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Figure III.4: Infrared absorption spectra of GaPcCl recorded in N2, Ar and KBr hosts as 
well results predicted by with DFT calculations. DFT calculations have been scaled by a 
factor of 0.98 to account for anharmonicity. CO2 and H2O contaminants have been 
highlighted with asterisks. 
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predicts the AlPcCl and GaPcCl molecules to have three extra vibrational degrees of 

freedom compared to MgPc, culminating in three extra bands in their vibrational spectra. 
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intensity than is predicted by DFT. It was not observed at all in KBr. GaPcCl is predicted 
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energy region of the spectrum where the metal based normal modes are located. These 

modes are out of the range of the spectrometer but can be identified in the DFT 

predictions, where shifts of up to 30 cm-1 are found. With the exception of these low 

frequency modes the appearance of the spectra is quite similar, especially above 500 cm-1, 

owing to the similarity in the structure of the molecules. 

Table III.4: Infrared absorption energies (in cm-1) of GaPcCl in various hosts. The Δ 
column shows the difference between experimental N2 and scaled DFT results, as 
described in Table III.2. 

N2 Ar KBr DFT x 0.98 Δ (cm-1) DFT Raw Sym 
- 424.18 - 424.07 - 432.73 E 
- 433.83 - 434.86 - 443.74 A1 
- 496.22 488.16 492.64 - 502.69 E 

509.01 509.09 507.32 506.97 2.04 517.32 E 
573.43 573.82 572.9 574.14 -0.71 585.86 E 

- - 588.74 588.69 - 600.70 A1 
638.96 638.55 636.63 637.92 1.04 650.94 E 

- - 641.42 642.76 - 655.88 E 
- - - 678.02 - 691.86 A1 
- - - 724.39 - 739.17 E 

735.87 733.99 732.04 734.60 1.27 749.59 A1 
757.03 756.6 755.18 754.54 2.49 769.94 E 
778.51 775.71 769.87  776.16 2.35 792.00 E 
781.82 780.39 781.63 781.23 0.59 797.17 A1 

- - 789.97 788.33 - 804.42 E 
- 803.4 802.56 799.30 - 815.61 E 

826.98 825.62?? - 833.61 -6.63 850.63 A1 
- - - 879.14 - 897.08 E 

900.24 900.1 897.69 896.16 4.08 914.44 E 
- - - 960.11 - 979.71 E 

969.64 960.76 946.86 960.36 9.28 979.96 A1 
- - - 988.23 - 1008.39 E 

1002.69 - - 1008.62 -5.93 1029.20 E 
- - - 1009.04 - 1029.64 A1 

1071.94 1070.72 1070.7 1070.57 1.37 1092.42 E 
1086.56 1085.93 1082.86 1076.56 10.00 1098.53 E 
1121.82 1121.8 1121.19 1118.79 3.03 1141.62 E 

- - - 1130.08 - 1153.15 A1 
- - - 1164.95 - 1188.72 A1 

1168.19 1167.81 1168.84 1166.56 1.63 1190.36 E 
- - - 1192.87 - 1217.21 E 

1291.64 1290.83 1288.63 1297.08 -5.44 1323.56 E 
- 1320.46 - 1320.15 - 1347.09 E 

1335.42 1334.89 1333.22 1336.06 -0.64 1363.32 E 
1342.4 - 1364.12 1339.07 3.33 1366.39 A1 

- 1394.06 1384.38 1396.85 - 1425.35 A1 
1415.85 - - 1422.05 -6.20 1451.08 E 
1427.41 1426.92 1423.25 1435.81 -8.40 1465.11 A1 
1472.33 1472.48 1468.41 1474.09 -1.76 1504.18 E 

- - 1483.64 1484.03 - 1514.32 E 
1512.3 1511.86 1506.38 1502.35 9.95 1533.01 E 

- - - 1521.42 - 1552.47 A1 
- - - 1586.86 - 1619.24 E 

1584.94 1593.86 1590.51 1588.97 -4.03 1621.39 A1 
1618.56 1616.76 1608.57 1609.37 9.19 1642.21 E 



  Chapter III: Vibrational Analysis of Metal Tetraazaporphyrins and Metal Phthalocyanines 

 95  
 

The C-H stretching region of all three molecules is shown in Figure III.5. Because no 

useful data was recorded in either the Ar or N2 matrix, the KBr data is shown. Moderate 

agreement is observed between the experimental and predicted spectra of MgPc and 

AlPcCl. The experimental spectrum of GaPcCl exhibits several ‘extra’ bands which are not 

predicted by DFT. Given the good agreement between experiment and theory in the low 

frequency modes for GaPcCl (Figure III.4), it is unexpected that the high frequency region 

should show such a strong disagreement. If the extra bands are due to impurities in the 

sample then these impurities do not show up in the region below 1700 cm-1 with any 

significant intensity. 

 

Figure III.5: The C-H stretching region of the IR absorption spectra of MgPc, AlPcCl and 
GaPcCl recorded in KBr discs (blue) and predicted by DFT calculations (red). DFT 
calculations have been scaled by a factor of 0.95 for comparison with experimental values. 
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III.4.III: Raman Spectroscopy 

The Raman scattering spectra of MgPc, AlPcCl and GaPcCl were recorded in KBr Pellets 

using 532 nm and 660 nm excitation wavelengths. Raman bands were observed up to 1700 

cm-1 using two laser lines. A strong fluorescence band was observed in all molecules with 

excitation using the 660 nm line. This was removed from the spectrum by fitting a 

Gaussian curve to the baseline and subtracting the fluorescence out. The Raman scattering 

of MgPc is presented in Figure III.6. Both the 532 nm and 660 nm generated spectra agree 

well in their band positions, although the intensities of many of the peaks are quite 

different. This may be due to resonance Raman4 effects occurring with the 660 nm 

excitation, as this wavelength is quite close to the Q(S1)  G(S0) electronic transition. This 

results in some of the low frequency Raman bands achieving a much higher intensity than 

what is observed with the 532 nm excitation (where MgPc is known to have very weak 

absorption5) and as predicted by DFT calculations. 

 

Figure III.6: Raman scattering spectra of MgPc recorded in KBr pellets compared with 
scaled DFT frequencies. The region below 1250 cm-1 has been magnified x3 on the DFT 
spectrum. 
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DFT results are also shown in Figure III.6 and have been scaled by a factor of 0.98 

throughout the spectrum. Good agreement was observed between experiment and theory. 

While most peak positions match up, numerous intensity mismatches are evident, 

particularly at energies lower than 1000 cm-1. DFT results in this region have been 

magnified three-fold to compare with the experimental bands. The largest deviation of the 

DFT from experiment is the prediction of the most intense Raman peak; the B1g mode at 

1502.1 cm-1. Scaled DFT results show this peak to occur at 1517.4 cm-1, a shift of almost 

15 cm-1.This peak has been previously identified to be the peak responsible for the 

stimulated emission in H2Pc, ZnPc6, and more recently in H2TAP7. This result will be 

investigated in more detail in the Discussion section of this chapter. 

The Raman scattering spectra of AlPcCl recorded with the same two excitation 

wavelengths as MgPc are shown in Figure III.7. In a similar manner to MgPc the band 

positions match up well in the two experimental spectra, but a few intensity mismatches 

are present. They are not quite as pronounced in AlPcCl as they were for MgPc, indicating 

resonance Raman effects are not as strong in the AlPcCl molecule. 

DFT results are shown scaled by a factor of 0.98 and show good agreement with 

experimental band positions, but not band intensities. The region below 1000 cm-1 has 

been magnified by a factor of 3 to allow for comparison with experimental results. Another 

significant mismatch between experiment and theory is noted on the most intense band in 

the spectrum. An analysis of the vector diagrams produced by DFT shows that the same 

motion of the molecule is associated with these peaks in AlPcCl and MgPc. No bands were 

observed in the C-H stretching region (~ 3000 cm-1) with either excitation source, and this 

result is consistent with the low intensities of the bands predicted by DFT in this region.  
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Figure III.7: Raman scattering spectra of AlPcCl recorded in KBr pellets compared with 
scaled DFT frequencies. The area below 1250 cm-1 has been magnified x3 on the DFT 
spectrum. 
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Figure III.8: Raman scattering spectra of GaPcCl recorded in room temperature KBr 
pellets and as predicted by scaled DFT calculations. The area below 1250 cm-1 has been 
magnified x3 on the DFT spectrum. 
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has no strong absorptions in this region. Zawadzka’s result has been consolidated by the 

absorption spectra of GaPcCl recorded in EtOH and several inert gas matrices in the 

current work, which will be presented in Chapter V. 

Similarly for the 660 nm spectrum of AlPcCl two enhanced bands are located between 650 

and 800 cm-1, one at 957.3 and one at 1339.6 cm-1. The 532 nm excitation causes an 

enhancement of the bands at 694.5, 956.3, and 1419.3 cm-1. The source of these enhanced 

bands may be due to resonance Raman effects, which are dependent on the excitation laser 

used and the electronic absorption of the molecule being examined. Neither AlPcCl nor 

GaPcCl are expected to absorb at 532 nm, so it is surprising that resonance Raman effects 

arise in these spectra. 

The Raman spectra of GaPcCl seem to be the most susceptible to resonance Raman effects, 

with the 532 nm excitation giving a spectrum containing several enhanced modes, as 

evident in Figure III.8. The low frequency modes at 599.4 and 683.5 cm-1 show modest 

enhancement, but almost all of the bands between 1346 and 1613.9 cm-1 show strong 

enhancement (with the exception of the band at 1532.9 cm-1). The 660 nm spectrum of 

GaPcCl seems to be well represented by the DFT results, having fairly good agreement 

with band intensities throughout the spectrum. The low intensity modes predicted by DFT 

are barely, if at all visible in the experimental spectrum. The complete set of results for the 

MgPc, AlPcCl and GaPcCl Raman scattering experiments and DFT calculations are 

compiled in Table III.A1, which demonstrates the generally very good agreement between 

scaled DFT results and the experimental data. The correlations between the vibrational 

modes of the different symmetry molecules have been made based on group theory 

relationships. Due to the lower symmetry of the metal phthalocyanine chlorides, there will 

be more Raman active modes for these molecules. This is shown in Table III.A1, where 

many of the predicted vibrational modes of the MgPc modes have ‘u’ symmetry. These 

modes are predicted by group theory (and DFT) to be Raman inactive, and this is observed 

experimentally. 
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III.5: Discussion 
III.5.I: Structural Analysis 

The geometries of the M-TAPs and M-Pcs have been predicted by DFT calculations. 

Geometries were found to be either planar with D4h symmetry or non-planar with C4v 

symmetry. Arillo-Flores9 performed a DFT study on the first row d-block M-Pcs as well as 

CaPc and AgPc using modest basis set DFT calculations. This work predicted all of the d-

block metals to give planar D4h complexes, with the exception of ScPc and the s-block 

metal CaPc. The results reported for CaPc and ZnPc are consistent with what is observed 

in this work. The M-N bond lengths obtained by Arillo-Flores are given as 2.322 Å and 

1.975 Å for CaPc and ZnPc respectively. The M-N bond lengths of CaPc and ZnPc are 

longer and shorter respectively than the calculated values in the current work (2.283 Å and 

1.999 Å). Arillo-Flores predicted the Ca atom to sit 1.12 Å above the molecular plane, 

which is higher than the 1.05 Å predicted by the larger basis set calculations from this 

work, but is consistent with the longer bond lengths.  

Sliznev et al.10 performed a theoretical study on the related alkali metal (M = Li, Na, K) 

complexes of porphine (M2P), tetraazaporphyrin (M2TAP) and phthalocyanine (M2Pc) 

with DFT and MP2 calculations using modest basis sets. Sliznev predicted the M2 

porphyrins could form a number of different structures. The smaller metal ions could both 

lie in the plane of the macrocycle, whereas the larger metal ions either sat above and below 

the ring, or both above it, similar to the C4v systems described in the current work. 

III.5.I.a: D4h Systems 

The geometries of BePc, MgPc and ZnPc computed by DFT were all shown to have D4h 

symmetry. A list of the bond lengths and angles of these three molecules is presented in 

Table III.5, along with existing experimental data. The corresponding M-TAP results are 

also shown in Table III.5 to examine how the aryl rings affect the structural parameters. In 

all instances the structural parameters of the porphyrin ring is similar. The largest 

difference arises from the M-N bond length. The BePc molecule shows the shortest M-N 

bond length at 1.874 Å. MgPc and ZnPc show remarkably similar M-N bond lengths, 

predicted to be 2.002 Å and 1.999 Å respectively. It is expected that both of these should 

have longer M-N bond lengths when compared to BePc as they both have a larger principal 

quantum number. Zn forms a shorter M-N bond than Mg due to d-block contraction,11 

reducing the atomic radius of the Zn atom. 
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The calculated geometry of BePc was compared to the crystal data provided by Kubiak12. 

Experimental and theoretical results agree excellently. For both bond lengths and bond 

angles the deviation between experiment and theory is typically less than 1%, and in the 

most extreme cases is only slightly above 3% (Cβ-Cβ bond).  

Table III.5: Structural parameters of BePc, MgPc and ZnPc predicted by DFT calculations 
and deduced experimentally. Experimental values of BePc have been taken directly from 
the crystallography database. The MgPc results are taken from the 200 K data set from 
reference 13. Experimental ZnPc values are taken directly from the results presented in 
reference 14. Also shown are the calculated M-TAP structural parameters. All bond 
lengths are given in Angstroms and bond angles are given in degrees, with the atom 
labelling system described in Figure III.1. 

Bond 

Lengths (Å) 

BePc BeTAP MgPc MgTAP ZnPc ZnTAP 
DFT Exp12 DFT DFT Exp13 DFT DFT Exp14 DFT 

M-N 1.874 1.863 1.851 2.002 2.005 1.986 1.999 1.980 1.979 
N-Cα 1.381 1.376 1.382 1.329 1.327 1.369 1.369 1.369 1.369 
Cα-Cβ 1.450 1.448 1.449 1.369 1.375 1.461 1.459 1.455 1.461 
Cα-Nm 1.313 1.315 1.323 1.460 1.472 1.339 1.327 1.331 1.337 
Cβ-Cβ 1.394 1.379 1.356 1.460 1.412 1.364 1.407 1.400 1.363 
Cβ-Cγ 1.393 1.392 - 1.391 1.378 - 1.391 1.393 - 
Cγ-Cδ 1.388 1.381 - 1.389 1.384 - 1.390 1.391 - 
Cδ-Cδ 1.406 1.397 - 1.403 1.385 - 1.403 1.396 - 
Cβ-H - - 1.081 - - 1.081 - - 1.081 
Cγ-H1 1.080 1.062 - 1.080 1.333 - 1.080 - - 
Cδ-H2 1.081 1.051 - 1.081 1.351 - 1.081 - - 

Bond angles 

(°)          
M-N-Cα 127.3 127.1 128.1 125.1 - 125.7 125.1 125.4 125.8 
Cα-N-Cα 105.3 104.7 103.8 109.8 - 108.5 109.9 109.1 108.4 
N-Cα-Cβ 111.3 111.8 111.7 108.5 - 108.6 108.5 108.8 108.7 
N-Cα-Nm 127.3 127.7 127.1 127.4 - 127.1 127.5 127.8 127.2 
Cα-Nm-Cα 120.7 119.5 119.5 125.1 - 124.3 125.0 123.5 124.0 
Cα-Cβ-Cβ 106.1 106.1 106.4 106.6 - 107.1 106.6 106.6 107.1 
Cα-Cβ-Cγ 132.6 132.3 - 132.4 - - 132.4 132.1 - 
Cβ-Cβ-Cγ 121.4 121.6 - 120.9 - - 121.0 121.3 - 
Cβ-Cγ-Cδ 117.4 117.2 - 117.9 - - 117.8 117.3 - 
Cγ-Cδ-Cδ 121.2 121.5 - 121.1 - - 121.1 121.5 - 
Cβ-Cγ-H1 121.0 117.4 - 120.7 - - 120.7 - - 
Cγ-Cδ-H2 119.6 120.3 - 119.6 - - 119.6 - - 
Cα-Cβ-H - - 123.5 - - 124.2 - - 124.1 
Cβ-Cβ-H - - 130.1 - - 128.7 - - 128.8 
H1-Cγ-Cδ 121.6 125.4 - 121.5 - - 121.5 - - 
Cδ-Cδ-H2 119.2 118.1 - 119.2 - - 119.2 - - 
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The calculated geometry of MgPc was compared to crystal data provided by Miziguchi13. 

DFT predicts the molecule to be planar with D4h symmetry, similar to BePc. Miziguchi’s 

work showed the molecule to be non-planar, with the Mg atom popping out of the central 

cavity and lying above the plane of the ring. It was also observed that the ring structure 

was not equivalent for each of the isoindole subunits, giving it C1 symmetry. The 

discrepancy between experiment and theory may be due to the different environments both 

are performed in. The DFT calculation predicts the geometry of the molecule in the ‘gas 

phase’ with no external forces acting upon the molecule. The experiment is performed with 

the molecule trapped in a crystal lattice. A scheme showing stacking interactions in a 

crystal lattice is presented in the work by Kubiak15. These interactions potentially distort 

the molecule, disturbing the D4h symmetry it is predicted to have. A comparison of the 

bond lengths does in fact show a very good agreement, generally less than 1% deviation. 

As was the case with the BePc, the Cβ-Cβ bond length deviates by around 3%. The C-H 

bond lengths differ by almost 20% between experiment and theory. Given the success of 

the DFT results at predicting all of the other structural parameters, it may be in fact an 

inaccuracy of the experiment that leads to the discrepancy between the C-H bond lengths. 

Bond angles were not reported for MgPc. 

A set of calculations by Tackley et al16 on the ZnPc molecule with the 6-31g(d,p) basis set 

predicted a C4v structure with a doming effect on the ring. The current set of calculations 

with the larger 6-311g++(2d,2p) basis set predict a planar D4h structure, in agreement with 

the earlier results obtained by Murray et al17. A more recent study of the first row d-block 

M-Pcs by Arrilo-Flores et al9 also predicts D4h symmetry for ZnPc. Experimental data on 

the structure of ZnPc has been reported by Scheidt14 by X-ray diffraction. A comparison of 

the results predicted by DFT and experimental data has been performed. The agreements 

with Scheidt’s results are excellent. The bond lengths are accurate to better than 1%, and 

the bond angles follow the same trend except for the Cα-Nm-Cα angle (1.2%).  

While the D4h M-Pc systems all agree excellently with the experimental crystal data, no 

such comparison can be made with the M-TAPs as experimentally determined structures 

do not exist for these molecules. Table III.5 also shows that the addition of the aryl rings in 

the Pcs affects the structure of the pyrrole rings and hence the M-N bond length. The M-N 

bond lengths of the D4h M-Pcs are all consistently longer (by 0.016 – 0.023 Å) than the 

corresponding M-TAPs. 
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III.5.I.b: C4v Systems 

The geometries of the M-TAPs and M-Pcs where M = Ca, Sr, Ba, Cd and Hg were 

predicted to be C4v by DFT calculations. The bond lengths and angles of these systems are 

presented in Table III.6. The trend is similar to the one observed for the D4h porphyrins; the 

M-N bond lengths increase moving down a given group. CdPc and HgPc show shorter 

bond lengths than the group II counterparts due to the d-block contraction of the atomic 

radii of the d-10 atoms. An almost linear relationship between the metal radii and the 

predicted M-N bond lengths holds true. The degree of ‘doming’ observed on the TAPs is 

very similar to that observed for the Pcs in the current work. To the best of the author’s 

knowledge, there has been no experimental work carried out on the crystal structures of 

these C4v molecules. The M-N bond length is very similar between the M-TAPs and M-Pcs 

for a given metal. The exception to this trend is the HgPc, where the HgTAP has a 

significantly longer M-N bond length (2.211 Å) than the HgPc (2.027 Å). This difference 

is ten times larger than for most of the other metals. 
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Table III.6: Structural parameters of the M-Pcs and M-TAPs predicted to have C4v 
symmetry by DFT calculations. All bond lengths are given in Angstroms and bond angles 
are given in degrees. The atom labelling takes the same format as that shown in Figure 
III.1. 

Bond Lengths 

(Å) 

Cd Hg Ca Sr Ba 
Pc TAP Pc TAP Pc TAP Pc TAP Pc TAP 

M-N 2.157 2.154 2.027 2.211 2.283 2.325 2.431 2.423 2.595 2.586 
N-Cα 1.365 1.364 1.364 1.362 1.368 1.369 1.367 1.369 1.366 1.366 
Cα-Cβ 1.465 1.465 1.465 1.462 1.462 1.464 1.463 1.464 1.464 1.464 
Cα-Nm 1.333 1.339 1.332 1.335 1.331 1.340 1.331 1.340 1.332 1.337 
Cβ-Cβ 1.411 1.364 1.412 1.357 1.407 1.361 1.407 1.362 1.406 1.360 
Cβ-Cγ 1.390 - 1.390 - 1.391 - 1.391 - 1.391 - 
Cγ-Cδ 1.390 - 1.390 - 1.390 - 1.390 - 1.390 - 
Cδ-Cδ 1.402 - 1.401 - 1.403 - 1.403 - 1.403 - 
Cβ-H - 1.080 - 1.077 - 1.082 - 1.082 - 1.080 
Cγ-H1 1.081 - 1.081 - 1.081 - 1.081 - 1.081 - 
Cδ-H2 1.081 - 1.081 - 1.081 - 1.082 - 1.082 - 

Bond Angles 

(°) 
    

      M-N-Cα 124.3 125.3 123.8 125.0 124.3 125.7 123.6 124.9 122.6 124.0 
Cα-N-Cα 111.4 109.4 111.8 109.7 109.5 107.8 109.3 107.3 109.2 107.3 
N-Cα-Cβ 107.5 108.1 107.3 107.8 108.8 109.1 108.9 109.5 109.0 109.6 
N-Cα-Nm 127.8 127.7 127.8 127.8 127.7 127.9 127.7 127.6 127.8 127.7 
Cα-Nm-Cα 127.1 125.9 127.3 126.0 125.5 124.9 125.5 124.4 125.4 124.3 
Cα-Cβ-Cβ 106.8 107.1 106.8 107.3 106.4 106.9 106.3 106.7 106.3 106.7 
Cα-Cβ-Cγ 132.3 - 132.3 - 132.6 - 132.6 - 132.7 - 
Cβ-Cβ-Cγ 120.9 - 120.9 - 121.0 - 121.0 - 121.0 - 
Cβ-Cγ-Cδ 118.0 - 118.0 - 117.9 - 117.9 - 117.9 - 
Cγ-Cδ-Cδ 121.1 - 121.1 - 121.1 - 121.1 - 121.1 - 
Cβ-Cγ-H1 120.6 - 120.6 - 120.7 - 120.7 - 120.7 - 
Cγ-Cδ-H2 119.6 - 119.6 - 119.7 - 119.7 - 119.7 - 
Cα-Cβ-H - 124.2 - 124.2 - 124.2 - 124.2 - 124.2 
Cβ-Cβ-H - 128.6 - 128.4 - 128.8 - 129.0 - 129.0 
H1-Cγ-Cδ 121.4 - 121.4 - 121.4 - 121.4 - 121.4 - 
Cδ-Cδ-H2 119.3 - 119.3 - 119.2 - 119.2 - 119.2 - 

 

III.5.I.c: Metal Phthalocyanine Chlorides 

The optimized structures of AlPcCl and GaPcCl are presented in Table III.7. Both 

molecules have C4v symmetry with the metal and chlorine atoms lying above the N4 plane 

and a slight doming of the phthalocyanine ring, as shown in Figure III.9. A calculation 

performed on the structurally related molecule AlPc+ gave a planar structure with D4h 

symmetry. In this molecule the Al+ lies in the centre of the macrocycle cavity. This 
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indicates that the Cl- ion pulls the Al out of the plane of the ring causing the doming effect 

on the ring. A similar result was observed with a calculation on the GaPc+ molecule. 

The DFT result compares well with existing calculations by Strenalyuk18 and experimental 

crystallography results obtained by Wynne19 (Table III.7). Both sets of calculations were 

carried out with the B3LYP functional. This work used the 6-311++g(2d,2p) basis set, 

whereas Strenalyuk used cc-pVTZ. There is an insignificant difference between the results 

obtained with the two basis sets, with all bond lengths within 100th of an Angstrom of one 

another and all bond lengths within 0.1° of one another.  

The DFT results for AlPcCl agree excellently with the crystal structure deduced by 

Wynne19. In all instances the calculations predict the bond lengths correctly to better than a 

tenth of an Angstrom. The largest deviation is with the Cα-Cβ bond, a difference of 0.079 Å 

(5.7%). The other parameters are typically accurate to within 3%. All bond angles are 

accurate to within 3% of their experimental counterparts in most instances, with only the 

Cα-N-Cα and Cα-Cβ-Cγ angles deviating more than this from the experimental results. The 

GaPcCl results generally show an even better agreement with Wynne’s crystal structures. 

Differences between experiment and theory tend to be much less than 2%. The only 

exceptions are the Cγ-H1 and Cδ-H2 bond lengths, which have either been significantly 

overestimated by DFT, or determined inaccurately in the crystal structure.  

While excellent agreement with Wynne’s results is observed, it should be noted that the 

DFT calculations do not have the molecule simulated as part of a crystal lattice as is the 

case with the experiment. This may explain some of the larger deviations observed 

between the two sets of results. Different measurement techniques may be the source of the 

large variation in the C-H bond lengths recorded experimentally by Kubiak12, Miziguchi13 

and Wynne19. 
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Table III.7: Structural parameters of AlPcCl and GaPcCl predicted by DFT calculations 
and deduced experimentally. Experimental results shown are the average bond lengths and 
angles taken from Table XI-S and Table IV-S in reference 19. All bond lengths are given 
in Angstroms and bond angles are given in degrees. The atom labelling takes the same 
format as that shown in Figure III.A1. 

  AlPcCl 
  

GaPcCl 
  

Bond Lengths 
(Å) DFT Exp19 DFT Exp19 

Cl-M 2.175 2.179 2.220 2.217 
M-N 1.981 1.977 2.025 1.983 
N-Cα 1.379 1.441 1.375 1.381 
Cα-Cβ 1.450 1.371 1.453 1.448 
Cα-Nm 1.317 1.361 1.320 1.323 
Cβ-Cβ 1.399 1.360 1.402 1.381 
Cβ-Cγ 1.393 1.458 1.392 1.386 
Cγ-Cδ 1.388 1.408 1.388 1.377 
Cδ-Cδ 1.406 1.418 1.405 1.385 
Cγ-H1 1.080 - 1.080 0.889 
Cδ-H2 1.081 - 1.081 0.989 

Bond Angles 
(°)         

Cl-M-N 103.2 101.5 104.5 102.8 
M-N-Cα 125.7 127.8 125.0 125.6 
Cα-N-Cα 107.4 103.0 108.6 107.4 
N-Cα-Cβ 109.8 108.9 109.1 108.6 
N-Cα-Nm 127.4 123.6 127.6 127.4 
Cα-Nm-Cα 122.6 125.5 123.6 122.6 
Cα-Cβ-Cβ 106.5 108.8 106.6 106.8 
Cα-Cβ-Cγ 132.3 127.5 132.2 131.9 
Cβ-Cβ-Cγ 121.2 122.0 121.2 121.1 
Cβ-Cγ-Cδ 117.5 115.5 117.6 117.3 
Cγ-Cδ-Cδ 121.2 122.0 121.2 121.3 
Cβ-Cγ-H1 120.9 - 120.8 121.0 
Cγ-Cδ-H2 119.6 - 119.6 119.1 
H1-Cγ-Cδ 121.6 - 121.6 121.1 
Cδ-Cδ-H2 119.1 - 119.2 119.9 

 

III.5.I.d: Planarity 

The non-planar porphyrins have been examined by looking at the positions of the 

symmetry unique atoms with respect to the four pyrrole nitrogen atoms (N4 plane). Side-on 

views of the M-TAP and M-Pc structures are shown in Figure III.9. Evidently there is a 

correlation between how high the metal sits above this plane and how much the rest of the 

ring is domed. Taking a closer look at the group II metal porphyrins, it is clear that the 
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larger the metal atomic radius, the higher it sits above the ring. This is an expected result 

considering that the cavity size is unable to expand enough to facilitate the larger metal 

atoms. The CaPc is the lowest lying s-block metal, sitting 1.052 Å above the N4 plane. The 

Sr metal sits 1.337 Å above the plane and the largest metal studied, Ba, sits 1.617 Å above 

the N4 plane. The d-10 metals show contraction compared to their s-block counterparts. 

This is reflected in how high these metals sit above the ring Cd at 0.606 Å and Hg at 0.836 

Å. Zn being a smaller atom lies in the plane of the molecule. 

 

Figure III.9: Structures and doming effect in the non-planar M-TAP and M-Pc molecules. 
The atom labelling system is the same as that shown in Figure III.1. The plane of the 4 
pyrrole nitrogens has been selected as the reference plane. For comparison, the planar 
AlTAP+ and AlPc+ molecules are also shown. The metal atoms are shown above this plane 
and the carbon atoms below it. The label θM, shows the angle between the M-N bond and 
the N4 plane. θPc and θTAP show the angles between the N-C bond and the N4 plane. The 
values of these angles are listed in Table III.8. 

 

AlPcCl and GaPcCl are slightly different to the other C4v M-Pc systems because it is not 

the size of the metals which cause them to take up the non-planar structure; rather it is the 

presence of the Cl atom (not shown in Figure III.9). Calculations on the AlPc+ and GaPc+ 

molecules show them to be planar with D4h symmetry. The Al and Ga ions in the PcCls are 

only slightly above the pyrrole nitrogen plane, and the extent of doming on the porphyrin 

ring is minimal. The larger metals which lie higher above the pyrrole nitrogen plane, cause 

a more pronounced effect on the doming of the porphyrin ring. This can be seen by virtue 

of the fact that the carbon atoms of the s-block M-Pcs lye lower than the d-block M-Pcs 
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which in turn are lower than the AlPcCl with respect to the N4 plane. A similar trend is 

observed with the C4v M-TAPs. As was the case with the M-Pcs, the s-block metals lie the 

highest above the N4 plane when compared to their d-block counterparts. A greater doming 

effect is caused by the larger metals.  

The angles θM and θTAP/θPc are given in Table III.8. θM is measured for the angle between 

the N4 plane and N-M, θTAP between the N4 plane and N-Cβ, and θPc between the N4 plane 

and N-Cδ. The θM results show the expected trend from Table III.1, where metals which lie 

higher above the N4 plane show a greater angle. The θM angles of the M-TAPs are 

consistently larger than the corresponding M-Pcs. AlCl shows the smallest angle difference 

(0.8°) upon changing from TAP to Pc, whereas Ca shows the largest (2.8°). Hg acts 

differently to the other systems and shows a reversal of this trend, with the θM angle of 

HgPc being larger than that of HgTAP by 4.3°. The θTAP angles are all larger than the 

corresponding θPc angles, even for Hg. The smallest angle difference is unsurprisingly 

AlCl (0.6°), whereas the largest is Ca again (7.4°). The fact that the θTAP/θPc angles are 

more sensitive to changes of the metal atom can be explained because, being 

benzannulated derivatives of TAP, the Pc molecules have a more rigid structure.  

 

Table III.8: The angles (in degrees) between the metal atom and the N4 plane of the M-
TAPs and M-Pcs are given by θM. The corresponding angles between the macrocycle and 
the N4 plane are given by θTAP and θPc respectively. 

M θM θTAP θPc 
TAP Pc TAP Pc 

AlCl 14.4 13.6 3.5 2.8 
GaCl 16.3 15.1 4.3 3.9 

Ca 35.5 32.7 19.2 11.7 
Sr 45.7 44.2 16.8 14.5 
Ba 60.1 58.6 17.8 14.8 
Cd 19.6 17.3 15.1 12.0 
Hg 24.8 29.1 15.4 11.3 

 

A very small doming of the M-PcCls is apparent from Figure III.9 and Table III.8, which 

may be the reason that AlPcCl and GaPcCl are still considered dye molecules. The degree 

of doming is not sufficient that the molecules lose their aromaticity and thus maintain 

strong absorption strengths in the visible region of the spectrum, similar to the planar Pcs. 
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III.5.II: Vibrational Analysis 

III.5.II.a: IR Spectroscopy 

The Infrared spectroscopy of AlPcCl was studied by sublimation of pure material onto KBr 

discs and by compression in KBr discs by Napier et al.20 They also show a comparison of 

their data with earlier work carried out by Lever21. Napier’s results show the transition 

between the α and β states of the molecule before and after annealing. No such effect was 

observed upon annealing in either matrix in the current work, as expected considering the 

molecules are so highly isolated. A comparison of the current work made with Napier’s 

and Lever’s results shows good agreement between the different hosts. The difference 

(compared with N2 results) was typically less than 5 cm-1, but there were a few modes 

which differed by up to 35 cm-1 – the band reported at 864 cm-1 by Napier has been 

correlated to the band at 829 cm-1 in N2. The weaker bands, which were only identified 

with the assistance of DFT calculations, were not reported by either Napier or Lever. 

Additionally, there were several extra bands described in Napier’s spectra which were 

assigned as C=O modes. These were not present in either matrix or KBr due to the high 

vacuum apparatus used in preparing matrix samples. 

Napier20 performed an analysis of the fundamental modes which was mostly accurate. 

They assigned the modes above 1620 cm-1 to being C=O stretches. These modes were not 

present in the present DFT calculation, so seem to be reasonable assignments. The modes 

between 1275 and 1620 cm-1 were assigned to C-C stretches on the benzene rings (with the 

exception of the water mode at 1505 cm-1). These modes were found to agree with the DFT 

results from the present work, with the exception of the modes at 1598.6 cm-1, which was 

shown to be a Cα-Nm stretch, and the mode at 1298.5 cm-1 which was a C-H IPB. The 

modes between 1000 and 1200 cm-1 were assigned to C-H IPBs. These were all shown to 

being the correct assignments, although the internal modes were somewhat more complex, 

often involving contributions from C-C stretches and Al-N stretches. The modes between 

850 and 950 cm-1 were assigned as metal dependent rocking vibrations, which again were 

shown to be mostly correct. The only incorrect assignment was the mode at 960.6 cm-1, 

which was a C-H OPB, with no motion of the metal atom. The modes between 700 and 

800 cm-1 were assigned as C-H OPBs, and all of these were correctly assigned. The 

internal modes predicted by DFT again showed more complexity on some of these 

vibrations. The modes between 500 and 650 cm-1 were assigned as out-of-plane (OOP) ring 

deformations. The modes at 643, 637 and 519 cm-1 were correctly assigned. DFT showed 
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that the modes at 589.4 and 575.5 cm-1 were in-plane vibrations of the isoindole ring. The 

Al-Cl stretch was assigned to the peak at 441 cm-1 (α) and 450 cm-1 (β). This shows a 

significant shift from the energy predicted by DFT (473.5 cm-1). This mode was difficult to 

observe in the matrix, but has tentatively assigned to the band at 488.3 cm-1 in N2 and 

490.8 cm-1 in Ar. Linsky22 placed this vibrational mode at 440 cm-1, as reported in the IR 

spectrum shown by Starke and Hamann23. Linsky also describes the metal-halide stretching 

modes for a number of other metallo-porphyrin halides, but does not report a frequency for 

the Cl-Ga stretch, probably because it falls outside the range of the detector, as was 

observed in this work. To the best of the author’s knowledge, no other work has been 

carried out on the IR absorption spectra of GaPcCl. 

The IR absorptions of a series of substituted and un-substituted M-Pcs in KBr discs were 

recorded by Ziminov24. The vibrational bands of MgPc were reported as low as 700 cm-1. 

These results have been compared with the experimental results in this work and show 

good agreement. Values reported are typically within 5 cm-1 of results recorded in KBr 

discs from this work.  A mode assignment conducted by Ziminov was shown to be 

accurate by examining the vector diagrams associated with the vibrational modes 

calculated by DFT. The modes up to 800 cm-1 generally involve C-H OPBs. The modes 

between 800 and 1300 cm-1 are mostly made up of either C-H IPBs or isoindole 

deformations. The modes between 1300 and 1500 cm-1 have been correctly assigned as 

deformations of the pyrrole and isoindole subunits, with the remaining modes up to 1800 

cm-1 involving C=C and N=C stretches. Finally the high frequency modes have been 

assigned as the C-H stretches. An analysis of the vector diagrams from DFT calculations 

show that the only incorrect assignment from Ziminov is the mode at 1114 cm-1, which 

was assigned as a totally symmetric isoindole deformation instead of a C-H IPB.  

The fundamental vibrational modes of MgPc have also been observed in thin films25. All 

of the modes described in this work were described as having A2u symmetry. A 

comparison with matrix results from the current work show the frequencies shift by as 

much as 12 cm-1 in places and the modes are a mixture of A2u and Eu symmetries. 

The IR spectra of MgPc, AlPcCl and GaPcCl recorded in N2 matrices and DFT 

calculations are shown in Figure III.10. The similarity of the IR spectra arises due to the 

closeness of the structures of the three molecules. The extra atom in metal phthalocyanine 

chlorides give them 3 extra vibrational modes which have been described as a Cl-M stretch 
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which has A1 symmetry and moderate IR intensity, and a pair of degenerate E modes 

which are only weakly IR active. The other modes which are expected to be significantly 

different are the metal based modes. These modes are all observed in the region below 400 

cm-1, which is outside of the range of the DTGS detector used to record the experimental 

spectra. These modes can however be analysed with DFT calculations and shifts of up to 

50 cm-1 can be seen. The region of the spectrum shown in Figure III.10 shows the 

remarkable similarity of the IR spectra of these molecules. The band positions of many of 

the vibrational modes are quite similar, to well within 10 cm-1 of one another, albeit with 

intensity differences.  

 

Figure III.10: Matrix infrared absorption spectra recorded in solid N2 (blue) and as 
predicted by scaled DFT results (red) of MgPc, AlPcCl and GaPcCl. CO2 and H2O 
impurities are highlighted by asterisks. 

 

DFT calculations of MgPc show that the vibrational modes are of A2u and Eu symmetry to 

be IR active. The corresponding A1 and E modes in AlPcCl and GaPcCl are also IR active. 

A2u modes are primarily associated with out-of-plane bending (OPB) motions. Only 4 of 
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these modes were observed in the IR spectrum of MgPc. The Eu modes involved in-plane 

motions of the molecule, usually a C-H in-plane bend (IPB) and/or a distortion of the 

isoindole rings or the central ring. In general the Eu modes are much more intense than the 

A2u modes, with the exception of the A2u mode at 751 cm-1, corresponding to a ‘pure’ C-H 

OPB.  

In a similar manner to MgPc, the IR spectrum of AlPcCl is made up mostly of intense E 

modes and weaker A1 modes. Two A1 modes carry significant intensity; the Cl-Al stretch 

at 483 cm-1, and the pure C-H OPB at 753 cm-1. Many more A1 and E modes are 

spectroscopically active in AlPcCl than the A2u and Eu modes in MgPc and this will be 

discussed in more detail in the Section III.5.III. 

The IR absorption of GaPcCl is remarkably similar to that of AlPcCl, and the same trend 

of intense E modes and weak A1 dominating the spectra persists with this molecule. There 

is only one intense A1 mode above 400 cm-1 (the pure C-H OPB at 750 cm-1) in the GaPcCl 

spectrum shown in Figure III.10. This is due to the intense Cl-Ga stretch having a 

frequency of 363 cm-1, just below the range of the DTGS detector. With the exception of a 

the metal dependent normal modes, the vibrational frequencies of AlPcCl and GaPcCl are 

within 5 cm-1 of one another and the intensities of the bands agree excellently. This 

similarity in the vibrational structure of the two molecules originates in them having 

comparable ground state structures. 

While the region of the experimental IR spectra shows a high degree of agreement, the 

same cannot be said for the low frequency region as shown in Figure III.11, where the 

similarity between the structures of the spectra of the three molecules is reduced. Two 

main factors contribute to this; the geometry of the molecules change from planar to 

domed and the metal occupying the central cavity changes from molecule to molecule. The 

region below 500 cm-1 is where most of the metal dependent vibrations are found. 

Vibrational modes are sensitive to changes in mass, and this can be seen as the Cl-M 

stretching mode (highlighted with an ‘x’ in Figure III.11) shifts in energy from 483 cm-1 to 

363 cm-1 as the mass of the metal changes from 27 amu in Al to 70 amu in Ga. Table III.9 

collects all of the metal dependent vibrational modes of these molecules, which have also 

been highlighted with stars on Figure III.11.  
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Figure III.11: Low frequency IR active modes of MgPc, AlPcCl and GaPcCl predicted by 
DFT calculations. Values are plotted in wavenumbers and are unscaled. The calculated 
frequencies for MgPc and AlPcCl are given in and those of GaPcCl are given in Table 
III.A4. 

 

The other major difference between the molecules is their symmetry; MgPc is planar with 

D4h symmetry, and both M-PcCls are domed with C4v symmetry. The MgPc molecule 

contains a centre of inversion which means the rule of “mutual exclusion” applies to its 

vibrational modes. The impact this has on the IR spectrum is that totally symmetric 

vibrations are forbidden and thus will carry no intensity. The M-PcCls do not have an 

inversion centre, and hence they do not have totally symmetric vibrations. This means all 

of its vibrational modes will cause a change in the electric dipole moment of the molecule, 

giving them IR activity. It can be seen in Figure III.11 that fewer bands are present in the 

MgPc spectrum than in the M-PcCl spectra. The bands labelled 0 – 3 are common to all 

three spectra, and correspond to distortions of the macrocycle. The peaks labelled 4 – 8, 

however are only common to AlPcCl and GaPcCl, a direct effect of changing the 
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with the most intense band in each shifting from 149 cm-1 to 480 cm-1 to 363 cm-1 for 

MgPc, AlPcCl and GaPcCl respectively. These modes correspond to the Mg OPB, the Al-

Cl stretch and the Ga-Cl stretch. The corresponding OPB modes in AlPcCl and GaPcCl 

which match the MgPc occur at 172 cm-1 and 147 cm-1 respectively. These modes are all 

labelled ‘4’ in Figure III.11. 

A summary of the metal dependent modes of MgPc, AlPcCl and GaPcCl is presented in 

Table III.9. The chlorine dependent modes of the metal phthalocyanine chlorides have also 

been included. These modes have been correlated based on the vector diagrams produced 

by DFT calculations. The modes which show the smallest frequency differences between 

the molecules mostly involve motion of the phthalocyanine ring, with a minimal 

contribution of the metal centre. The more characteristic modes are the ones whose 

energies change significantly from molecule to molecule. These modes contain a 

significant motion of the metal and thereby show the largest energy shifts. The IPB mode 

of MgPc with a frequency of 428 cm-1 corresponds to the ‘purest’ Mg IPB vibration, and 

this is mimicked by the AlPcCl and GaPcCl modes at 391 cm-1 and 293 cm-1 respectively. 

The same can be said of the out-of-plane modes mentioned above. The other modes which 

change quite significantly contain more extensive motion of the porphyrin ring, as well as 

motion of the metals. 

The chlorine based modes show the effect of having two metals in the same group, 

differing only by their size and mass. As expected, the Ga based vibrations are consistently 

lower in energy than the Al counterparts due to the Ga atom having a greater mass. 
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Table III.9: Metal related vibrational frequencies (in cm-1) for MgPc, AlPcCl and GaPcCl 
as predicted by DFT calculations. Values are reported in wavenumbers and are unscaled. 
The values reported here are represented by the stars in Figure III.11. 

 
MgPc AlPcCl GaPcCl 

In-plane 

Bend 

122.43 124.72 121.70 
290.89 301.08 245.11 

- 311.82 257.05 

427.77 391.41 293.07 

514.87 527.84 309.30 

Out-of-plane 

Bend 

31.81 40.98 36.46 
150.63 172.26 147.14 

263.95 293.97 280.93 

354.20 359.43 352.41 

Stretch 182.16 167.52 131.83 

Chlorine 

- 57.34 53.86 
- 93.88 90.58 
- 135.09 132.40 

- 483.16 363.46 

 

III.5.II.b: Raman Spectroscopy 

The Raman spectroscopy of MgPc (as well as a number of other metal phthalocyanines) on 

silicon substrates has been studied by Szybowicz et al26. A 488 nm excitation source was 

used for the study, significantly higher in energy than the source used in the current work. 

The authors reported an A1g mode at 592 cm-1 corresponding to a benzene ring 

deformation, a B1g mode at 684 cm-1 coming from the macrocycle breathing, and a B1g 

mode associated a with pyrrole stretch at 1499 cm-1. These bands correspond to the bands 

at 584, 681 and 1501 cm-1 in the current work. The labelling of the band at 684 cm-1 

appears incorrect, as the DFT results show no B1g modes in this region (the band at 681 

cm-1 in the present work is A1g symmetry). Szybowicz’s descriptions of the modes are 

reasonably accurate. The two lower frequency modes both involve deformations of the 

benzene rings and macrocycle breathing. The high frequency mode description is in line 

with what DFT predicts. 

Aroca and Jennings have carried out an analysis of the Raman active modes of many 

phthalocyanine systems grown as thin solid films on various substrates. Included in their 
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studies are MgPc25, 27, AlPcCl28,29 and GaPcCl28. The Raman spectrum of a thin film of 

MgPc25 grown on a Ag coated Sn sphere surface was recorded up to 1600 cm-1 with a 

647.1 nm excitation wavelength. Only fundamental vibrational frequencies were observed, 

and all observed bands had A1g symmetry. A comparison of Aroca’s work with the KBr 

spectra recorded in the present study and the scaled DFT values show they match up very 

well, typically to within 3 cm-1 of experimental values. The labelling of the modes by 

Aroca was not entirely correct, with some modes being of B1g or B2g symmetry. The 

intensity of the bands is almost exactly the same as those recorded with the 660 nm line in 

the current work, which is to be expected given the molecule absorbs strongly in the red 

region of the spectrum30,5. 

The Raman spectra of AlPcCl grown on quartz28 and NaCl substrates29 have been recorded 

by Jennings and Aroca respectively. In both sets of experiments an excitation wavelength 

of 647.1 nm was used. No broad fluorescence band was observed below 1600 cm-1, as was 

the case with the 660 nm excitation in this work. The spectra recorded by Aroca and 

Jennings show a very good agreement with the most intense bands in the present work. The 

bands are accurate typically to within about 3 cm-1, although several bands above 1000 cm-

1 are shifted by as much as 20 cm-1. Band intensities for all three spectra are almost 

identical, although the resolution of the current work is slightly better, allowing weaker 

intensity peaks to be analysed more comprehensively. The mode assignments of the 

AlPcCl molecule presented in Aroca’s work has been compared to the vector diagrams 

obtained from the present DFT calculations. In most instances the assignments are 

accurate, but as was the case with Napier’s IR assignments20, the internal modes show 

more complexity than can reasonably be expected to be described without the insights 

given by DFT calculations. 

The Raman spectrum of GaPcCl has been published by Jennings28. Due to the 647.1 nm 

excitation, this spectrum most closely resembles the 660 nm spectrum recorded in KBr. 

Deviations from the KBr spectra in this work are often < 5 cm-1, but can be as much as 10 

cm-1. Band intensities are in good agreement with the KBr spectra. Only the strongest 

bands have been labelled, with many of the modes assigned A1 symmetry, and a few mode 

descriptions have been performed. The mode assignments and the mode descriptions all 

appear to be correct.  
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Davydov splitting has previously been observed in the Raman spectra of AlPcCl29. It has 

not been identified for AlPcCl or MgPc in the current work, but it may be present in the 

Raman spectra of GaPcCl. The spectrum recorded with the 660 nm excitation does show a 

broad fluorescence background, as described earlier, but when subtracted out the spectrum 

is relatively simple, with only a few strong bands. The spectrum recorded with the 532 nm 

laser shows a splitting of several of the high frequency bands. The extra bands may be due 

to Davydov splitting caused by the presence of aggregates in the KBr disc. In a crystalline 

system with ݉ molecules occupying a unit cell, the number of Davydov components, ܰ, is 

given by 

,ߤ)ܰ (ߥ = 


∑ ߯ఓ(ܴ)߯ఔ(ܴ)ோ     Eq. III.1 

where ℎ is the order of the group factor, ߯ఓ(ܴ) and ߯ఔ(ܴ) are the characters of the 

irreducible representations ߤ and ߥ under the operation of the R class of the factor and site 

group respectively31. It is also strange that the 660 nm excitation gives simpler spectra than 

the 532 nm excitation. It would be expected that resonance Raman effects should occur 

with 660 nm excitation owing to the strong absorption of GaPcCl in this region of the 

spectrum. It has also been shown recently by Zawadzka8 that this molecule has no 

absorption in either the 1064 or 534 nm regions. Given that the 532 nm Raman spectrum is 

clearly more complicated, another effect must be causing extra bands to selectively arise 

with this excitation wavelength. 

A comparison of the Raman scattering spectra of MgPc, AlPcCl and GaPcCl recorded in 

room temperature KBr discs with a 532 nm excitation wavelength and the frequencies 

predicted by DFT calculations is shown in Figure III.12. For the most part all three spectra 

appear to be quite similar. The number of intense bands present in these spectra and their 

frequencies and intensities match up rather well.  
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Figure III.12: Raman scattering of MgPc, AlPcCl and GaPcCl recorded in KBr discs with 
a 532 nm excitation line and predicted frequencies from scaled DFT results. 

 

The most obvious mismatch between the DFT results and the experimental spectra is with 

the highest intensity bands in each spectrum (Table III.9). For MgPc a difference of almost 

12 cm-1 exists between experiment and theory. This is even worse for AlPcCl and GaPcCl, 

where a shift of 56 cm-1 is observed. This mismatch has been reported before in other 

porphyrin systems, namely by Murray6 for ZnPc and H2Pc and Crepin7 for H2TAP. Both of 

these works noted that this particular Raman mode is strongly associated with the process 

of stimulated emission in these molecules. It has also been noted by Szybowicz26 that this 

mode is very sensitive to the choice of the metal centre. The mode shifts from 1499 cm-1 in 

MgPc to 1544 cm-1 in CoPc. The experimentally measured frequency changes very little 

from MgPc to AlPcCl in the current work, shifting by less than 4 cm-1. It can be seen from 

Table III.A1 that the choice of excitation wavelength also affects this mode strongly, with 
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differences of 4.5 cm-1, -14.7 cm-1  and 10.2 cm-1 observed upon changing the source from 

532 nm to 660 nm for MgPc, AlPcCl and GaPcCl respectively†. 

Aroca and Jennings’ results also show mismatches with DFT for the intense bands 

responsible for stimulated emission, indicating that the shift is not dependent on the 

substrate used in the experiment. The agreement with KBr Raman results is shown for 

MgPc25,20, ZnPc25, AlPcCl28,29 and GaPcCl28 in Table III.10. 

 

Table III.10: Frequencies of the Raman modes which correspond to the stimulated 
emission band for various phthalocyanine systems. Experimental values taken for H2Pc 
and ZnPc come from the work of Murray6. Experimental values for MgPc, AlPcCl and 
GaPcCl were obtained with the 532 nm excitation wavelength. All values are reported in 
wavenumbers (cm-1). 

 DFT DFT x 0.98 Exp Shift 
H2Pc 1582.9 1551.3 1539.5 11.8 

MgPc 1548.4 1517.4 1505.7 11.7 
ZnPc 1557.2 1526.1 1506.8 19.3 

AlPcCl 1597.0 1565.0 1509.2 55.8 
GaPcCl 1583.5 1551.9 1532.9 19.0 

 

The most intense bands in the Raman spectra of MgPc (M-PcCl) are the B1g (B2) modes. 

These modes correspond mostly to in-plane motions of the molecule, usually a C-H stretch 

coupled with a deformation of the isoindole units or the macrocycle. The A1g (A1) and B2g 

(B1) modes show medium intensity in most cases and correspond to fully symmetric or 

partially symmetric deformations on the isoindole rings or the macrocycle respectively. 

The Eg (E) modes are OPBs and are very weak and difficult to identify experimentally in 

most cases. The M-PcCl molecules, lacking a centre of inversion, also have ‘in-plane’ E 

modes, but these are strongly IR active and only very weakly Raman active. This effect 

will be investigated in more detail in the upcoming section. 

 

 

                                                
† The mismatch of the Raman spectra recorded with the two excitation wavelengths points to a calibration 
issue. This has been discussed in greater detail in Chapter II. 
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III.5.III: Symmetry Effects on Vibrational Spectra 

The two geometric forms (planar/domed) of M-TAPs and M-Pcs have been examined in 

relation to their structures in Section III.5.I. This section was primarily concerned with 

how the metal centre affects the planarity of the molecule and how much of a doming 

effect it exhibits on the porphyrin ring. This section is concerned with how the vibrational 

spectra of the M-TAPs and M-Pcs are affected by their symmetry. Non-planar M-TAPs 

and M-Pcs fall into the C4v point group, which is a subgroup of D4h, the point group 

pertaining to the planar systems. This means that the symmetry labels of the vibrational 

modes can be correlated as shown in Table III.11. Each symmetry block in C4v corresponds 

to two in D4h; a symmetric and an asymmetric set. The symmetry or asymmetry is in 

relation to the centre of inversion in the molecule, something the non-planar molecules are 

lacking. The centre of inversion in the planar porphyrins means the rule of mutual 

exclusion applies to the vibrational modes of the molecule i.e. IR active modes cannot be 

Raman active and vice versa. The C4v systems do not adhere to this rule, which means the 

vibrational spectra of the D4h and C4v M-TAPs and M-Pcs should show subtle differences. 

III.5.III.a: Vibrational Spectra of the M-TAPs 

M-TAP has 33 atoms resulting in 93 (3N-6) fundamental vibrational modes. These modes 

can be split up into symmetry blocks by applying the reduction formula to the reducible 

representations of the vibrational modes. In D4h symmetry the vibrational modes of M-

TAP are A1u(3), A2u(5), B1u(4), B2u(4) Eu(32), A1g(8), A2g(7), B1g(8), B2g(8) and Eg(14). In 

C4v symmetry these are A1(13), A2(10), B1(12), B2(12), and E(46). The correlations 

between the two sets of symmetry labels are presented in Table III.11. 

Owing to the almost identical structures of the M-TAPs, the vibrational spectra are 

expected to exhibit strong similarities.  This is evident in Figure III.13, which shows the 

calculated IR spectra of five M-TAPs. The most extreme shifts are expected to originate 

from the metal dependent vibrational modes. A pronounced shift on the band at ~1000 cm-

1 in Be and Mg TAPs to ~970 cm-1 is observed for the Ca, Sr and Ba TAPs. The mode 

responsible for this shift is an M-N stretch and is clearly affected by both the mass of the 

metal ion and the symmetry of the molecule. The pair of weak bands located between 725 

and 775 cm-1 in each molecule are both weakly metal dependent, and show a small shift as 

the mass of the metal changes. 
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The remainder of the peaks in the region shown are associated with deformations of the 

pyrrole rings and C-H bending modes. These particular modes are not strongly dependent 

on the choice of metal centre or the planarity of the molecules. The weak vibrational 

modes labelled 0 – 3 on the C4v spectra are not present in the D4h spectra due to the ‘rule of 

mutual exclusion’. These bands arise out of the lower symmetry of the Ca, Sr and Ba TAPs 

compared to Be and Mg TAP, which contain a centre of inversion. 

 

Table III.11: Correlations of the symmetry blocks of D4h and C4v M-TAP and M-Pc 
molecules. Each symmetry block in C4v corresponds to two in D4h symmetry. 

 
D4h C4v 

 Sym M-TAP M-Pc M-TAP M-Pc Sym 

A1G 8 14 
13 22 A1 

A2U 5 8 

A2G 7 13 
10 19 A2 

A1U 3 6 

B2G 8 14 
12 21 B1 

B1U 4 7 

B1G 8 14 
12 21 B2 

B2U 4 7 

EG 14 26 
46 82 E 

EU 32 56 

Total 93 165 93 165 Total 
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Figure III.13: Infrared absorption spectra of the s-block M-TAPs predicted by DFT 
calculations. The spectra shown were obtained within the harmonic approximation and 
frequencies are unscaled. 

 

Figure III.14 shows a lower frequency region of the same spectra presented in Figure 

III.13. This is the region where most of the metal based vibrational modes are predicted to 

arise.  It can be seen that the similarity of the spectra in Figure III.13 is lost in this region 

of the spectrum as the vibrational modes are highly sensitive to both the metal in the centre 

of the porphyrin cavity and the symmetry of the molecule. The peaks labelled 0 – 3 on the 

C4v spectra arise due to symmetry arguments from group theory, similar to Figure III.13. 

The intense bands between 0 – 1 and 2 – 3 are the strongest metal dependent modes in this 

region and a clear trend is observed; as the mass of the metal increases, the vibrational 

frequency of the metal dependent modes decrease. This trend appears to continue for the 

D4h molecules, with the bands at 387 and 404 cm-1 of MgTAP and BeTAP following the 

same pattern as the bands located in between 2 – 3 on the C4v spectra. This trend breaks 

down, however, for MgTAP where the band at 225 cm-1 (highlighted with an asterisk) does 
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not follow the trend of the metal based modes between bands 0 and 1. Based on this trend, 

the band would be expected to appear around 280 cm-1. The corresponding mode in 

BeTAP does follow the pattern, with the band arising at a frequency of 343 cm-1. 

 

Figure III.14: Low frequency region of the IR spectra of the s-block M-TAPs calculated 
by DFT. The vibrational modes here shift around significantly depending on the metal at 
the centre of the cavity. The symmetry of the molecules also seems to have an effect on the 
spectra. All frequencies shown are unscaled. 

 

An analysis of the computed vibrational spectra of MgTAP (D4h) and CaTAP (C4v) has 

been performed to investigate how the “rule of mutual exclusion” affects the vibration 

spectra of structurally related large molecules. These two metals were chosen as they are 

the most closely related which potentially show the change in molecular geometry. 

Experimental IR and Raman spectra exist for MgTAP32, but not for CaTAP. Good 

agreement between theory and experiment is observed for MgTAP, as is the case with 

MgPc. A region of the predicted IR and Raman spectra of MgTAP and CaTAP are 

presented in Figure III.15. The symmetry labels of each vibrational mode are shown to 
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help identify which bands correlate to one another. Overall a good agreement exists 

between the two spectra, but a couple of bands which shift by as much as 20 cm-1, and a 

few intensity mismatches are observed. The result of most interest in this comparison is the 

medium intensity A1 mode at 1403 cm-1 in the CaTAP spectrum. The Raman band 

correlates to the A1g mode at 1426 cm-1 in MgTAP, but no corresponding bands occur in 

the infrared spectrum. Another IR and Raman active A1 mode 1451 cm-1 in CaTAP 

corresponding to a Raman active A1g peak at 1449 cm-1 is present, but no complementary 

IR peak in MgTAP is observed. The E modes of CaTAP have both IR and Raman intensity 

but only correlate to the IR active Eu modes in MgTAP. The high energy of these modes 

indicates that they are not metal dependent vibrational modes; they mostly occur at 

energies below 500 cm-1, as shown in Figure III.14. The vector diagram and internal mode 

analysis confirms that this is the case. As the metal is the only other difference in their 

structure apart from the symmetry, this effect can be attributed to being caused purely by 

the symmetry of the molecule, and specifically the loss of the centre of inversion in the 

CaTAP molecule. This phenomenon is evident throughout the whole spectrum and the 

most pronounced examples of the mutual exclusion effect have been highlighted in bold in 

Table III.A2. This effect occurs on bands carrying significant intensity for the M-TAPs. 

Unfortunately, the effect is dampened for the Pcs, but has been observed both with DFT 

calculations and more significantly, experimentally. The upcoming section will deal with 

the mutual exclusion effect on the experimental spectra of AlPcCl and MgPc. 
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Figure III.15: IR and Raman spectra of the D4h molecule MgTAP and C4v molecule 
CaTAP. Each vibrational band has been labelled with its symmetry. This allows for easy 
identification of the correlations of modes between the molecules. ‘Extra’ peaks are 
observed in the CaTAP spectra, specifically IR active A1 modes and Raman active E 
modes. The locations of the bands which gain the most intensity from the change in 
symmetry are highlighted in bold in Table III.A2. 

 

III.5.III.b: Symmetry Influence on the Vibrational Spectra of the M-Pcs 

M-Pcs with 57 atoms have 165 fundamental vibrational modes. The mode can be 

categorised as A1u(6), A2u(8), B1u(7), B2u(7) Eu(56), A1g(14), A2g(13), B1g(14), B2g(14) and 

Eg(26) in D4h symmetry. The C4v M-Pcs also have 165 vibrational modes, categorized as 

A1(22), A2(19), B1(21), B2(21), and E(82). The relationship between the irreducible 

representations of the two systems is presented in Table III.11. From this it can be clearly 

seen that the A1 modes in C4v symmetry split into the symmetric A1g and asymmetric A2u 

representations as a centre of inversion is introduced when the molecule becomes planar 

(D4h). In the same manner, the A2 modes split into A2g and A1u, the B1 into B1u and B2g, the 

B2 into B1g and B2u, and the E into Eg,u.  
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The Cl atom in the M-PcCls gives them 168 normal modes, categorised as A1(23), A2(19), 

B1(21), B2(21), and E(84) for these C4v molecules. The extra modes pertain to an Al-Cl 

stretch (A1 symmetry) a degenerate pair of N-Al-Cl bends coupled with a twisting of the 

isoindole rings (E symmetry). A comparison of the vibrational frequencies, IR absorption 

intensities and Raman activities of AlPcCl and MgPc predicted by DFT is presented in 

Table III.A3. Frequencies are sorted by the symmetry blocks of AlPcCl and compared with 

the frequencies of MgPc. Upon lowering the symmetry from D4h to C4v the centre of 

inversion is lost, meaning the rule of mutual exclusion no longer applies to the vibrational 

modes. Modes which were exclusively IR or Raman active in D4h symmetry can be both IR 

and Raman active in C4v symmetry. It can be seen in Table III.A3 that the A1g and A2u 

modes of MgPc only show Raman and IR activity respectively, as predicted by the D4h 

character tables. Conversely the A1 modes of AlPcCl are both IR and Raman active. The 

Raman active B1 modes of AlPcCl correspond to the Raman active B2g modes and 

optically inactive B1u modes in MgPc. A similar trend is observed with the B2 modes of 

AlPcCl correlating to the Raman active B1g and inactive B2u modes of MgPc. The optically 

inactive B1u and B2u modes of MgPc show Raman activity in AlPcCl, but it is very weak. 

The same result is observed with the Eg and Eu modes of MgPc gaining weak IR and 

Raman activity respectively as the E modes of AlPcCl.  

While many examples of bands which are only active in the AlPcCl molecule are 

observed, they are generally very weak, especially in comparison to the more intense bands 

in the spectrum. It is possible to use DFT results to identify these modes (highlighted in 

bold in Table III.A3), but several modes are strong enough to be observed experimentally. 

The spectra presented in Figure III.16 shows the mutual exclusion effect on the vibrational 

spectra of MgPc and AlPcCl. The Raman spectrum of MgPc between 770 and 850 cm-1 is 

shown in the left panel of Figure III.16 as the blue trace. Two bands are evident in the 

spectrum; a B1g mode located at 780 cm-1 and an A1g mode at 825 cm-1. These peaks do not 

match up with any of the peaks in the IR spectrum shown as the red trace in the left panel. 

The corresponding regions are shown for AlPcCl in the right panel of Figure III.16. The A1 

peak at 833.5 cm-1 in the Raman spectrum (blue trace) clearly has a corresponding peak in 

the IR spectrum (red trace). A slight shift of 1 cm-1 (due to the different host environments) 

between the experimental peaks is observed, but the DFT spectra (black trace) shows that 

they are the same vibrational mode, having identical frequencies. Several more instances of 

this are observed in the region shown, with the bands at 777 and 785 cm-1 clearly showing 
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the relationship. The IR band at 802 cm-1 (E symmetry) does not appear to have a 

complementary Raman active mode, but the DFT results show a weakly Raman active 

mode in the correct wavenumber region. 

 

Figure III.16: The Infrared and Raman spectra of MgPc and AlPcCl in the 770 to 850   
cm-1 region. Infrared spectra were recorded in N2 and Ar matrices for MgPc and AlPcCl 
respectively. Raman spectra were recorded in KBr discs. The vibrational mode at 830 cm-1 
in the AlPcCl spectra is both IR and Raman active. The equivalent Raman active mode of 
MgPc is located at 825 cm-1. The corresponding MgPc mode does not have any IR 
intensity. 

 

A similar trend is observed over the entire spectral region for these molecules, where 

several AlPcCl modes ‘gain’ IR or Raman activity under the reduced symmetry of C4v. 

These modes have been highlighted in Table III.A3. 

 

 

780 800 820 840
Wavenumber (cm-1)

In
te

ns
ity

DFT
IR
Raman

MgPc

Raman Shift (cm-1)

780 800 820 840

AlPcCl

83
3.

5
(c

m
-1

)



  Chapter III: Vibrational Analysis of Metal Tetraazaporphyrins and Metal Phthalocyanines 

 129  
 

III.6: Conclusions 
The structures of a number of M-TAPs and M-Pcs have been investigated with respect to 

their metal centres. A strong symmetry dependence is evident on the choice of the metal 

and dependent on whether or not it can fit into the macrocycle cavity. Where available, the 

structures predicted by DFT calculations agreed excellently with experimental data, giving 

confidence in the calculations on systems where no such data exists. The degree of non-

planarity of the M-TAPs and M-Pcs was investigated with respect to changing the metal 

centre in the molecule. It was observed that the s-block metals lie the highest above the N4 

plane owing to their large atomic radii. The d-10 metals have smaller atomic radii than 

their same row s-block elements (the same principal quantum number), due to d-block 

contraction. This leads to the d-10 metals sitting lower above the N4 plane than the s-block 

metals. The Al ion fits comfortably into the macrocycle cavity, as shown with the AlPc+ 

molecular cation. In contrast, the neutral AlPcCl molecule has the Al atom lying above the 

N4 plane, meaning the Cl- ion has the effect of ‘pulling’ the Al out of the porphyrin cavity. 

The large (ns)2 metal atoms also cause a doming effect on the porphyrin ring. The extent 

on this doming is dependent on the height of the metal above the ring. Generally the higher 

the metal lies above the ring the more domed the rest of the molecule is. 

The vibrational spectra of the M-TAPs and M-Pcs have been calculated using DFT and 

results have shown good agreement with both present experimental and literature results. 

The infrared spectroscopy of MgPc, AlPcCl and GaPcCl has been recorded in inert gas 

hosts at cryogenic temperatures. These spectra show highly resolved bands in the 400 cm-1 

to 1700 cm-1 region. Spectra have also been recorded in room temperature KBr discs, 

which show a broadening of the peaks when compared to their matrix isolated 

counterparts. This has been attributed to the presence of aggregates in the KBr samples 

compared to the highly isolated molecules present in the matrix samples. Scaled DFT 

calculations were compared to experimental results and were shown to agree very well. A 

vibrational analysis of the IR active modes of MgPc (AlPcCl, GaPcCl) was performed and 

the spectra were found to consist of mostly A2u (A1) and Eu (E) symmetry, pertaining to 

OPBs and IPBs of the molecules respectively.  

The Raman spectra of MgPc, AlPcCl  and GaPcCl were recorded in room temperature KBr 

discs using two excitation wavelengths; a 532 nm and a 660 nm CW laser. Very slight 

deviations in the positions of the bands recorded with the different excitations was noted. 
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The intensity of certain Raman bands are enhanced due to resonance Raman effects caused 

by different excitation wavelengths. Scaled DFT results compared well with the 

experimental spectra, although the intensity of the modes below 1000 cm-1 was 

underestimated. An analysis of the Raman spectra shows that the Raman active modes 

which carry the most intensity are all IP vibrations, usually involving distortion of either 

the macrocycle or the isoindole units. 

The effect of symmetry on the vibrational spectra of the M-TAPs and M-Pcs was studied. 

The IR spectra of the s-block M-TAPs were shown to have a somewhat different structure 

depending on whether the symmetry of the molecule was D4h or C4v. The IR and Raman 

spectra of MgTAP and CaTAP were investigated further and it was observed that many 

modes which appear in the CaTAP that do not correspond to anything in the MgTAP 

spectrum. This effect is associated with the rule of mutual exclusion and has to do with the 

loss of the centre inversion in CaTAP. This mutual exclusion effect was examined in the 

experimental spectra of AlPcCl and MgPc in which it was observed that certain vibrational 

modes which ‘gain’ enough intensity upon losing the centre of inversion to become active 

in C4v symmetry where they were inactive in D4h symmetry. 
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III.8: Appendix 

 

Figure III.A1: Structures of the metal phthalocyanine chlorides (M= Al, Ga) predicted by 
DFT calculations. 
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Table III.A1: Raman frequencies (in cm-1) of MgPc, AlPcCl and GaPcCl recorded in room temperature KBr discs with 523 and 660 nm CW 
laser excitation and predicted by DFT calculations. Scaled DFT results show excellent agreement with experimental values in most instances. 

MgPc AlPcCl GaPcCl 

532 

nm 

660 

nm 

DFT x 

0.98 

DFT 

Raw 
Sym 532 

nm 

660 

nm 

DFT x 

0.98 

DFT 

Raw 
Sym 532 

nm 

660 

nm 

DFT x 

0.98 

DFT 

Raw 
Sym 

- - 21.2 21.6 B2U 22.5 - 19.0 19.4 B2 - - 20.2 20.7 B2 
- - 31.2 31.8 A2U 41.2 - 40.2 41.0 A1 - - 35.7 36.5 A1 
- - 62.6 63.9 B1U 45.2 - 44.8 45.7 B1 - - 51.0 52.0 B1 
- - 58.4 59.6 EG - - 56.2 57.3 E - - 52.8 53.9 E 
- - - - - 91.9 - 92.0 93.9 E 90.9 - 88.8 90.6 E 

111.2 - 109.0 111.2 B2G 100.9 - 114.8 117.1 B1 114.7 - 113.7 116.0 B1 
- - 135.1 137.8 B2U 131.1 137.4 130.7 133.4 B2 124.7 - 129.2 131.8 B2 

127.7 - 123.6 126.1 EG   132.4 135.1 E 146.1 135.7 129.7 132.4 E 
178.1 172.8 178.5 182.2 B1G 166.2 180.7 164.2 167.5 B2 175.0 165.0 158.3 161.6 B2 
224.2 221.8 221.0 225.5 B2G - - 213.9 218.3 B1 217.0 221.0 215.3 219.6 B1 
232.8 234.9 231.9 236.6 EG - - 250.2 255.3 E - - 240.2 245.1 E 

- - 240.2 245.1 B2U 249.2 - 250.0 255.1 B1 254.0 237.4 244.0 249.0 B1 
251.3 246.2 249.7 254.8 A1G 250.7 250.1 250.5 255.6 A1 254.0 242.2 249.1 254.2 A1 

- -   - 297.0 - 288.1 294.0 A1 290.6 284.8 275.3 280.9 A1 
- - 283.9 289.7 EG - 310.9 305.6 311.8 E - - 303.1 309.3 E 
- - 347.1 354.2 A2U 361.5 - 352.2 359.4 A1 - 347.3 345.4 352.4 A1 

485.7 480.0 479.5 489.3 B2G 492.8 484.2 485.7 495.6 B1 494.3 483.9 483.3 493.1 B1 
- - - - - 469.7 - 473.5 483.2 A1 - - 356.2 363.5 A1 
- - 523.6 534.3 B1U 521.9 - 516.4 526.9 B1 - - 517.8 528.4 B1 

557.5 554.9 558.3 569.7 B1G 564.8 - 555.8 567.1 B2 - - 553.4 564.7 B2 
589.5 584.3 586.0 598.0 A1G 594.4 590.7 589.4 601.4 A1 599.4 590.2 588.7 600.7 A1 
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690.3 681.3 676.2 690.0 A1G 694.5 680.5 681.4 695.3 A1 683.5 674.4 678.0 691.9 A1 
- - 687.3 701.3 B2G - - 691.1 705.3 B1 692.2 691.7 689.8 703.9 B1 
- - 700.7 715.0 B2U - - 701.7 716.0 B2 702.2 701.4 698.8 713.1 B2 
- - 727.0 741.8 EG 694.5 721.3 728.2 743.1 E - - 724.4 739.2 E 

743.5 745.9 748.9 764.2 B1G 750.6 751.5 754.7 770.1 B2 758.6 747.8 753.0 768.4 B2 
776.6 776.1 781.4 797.4 B1G 784.2 784.2 777.6 793.4 B2 784.5 773.7 776.9 792.7 B2 
790.8 792.4 793.1 809.3 EG 790.9 - 778.0 793.9 E - - 776.2 792.0 E 

- - 793.1 809.3 EG 808.4 - 789.4 805.5 E - - 788.3 804.4 E 
829.9 824.1 829.9 846.9 A1G 835.5 832.8 833.5 850.5 A1 838.4 826.9 833.6 850.6 A1 

872.88 - 880.4 898.3 EG - - 878.7 896.6 E - - 879.1 897.1 E 
954.5 946.4 941.1 960.3 B2G 956.3 957.3 960.0 979.6 B1 960.8 951.2 954.8 974.2 B1 
970.8 - 959.0 978.6 EG - - 960.3 979.9 E - - 960.1 979.7 E 

1016.1 1006.1 1009.2 1029.8 B1G - - 1007.9 1028.4 B2 1013.6 1002.3 1008.4 1029.0 B2 
1016.1 - 1009.7 1030.3 A1G - 1005.0 1008.5 1029.1 A1 1013.6 1002.3 1009.0 1029.6 A1 
1034.3 1033.3 1031.9 1053.0 B2G 1040.6 1034.7 1042.9 1064.2 B1 1046.6 1039.8 1042.2 1063.5 B1 
1114.8 1107.8 1108.3 1130.9 B2G 1096.0 1105.5 1106.3 1128.9 B1 1113.5 1103.8 1107.9 1130.5 B1 

- - 1115.1 1137.9 EU 1120.2 1132.8 1120.1 1143.0 E - - 1118.8 1141.6 E 
1127.6 1121.5 1122.3 1145.2 A1G - - 1132.5 1155.6 A1 1125.0 1131.4 1130.1 1153.1 A1 
1146.4 1139.4 1141.6 1164.9 B1G 1151.3 1141.2 1144.0 1167.3 B2 1152.5 1140.4 1143.7 1167.1 B2 
1170.9 1157.0 1162.4 1186.1 A1G 1179.3 1159.6 1166.2 1190.0 A1 1171.6 1162.6 1164.9 1188.7 A1 
1196.7 1179.2 1180.7 1204.8 B1G 1202.6 1188.6 1182.5 1206.6 B2 1184.6 1181.4 1181.7 1205.9 B2 
1122.7 1198.2 1205.7 1230.4 B2G 1225.6 1212.2 1199.3 1223.7 B1 1211.1 1208.0 1202.2 1226.7 B1 
1309.1 1302.6 1304.1 1330.7 B2G 1314.0 1302.7 1307.0 1333.7 B2 - 1302.1 1303.9 1330.5 B2 
1309.1 1302.6 1305.5 1332.1 B1G - - 1307.8 1334.5 B1 - 1302.1 1306.9 1333.5 B1 
1341.9 1336.4 1336.5 1363.8 A1G 1346.4 1339.6 1340.4 1367.8 A1 1346.0 1335.2 1339.1 1366.4 A1 
1341.9 1336.4 1341.6 1369.0 B1G - - 1347.6 1375.1 B2 1346.0 1335.2 1345.5 1373.0 B2 
1372.6 - 1394.2 1422.7 A1G - - 1401.3 1429.9 A1 1412.0 1404.2 1396.8 1425.4 A1 
1414.1 1416.0 1417.7 1446.7 B2G - - 1457.0 1486.8 B1 1449.7 1439.4 1449.5 1479.1 B1 

- - 1456.6 1486.3 EU 1419.3 1428.4 1427.6 1456.7 E - - 1422.1 1451.1 E 
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1424.3 1422.4 1424.1 1453.1 A1G 1440.4 1441.7 1440.1 1469.5 A1 1437.8 1427.9 1435.8 1465.1 A1 
1451.6 1445.4 1448.4 1477.9 B1G 1452.8 1448.6 1456.2 1485.9 B2 1457.8 1446.6 1453.6 1483.3 B2 
1478.8 1481.8 1479.3 1509.4 B2G 1481.5 1499.9 1485.9 1516.3 B1 1482.1 1490.7 1483.5 1513.7 B1 
1484.6 - 1494.0 1524.5 A1G 1562.8 1532.7 1534.7 1566.0 A1 1495.4 1506.2 1521.4 1552.5 A1 
1505.9 1501.4 1517.4 1548.4 B1G 1509.2 1523.9 1565.0 1597.0 B2 - - 1551.9 1583.5 B2 
1589.5 1570.5 1581.3 1613.6 B1G 1594.0 1590.4 1589.8 1622.2 B2 1532.9 1522.7 1586.4 1618.8 B2 
1592.1 - 1584.2 1616.5 A1G 1594.0 1593.2 1591.8 1624.3 A1 1596.8 1609.1 1589.0 1621.4 A1 
1612.6 1606.3 1609.3 1642.2 B2G 1615.6 1608.6 1611.0 1643.9 B1 1613.9 1631.1 1610.6 1643.5 B1 
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Table III.A2: DFT results of the vibrational frequencies (in cm-1) of CaTAP and MgTAP. 
Vibrational frequencies have been correlated based on the information in Table III.10. 
CaTAP modes which gain significant intensity/activity when compared to their inactive 
counterparts in MgTAP have been highlighted in bold. 

C4v CaTAP D4h MgTAP 

Sym 
Frequency 

(cm-1) 

IR 

Intensity 

Intensity 

Raman 

Activity 
Sym 

Frequency 

(cm-1) 

IR 

Intensity 

Raman 

Activity 

A1 95.21 0.74 2.84 A2U 50.51 0.07 0 
A1 254.10 42.97 6.86 A2U 203.91 46.69 0 
A1 347.49 9.90 33.94 A2U 367.16 4.05 0 
A1 407.37 2.91 64.60 A1G 391.94 0 106.26 
A1 697.56 2.58 8.46 A1G 701.53 0 11.95 
A1 737.49 36.72 1.50 A2U 736.39 41.42 0 
A1 826.13 152.88 5.05 A2U 828.27 175.44 0 
A1 1001.18 8.81 152.04 A1G 1021.71 0 152.32 
A1 1073.53 5.84 2.23 A1G 1080.78 0 0.13 
A1 1403.05 29.69 28.57 A1G 1425.81 0 43.24 
A1 1450.71 2.06 96.33 A1G 1449.06 0 106.58 
A1 1563.97 0.21 211.14 A1G 1561.32 0 200.93 
A1 3257.48 0.10 953.32 A1G 3259.78 0 1011.52 
A2 313.85 0 0 A1U 318.62 0 0 
A2 464.25 0 0 A2G 471.77 0 0 
A2 721.24 0 0 A1U 725.38 0 0 
A2 799.31 0 0 A2G 796.34 0 0 
A2 937.81 0 0 A1U 941.04 0 0 
A2 996.69 0 0 A2G 1004.30 0 0 
A2 1207.59 0 0 A2G 1219.43 0 0 
A2 1339.75 0 0 A2G 1339.95 0 0 
A2 1467.81 0 0 A2G 1468.20 0 0 
A2 3238.65 0 0 A2G 3241.73 0 0 
B1 92.08 0 2.43 B1U 99.02 0 0 
B1 183.92 0 12.27 B2G 217.85 0 13.62 
B1 440.84 0 5.37 B2G 435.05 0 6.34 
B1 500.51 0 2.39 B1U 504.08 0 0 
B1 761.77 0 8.89 B1U 764.54 0 0 
B1 813.52 0 12.61 B2G 818.39 0 12.98 
B1 938.30 0 0.10 B1U 941.51 0 0 
B1 1036.24 0 19.15 B2G 1049.96 0 19.84 
B1 1192.23 0 12.36 B2G 1200.23 0 15.36 
B1 1317.58 0 2.02 B2G 1324.00 0 3.84 
B1 1459.90 0 25.22 B2G 1468.23 0 25.44 
B1 3238.91 0 490.41 B2G 3241.96 0 508.00 
B2 55.32 0 1.12 B2U 60.55 0 0 
B2 162.83 0 14.10 B2U 174.96 0 0 
B2 270.90 0 11.28 B1G 264.58 0 24.55 
B2 675.11 0 0.67 B2U 681.00 0 0 
B2 757.38 0 110.63 B1G 761.85 0 103.77 
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B2 819.80 0 6.80 B2U 822.39 0 0 
B2 1002.84 0 115.09 B1G 1021.40 0 148.57 
B2 1075.56 0 91.62 B1G 1076.87 0 124.94 
B2 1310.10 0 935.54 B1G 1330.48 0 1005.17 
B2 1519.05 0 2379.72 B1G 1517.73 0 2403.49 
B2 1561.50 0 196.83 B1G 1555.84 0 298.36 
B2 3257.26 0 257.21 B1G 3259.60 0 287.41 
E 117.26 1.78 1.39 EG 120.77 0 1.14 
E 212.51 0.21 0.37 EG 223.00 0 0.26 
E 276.80 1.55 0.41 EU 342.40 1.51 0 
E 370.64 27.52 0.09 EU 388.28 32.26 0 
E 461.52 0.42 0.02 EG 462.19 0 0.66 
E 409.48 5.58 0.46 EU 531.17 0.08 0 
E 692.78 3.55 2.98 EG 697.16 0 2.94 
E 736.90 61.31 0.04 EU 744.96 40.25 0 
E 753.38 0.41 1.50 EG 756.03 0 1.74 
E 793.51 9.28 0.57 EU 798.35 5.65 0 
E 819.83 0.84 0.44 EG 825.20 0 0.65 
E 938.24 1.61 0.06 EG 941.45 0 0.10 
E 971.89 191.09 0.26 EU 995.63 172.87 0 
E 1014.65 8.90 0.53 EU 1030.69 35.73 0 
E 1067.04 69.30 0.00 EU 1069.73 91.43 0 
E 1177.28 0.09 1.34 EU 1189.83 0.53 0 
E 1263.95 13.49 1.60 EU 1268.37 8.98 0 
E 1336.38 5.26 2.38 EU 1356.15 6.75 0 
E 1437.52 0.34 0.27 EU 1446.45 0.45 0 
E 1483.34 30.85 0.02 EU 1481.97 25.78 0 
E 1551.09 97.40 5.46 EU 1546.61 91.92 0 
E 3238.79 0.61 6.42 EU 3241.86 0.25 0 
E 3257.35 7.36 32.55 EU 3259.66 4.18 0 
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Table III.A3: DFT results of the vibrational frequencies (in cm-1) of AlPcCl and MgPc. 
Vibrational frequencies have been correlated based on the information in Table III.10. 
AlPcCl modes which gain significant intensity/activity when compared to their inactive 
counterparts in MgPc have been highlighted in bold. Corresponding experimental values 
can be located in Table III.2, Table III.3 and Table III.A1. 

C4v AlPcCl D4h MgPc 

Sym Freq IR 

Intensity 

Raman 

Activity 
Sym Freq IR 

Intensity 

Raman 

Activity 
A1 40.98 2.16 0.74 A2U 31.81 0.27 0 
A1 172.26 5.44 0.21 A2U 150.63 28.64 0 
A1 255.58 0.25 70.68 A1G 254.76 0 72.25 
A1 293.97 0.01 3.13 A2U 263.95 5.20 0 
A1 359.43 6.51 5.41 A2U 354.20 0.57 0 
A1 443.16 26.91 0.27 A2U 447.11 11.56 0 
A1 483.16 91.08 7.10 - - - - 
A1 601.41 1.05 63.80 A1G 598.01 0 100.50 
A1 695.31 0.01 320.44 A1G 690.02 0 337.39 
A1 753.76 281.31 0.01 A2U 751.07 263.55 0 
A1 802.24 11.92 1.16 A2U 799.08 21.80 0 
A1 850.46 4.41 226.48 A1G 846.86 0.00 197.69 
A1 980.23 2.73 0.04 A2U 978.82 3.71 0 
A1 1029.09 0.24 505.28 A1G 1030.3 0 529.33 
A1 1155.59 0.61 727.46 A1G 1145.2 0 1255.51 
A1 1189.96 0.40 582.47 A1G 1186.1 0 401.21 
A1 1367.76 1.75 2733.99 A1G 1363.7

 
2185.04 

A1 1429.87 8.14 532.55 A1G 1422.6 0 577.07 
A1 1469.50 0.02 210.73 A1G 1453.1 0 608.78 
A1 1565.98 0.00 785.28 A1G 1524.5 0 630.80 
A1 1624.27 0.25 170.24 A1G 1616.5 0 109.11 
A1 3189.94 0.07 743.12 A1G 3187.4 0.00 617.55 
A1 3208.38 0.14 1327.42 A1G 3204.7 0 1454.21 
A2 117.79 0 0 A1U 123.02 0 0 
A2 217.14 0 0 A2G 213.13 0 0 
A2 434.48 0 0 A1U 446.04 0 0 
A2 590.85 0 0 A2G 588.85 0 0 
A2 630.77 0 0 A2G 625.80 0 0 
A2 638.58 0 0 A1U 639.08 0 0 
A2 802.19 0 0 A1U 808.31 0 0 
A2 873.73 0 0 A2G 862.59 0 0 
A2 896.40 0 0 A1U 898.50 0 0 
A2 1008.00 0 0 A1U 1006.7 0 0 
A2 1120.24 0 0 A2G 1116.0 0 0 
A2 1127.32 0 0 A2G 1154.6 0 0 
A2 1218.19 0 0 A2G 1208.6 0 0 
A2 1328.62 0 0 A2G 1324.5 0 0 
A2 1510.96 0 0 A2G 1474.3 0 0 
A2 1529.06 0 0 A2G 1507.5 0 0 
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A2 1641.03 0 0 A2G 1639.8 0 0 
A2 3176.17 0 0 A2G 3173.7 0 0 
A2 3205.23 0 0 A2G 3201.1 0 0 
B1 45.68 0 0.27 B1U 63.85 0 0 
B1 117.14 0 12.63 B2G 111.21 0 12.98 
B1 218.27 0 0.08 B2G 225.54 0 29.61 
B1 255.09 0 36.15 B1U 225.91 0 0 
B1 495.62 0 112.13 B2G 489.33 0 122.55 
B1 526.94 0 0.97 B1U 534.28 0 0 
B1 696.59 0 3.28 B2G 701.34 0 4.61 
B1 705.25 0 5.60 B1U 701.92 0 0 
B1 804.15 0 0.40 B1U 807.63 0 0 
B1 896.62 0 0.01 B1U 897.97 0 0 
B1 979.62 0 54.35 B2G 960.32 0 32.66 
B1 1008.36 0 0.01 B1U 1007.1 0 0 
B1 1064.23 0 224.81 B2G 1052.9 0 146.96 
B1 1128.87 0 486.10 B2G 1130.9 0 420.14 
B1 1223.74 0 619.93 B2G 1230.3 0 814.29 
B1 1334.48 0 484.86 B2G 1330.6 0 496.61 
B1 1486.76 0 324.76 B2G 1446.6 0 282.41 
B1 1516.27 0 167.63 B2G 1509.4 0 248.54 
B1 1643.91 0 89.04 B2G 1642.1 0 51.99 
B1 3176.21 0 423.36 B2G 3173.7 0 404.04 
B1 3205.43 0 321.30 B2G 3201.2 0 346.24 
B2 19.42 0 0.09 B2U 21.62 0 0 
B2 133.42 0 4.22 B2U 137.84 0 0 
B2 167.52 0 15.70 B1G 182.16 0 15.69 
B2 296.83 0 1.03 B2U 245.10 0 0 
B2 434.24 0 0.48 B2U 433.78 0 0 
B2 567.12 0 5.71 B1G 569.72 0 5.36 
B2 716.00 0 11.58 B2U 714.96 0 0 
B2 770.10 0 1009.37 B1G 764.20 0 870.20 
B2 787.69 0 3.62 B2U 788.10 0 0 
B2 793.42 0 213.17 B1G 797.37 0 513.23 
B2 979.64 0 0.06 B2U 978.42 0 0 
B2 1028.44 0 263.83 B1G 1029.8 0 253.24 
B2 1167.30 0 2161.73 B1G 1164.8 0 2998.36 
B2 1206.62 0 1302.10 B1G 1204.8 0 1762.44 
B2 1333.66 0 5299.85 B1G 1332.1 0 4872.34 
B2 1375.12 0 1393.48 B1G 1369.0 0 1976.24 
B2 1485.90 0 2027.59 B1G 1477.9 0 2095.32 
B2 1596.95 0 19915.46 B1G 1548.3 0 20262.4
B2 1622.21 0 184.91 B1G 1613.5 0 145.97 
B2 3189.85 0 697.72 B1G 3187.3 0 671.89 
B2 3208.13 0 70.36 B1G 3204.4 0 101.00 
E 57.34 0.33 1.92 EG 59.59 0 0.17 
E 93.88 1.12 3.80 - - - - 
E 124.72 3.75 0.04 EU 122.43 4.28 0 
E 135.09 0.08 2.86 EG 126.08 0 5.16 
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E 255.32 0.14 0.89 EG 236.62 0 2.08 
E 301.08 0.98 0.44 EG 289.67 0 0.03 
E 311.82 3.58 0.42 EU 290.89 5.88 0 
E 391.41 4.29 0.05 EU 427.77 0.02 0 
E 434.82 0.03 0.00 EG 434.43 0 0 
E 501.44 0.67 0.01 EG 509.75 0 0.03 
E 527.84 11.42 0.00 EU 514.87 8.07 0 
E 587.27 7.01 0.05 EU 589.81 11.88 0 
E 652.38 3.62 0.19 EG 660.50 0 0.03 
E 659.17 4.84 0.06 EU 663.02 4.25 0 
E 743.09 0.34 0.21 EG 741.83 0 0.29 
E 773.62 58.12 0.72 EU 770.73 62.06 0 
E 793.89 0.89 12.20 EG 793.59 0 17.28 
E 805.50 0.12 4.55 EG 809.29 0 2.73 
E 818.09 1.42 0.85 EU 820.19 1.08 0 
E 896.60 0.01 0.33 EG 898.32 0 0.39 
E 921.18 58.48 0.09 EU 909.64 61.04 0 
E 979.92 0.02 0.40 EG 978.62 0 0.27 
E 1008.24 0.00 0.35 EG 1006.8 0 0.25 
E 1028.69 12.57 0.43 EU 1030.0 11.02 0 
E 1087.16 136.92 1.19 EU 1082.6 204.08 0 
E 1096.60 132.95 0.61 EU 1102.7 150.99 0 
E 1142.98 159.63 0.54 EU 1137.8 127.65 0 
E 1190.04 24.20 0.37 EU 1188.8 20.59 0 
E 1220.68 0.16 0.73 EU 1209.7 1.53 0 
E 1324.98 46.96 0.01 EU 1319.0 48.87 0 
E 1350.26 35.91 3.86 EU 1346.0 6.36 0 
E 1365.62 227.49 0.92 EU 1359.7 250.50 0 
E 1456.69 83.08 0.08 EU 1432.5 37.49 0 
E 1508.56 23.80 0.00 EU 1486.3 32.44 0 
E 1520.34 1.64 0.24 EU 1504.5 104.09 0 
E 1546.11 50.64 1.50 EU 1508.9 2.29 0 
E 1622.01 7.80 0.67 EU 1614.5 6.96 0 
E 1642.69 13.72 0.03 EU 1641.0 10.48 0 
E 3176.18 6.52 0.23 EU 3173.7 6.15 0 
E 3189.88 29.97 2.03 EU 3187.3 30.21 0 
E 3205.33 6.83 0.10 EU 3201.2 9.95 0 
E 3208.21 38.50 0.74 EU 3204.5 47.40 0 
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Table III.A4: DFT results of the vibrational frequencies (in cm-1) of GaPcCl. Values 
shown here are unscaled and obtained within the harmonic approximation. The 
corresponding experimental results are given in Table III.4 and  

 

Table III.A1. 

GaPcCl 

Sym Frequency 
IR 

Intensity 

Raman 

Activity 
A1 36.46 1.65 1.03 
A1 147.14 9.65 0.10 
A1 254.22 0.15 62.34 
A1 280.93 0.95 11.29 
A1 352.41 4.41 7.40 
A1 363.46 60.30 5.44 
A1 443.74 10.69 0.04 
A1 600.70 0.15 83.18 
A1 691.86 0.00 330.52 
A1 749.59 252.79 0.12 
A1 797.17 29.13 0.76 
A1 850.63 3.85 198.31 
A1 979.96 2.88 0.05 
A1 1029.64 0.31 511.57 
A1 1153.15 0.59 947.57 
A1 1188.72 0.35 541.21 
A1 1366.39 2.85 2504.66 
A1 1425.35 12.63 546.26 
A1 1465.11 0.03 293.00 
A1 1552.47 0.24 775.31 
A1 1621.39 0.47 127.76 
A1 3189.78 0.11 712.90 
A1 3207.77 0.20 1359.57 
A2 119.40 0 0 
A2 215.81 0 0 
A2 436.70 0 0 
A2 589.48 0 0 
A2 631.99 0 0 
A2 636.60 0 0 
A2 802.56 0 0 
A2 871.09 0 0 
A2 896.99 0 0 
A2 1008.13 0 0 
A2 1119.70 0 0 
A2 1143.06 0 0 
A2 1215.24 0 0 
A2 1327.80 0 0 
A2 1509.89 0 0 
A2 1518.35 0 0 
A2 1640.65 0 0 
A2 3176.09 0 0 
A2 3204.52 0 0 
B1 52.01 0 0.46 
B1 115.97 0 12.62 
B1 219.65 0 0.53 
B1 249.02 0 34.75 
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B1 493.13 0 112.93 
B1 528.39 0 1.29 
B1 696.72 0 3.75 
B1 703.88 0 6.17 
B1 803.47 0 0.58 
B1 897.12 0 0.01 
B1 974.24 0 58.73 
B1 1008.52 0 0.01 
B1 1063.49 0 158.16 
B1 1130.51 0 456.64 
B1 1226.73 0 678.73 
B1 1333.54 0 483.08 
B1 1479.08 0 328.55 
B1 1513.74 0 193.03 
B1 1643.46 0 69.04 
B1 3176.13 0 415.95 
B1 3204.71 0 327.77 
B2 20.66 0 0.14 
B2 131.83 0 7.64 
B2 161.57 0 13.78 
B2 285.85 0 1.29 
B2 432.75 0 0.31 
B2 564.69 0 6.16 
B2 713.10 0 9.75 
B2 768.38 0 927.43 
B2 786.94 0 18.37 
B2 792.74 0 291.82 
B2 979.44 0 0.08 
B2 1028.99 0 256.76 
B2 1167.06 0 2355.22 
B2 1205.85 0 1430.07 
B2 1330.49 0 5126.95 
B2 1372.99 0 1445.38 
B2 1483.27 0 1986.28 
B2 1583.52 0 20003.13 
B2 1618.79 0 1.46 
B2 3189.69 0 692.65 
B2 3207.53 0 76.78 
E 53.86 0.40 2.71 
E 90.58 0.98 3.08 
E 121.70 2.95 0.04 
E 132.40 0.32 3.22 
E 245.11 4.85 0.57 
E 257.05 1.27 0.90 
E 293.07 1.45 0.53 
E 309.30 2.41 0.28 
E 432.73 0.06 0.00 
E 502.69 1.03 0.02 
E 517.32 8.23 0.00 
E 585.86 8.02 0.06 
E 650.94 6.83 0.26 
E 655.88 0.73 0.01 
E 739.17 0.17 0.41 
E 769.94 51.69 0.84 
E 792.00 1.39 13.26 
E 804.42 0.07 2.93 
E 815.61 1.27 0.85 
E 897.08 0.04 0.33 
E 914.44 57.23 0.06 
E 979.71 0.03 0.32 
E 1008.39 0.00 0.31 
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E 1029.20 11.00 0.62 
E 1092.42 141.39 1.12 
E 1098.53 128.48 1.10 
E 1141.62 153.44 0.99 
E 1190.36 24.68 0.44 
E 1217.21 0.43 1.36 
E 1323.56 45.28 0.04 
E 1347.09 38.01 4.36 
E 1363.32 238.69 1.17 
E 1451.08 80.51 0.29 
E 1504.18 28.20 0.03 
E 1514.32 0.17 0.28 
E 1533.01 61.95 1.98 
E 1619.24 7.51 0.80 
E 1642.21 12.88 0.04 
E 3176.10 6.26 0.38 
E 3189.72 29.20 3.15 
E 3204.62 7.08 0.15 
E 3207.60 39.41 1.25 
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Chapter IV: A DFT Study of Reversed Isotope Shifts in 
H/D Substitution of Free-base Tetrapyrroles 

 

IV.1: Introduction 
This chapter presents a theoretical study on the effect of performing an isotopic 

substitution of the inner hydrogens on the free-base analogues of porphine (H2P), 

tetraazaporphyrin (H2TAP), tetrabenzo porphyrin (H2TBP) and phthalocyanine (H2Pc). 

The capability of the DFT method in accurately describing the ground state structures and 

vibrational spectra of porphyrins was established in Chapter III. The upcoming work builds 

on this observation by analysing molecules containing isotopes of various masses, 

specifically the masses of the inner hydrogen atoms of selected porphyrin molecules are 

changed. 

The tautomerism exhibited by the free-base tetrapyrroles, in which the two inner hydrogen 

atoms migrate between opposite pairs of the four central nitrogens, has been studied with a 

wide variety of both experimental1 and theoretical2 means. Of the methods applied, 

vibrational spectroscopy is a direct means of probing the mechanism underlying the 

tautomerism since the N-H stretch and in-plane bending modes have been proposed to be 

involved. In spectroscopic work, isotope substitution3 is a well-known tool in achieving 

reliable vibrational analysis, with substitution of hydrogen (H) by deuterium (D) by far the 

most utilised as it produces the largest frequency shifts due to the approximate factor of 

two difference in the masses of the isotopes4. Arising from the inverse relationship 

between mode frequency, ν, and the reduced mass, ߤ, given by the expression  

= ߥ  ଵ
ଶగ

 ට
ఓ
     Eq. IV.1 

in which k is the force constant, the heavier isotope is thereby expected to occur at lower 

values. This behaviour assists greatly in making mode assignments in experimental 

spectra. Moreover, for the free-base tetrapyrroles H2/D2 substitution of the two inner 

hydrogens is particularly appealing as the D2h molecular symmetry is maintained, allowing 

direct comparisons between the two isotopomers.  

However, in a recent combined IR/Raman and high level, density functional theory (DFT) 

study of free-base phthalocyanine (Pc), Murray et al.5 observed quite peculiar behaviour 
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upon H2/D2 substitution whereby the frequency of one particular mode of the deuterium 

isotopomer was found to be higher than that of hydrogen. The mode in question is the IR-

active out-of-plane bending mode observed in Ar matrices at 722.7 cm-1 for H2Pc but 

which shifts up to 729.9 cm-1 in D2Pc. The observed isotope shift ratio (ISR) of 0.990, 

determined as the νH/νD ratio, was very well reproduced in the theoretical DFT results. To 

probe whether this unusual, reversed ISR (< 1) effect is a peculiarity of Pc, the theoretical 

work in the present study has been extended to cover the three most closely related free-

base tetrapyrroles, namely porphyrin (P), tetraaza-porphyrin (TAP) and tetrabenzo-

porphyrin (TBP). The structures of all four molecules are provided in Figure IV.1 

revealing the strong similarities of these molecules. 

 

Figure IV.1: Structures of the four closely related free-base tetrapyrrole molecules, 
namely porphine (H2P), tetraaza-porphyrin (H2TAP), tetrabenzo-porphyrin (H2TBP) and 
phthalocyanine (H2Pc) whose vibrational frequency shifts upon H/D isotope substitution 
have been studied by the DFT method. The bond lengths and bond angles found in the 
DFT/B3LYP geometry optimisations are provided in Table IV.1 for the four molecules. 
With the present method, all are found to have high (D2h) symmetry. 
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A theoretical prediction of such a reversed isotope shift effect (ISR < 1) was made several 

years ago by Li and Zgierski6 in their work on developing a local mode description of the 

vibrations in the porphyrins – both free-base and metallo-porphyrins. Their vibrational 

analysis was based on a valence force field and conducted with the Wilson-GF matrix7 

method. However, as will be shown ahead, the upward shifts in the heavier isotope were 

much larger than what has been seen with the force fields generated in the present quantum 

chemical method. This earlier work6 seems only to have considered only the N-H stretches 

and in-plane bends. However, as Murray et al. found experimentally5, the most easily 

identifiable instance of the reversed ISR effect in the phthalocyanines involved an out-of-

plane N-H bending motion. A more recent DFT calculation of free-base phthalocyanine by 

Liu et al also found a reverse ISR8,9 but the Authors presented no analysis of the origins of 

this effect. 

 

Table IV.1: A summary of a group theoretical analysis the normal modes of vibration for 
the four tetra-pyrrole molecules examined in the present work. The values in parenthesis 
are the numbers of atoms in each of the molecules. On the right hand side the symmetries 
of the six possible N-H motions are provided for an analysis conducted with the z-axis co-
linear with the two central N-H bonds. The abbreviations STR, IPB and OPB represent the 
N-H stretching, in-plane bending and out-of-plane bending modes respectively.  

D2h Species N-H vibration modes 

 H2P  H2TAP H2TBP H2Pc STR IPB OPB 
Ag 19 17 31 29 ✓ 

 
  

B1g 8 7 14 13    

B2g 9 8 15 14   ✓ 

 B3g 18 16 30 28  ✓ 

 
 

Au 8 7 14 13    

B1u 18 16 30 28 ✓ 

 
  

B2u 18 16 30 28  ✓ 

 
 

B3u 10 9 16 15   ✓ 

 #Modes 108 96 180 168    

 

A group theoretical analysis of the four free-base tetrapyrroles, all belonging to the D2h 

point group, provides the symmetry types and numbers of the normal vibrational modes of 

the molecules being studied. The results of such an analysis, in which the z-axis is aligned 
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with the two central N-H bonds, are collected in Table IV.1. As expected, the numbers of 

modes in the two tetra-aryl molecules (tetrabenzo-porphyrin and phthalocyanine) are much 

larger due to the increase in the number of atoms, N. For the purposes of illustration, the 

material presented herein will concentrate on the smaller parent molecules porphine and 

tetraazaporphyrin. However, in all four molecules the symmetry types of the 6 modes 

involving N-H motion are the same and can be compared with the complete normal 

vibrational modes in Table IV.1.  

The main goal then is to establish the correlations between similar NH and ND modes and 

to rationalize the observed and calculated frequency shifts. Calculating normal mode 

frequencies with incremental (artificial) variation of the masses of H from 1 to 2 clearly 

show these correlations. When the NH(D) motion is predominant, the H to D evolution in 

the normal mode frequency will decrease in a continuous manner. In the case of two modes 

of the same symmetry and whose frequencies are similar, their frequency evolutions could 

cross, depending on the extent of NH(D) motion involved in them. The evolution diagrams 

will thus show avoided crossings of various extents which thereby inform on the degree of 

the NH(D) motion in the modes. If both normal modes involve similar atomic motions, 

including the NH(D) one, they will be distorted around the mass of H corresponding to the 

crossing, in order to avoid it. This is similar to the well-known characteristic of avoided 

crossing found in potential energy surfaces for electronic states with the same spatial 

symmetry. It allows an analysis of the underlying mode interactions and situations where 

ISR < 1 are present are especially studied in the current work10. 

 

IV.2: Computational Methods 
In the present study the density functional theory (DFT) was utilised with the 6-

311g++(2d,2p) basis set for both geometry optimisations and the calculation of the 

vibrational frequencies. The present calculations were conducted with the Gaussian-03 

suite of programmes running, as described in Chapter II, on a Linux workstation with two 

quad-core processors. All the calculated vibrational frequencies presented in this work are, 

unless stated otherwise, unscaled values obtained within the harmonic approximation. 

Due to the unintuitive nature of the effect being analysed, the approach taken in calculating 

the vibrational frequencies, involves increasing the masses between H and D 
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incrementally, in steps of 0.05 amu, so that the evolution of the modes from the light to the 

heavy isotopomer can be followed in a near-continuous manner. This is the approach 

utilised in the earlier work by Murray and co-workers5. Recently this method has been 

applied successfully by Wright and co-workers11 in their work on re-numbering the 

vibrational modes of benzene and its fluoro-derivatives. The task in the present analysis is 

to track the mass dependence of the normal modes to see where they cross but more 

importantly, it is to identify where curve-avoidance occurs and analyse the underlying 

mode coupling which produce ISR values less than 1. In doing this we exploit the high 

symmetries found in the optimised geometries of the free-base tetrapyrroles. Accordingly, 

this analysis is done on normal modes of the same symmetry with a particular focus on 

those modes involving the N-H vibrations. As mentioned earlier, and shown in Table IV.1, 

there are only 3 types of N-H motions but 6 distinct symmetries are involved.  

In order to analyse details of the atomic motions producing the reverse isotope substitution 

ratios (ISR values < 1) the contributions of the internal coordinates to the normal modes of 

a given symmetry type have been extracted. The internal mode contributions to a specific 

normal mode are expressed as percentages which were generated directly in the Gaussian-

03 package and implemented with the “freq=internal” command in the input file12. 

 

IV.3: Results  
The optimised geometries obtained with the DFT B3LYP method and the 6-311g++(2d,2p) 

basis set for the four free-base tetrapyrrole molecules studied are shown in Figure IV.1. 

Complete listings of the geometric parameters for the free-base tetrapyrroles, porphine (P), 

tetraaza-porphyrin (TAP), tetrabenzo-porphyrin (TBP) and phthalocyanine (Pc) are 

provided in Table IV.2. In all cases, high (D2h) symmetry was preserved in the geometry 

optimisations and no imaginary low frequencies were found. These results indicate that the 

planar geometry is the most stable in all four molecules.  
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Table IV.2: A summary of the geometric parameters obtained with the DFT/B3LYP 
optimization conducted in the present work on the four free-base tetrapyrrole molecules, 
porphine (H2P), tetraaza-porphyrin (H2TAP) and tetrabenzo-porphyrin (H2TBP) and 
phthalocyanine (H2Pc). The atom labelling for TAP and Pc follows standard notation used 
in Figure III.1. The labelling system for P and TBP follows that of TAP and Pc 
respectively, with the exception of the Nm atoms being replaced by Cm-Hm atoms. 

Length(Å) P TAP TBP Pc 
N-H 1.0104 1.0076 1.0112 1.009 
N-Cα 1.3692 1.3701 1.3709 1.375 

Cα-Cm 1.3900 N/A 1.3839 N/A 
Cα-Nm N/A 1.3195 N/A 1.313 

Cα- Cβ 1.4316 1.4436 1.4448 1.45 

Cβ- Cβ 1.368 1.3616 1.413 1.409 

Cβ- H1 1.0768 1.0759 N/A N/A 
Cβ- Cγ N/A N/A 1.3985 1.394 

Cγ- Cδ N/A N/A 1.3828 1.386 

Cδ- Cδ N/A N/A 1.4073 1.406 
Cγ- H1 N/A N/A 1.0812 1.08 

Cδ- H2 N/A N/A 1.0812 1.081 

N'-Cα' 1.3600 1.3593 1.3598 1.362 

Cα'- Cm 1.3961 N/A 1.3949 N/A 
Cα'- Nm N/A 1.3338 N/A 1.332 

Cm-Hm 1.0812 N/A 1.0806 N/A 

Cα'- Cβ' 1.457 1.4657 1.4632 1.465 
Cβ'- Cβ' 1.3521 1.3466 1.404 1.4 

Cβ'- H1' 1.078 1.0766 N/A N/A 

Cγ'- Cγ' N/A N/A 1.3931 1.389 

Cγ'- Cδ' N/A N/A 1.3894 1.392 
Cδ'- Cδ' N/A N/A 1.4014 1.401 

Cγ'- H1' N/A N/A 1.0818 1.081 

Cδ'- H2' N/A N/A 1.0814 1.081 

Angle (°) 
    H-N-Cα 124.5724 124.5932 123.6462 123.736 

N-Cα- Cm 125.652 N/A 126.1288 N/A 
N-Cα- Nm N/A 127.7457 N/A 128.100 

Cα-N-Cα 110.8552 110.8136 112.7076 112.527 
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N-Cα-Cβ 106.5301 106.5535 106.1348 106.135 

Cα-Cβ-Cβ 108.0423 108.0397 107.5114 107.601 
Cα-Cβ- H1 124.3741 123.3376 N/A N/A 

Cβ -Cβ- H1 127.5835 128.6226 N/A N/A 

Cβ-Cβ-Cγ N/A N/A 120.5013 120.960 

Cβ -Cγ-Cδ N/A N/A 118.4767 117.829 
Cγ-Cδ-Cδ N/A N/A 121.022 121.211 

Cβ-Cγ-H1 N/A N/A 121.1432 120.586 

Cγ-Cδ-H2 N/A N/A 119.696 119.622 
Cα-Cβ- H 115.9102 N/A 115.3433 N/A 

Cα’-Cβ- H 116.9554 N/A 116.3284 N/A 

N'-Cα'- Cm 125.5188 N/A 125.6994 N/A 

N'-Cα'- Nm N/A 127.5626 N/A 121.688 
Cα'-N'-Cα' 105.7553 105.5281 107.6054 107.226 

N'-Cα'-Cβ' 110.8457 111.0377 110.5212 110.697 

Cα'-Cβ'-Cβ' 106.2767 106.1983 105.6761 105.690 
Cα'-Cβ'- H1 125.4496 124.2356 N/A N/A 

Cβ'-Cβ'- H2 128.2737 129.5661 N/A N/A 

Cβ'-Cβ'-Cγ' N/A N/A 120.7253 121.223 
Cβ'-Cγ'-Cδ' N/A N/A 118.3937 117.670 

Cγ'-Cδ'-Cδ' N/A N/A 120.8811 121.107 

Cβ'-Cγ'-H1' N/A N/A 121.4854 120.925 

Cγ'-Cδ'-H2' N/A N/A 119.7205 119.636 

 

In the present H/D isotope substitution study we are focussed on the vibrations involving 

N-H motion of which there are three types. As indicated in Table IV.1 the N-H stretching 

(STR) modes are the Ag and B1u symmetries corresponding to the Raman-active symmetric 

and IR-active asymmetric vibrations respectively. The N-H In-Plane Bending (IPB) modes 

are of B3g and B2u symmetry, arising from the in-phase and out-of-phase bending motions 

which are Raman-active and IR-active respectively. The N-H Out-of-Plane Bending (OPB) 

modes are of B2g and B3u symmetry – the Raman-active in-phase and IR-active out-of-

phase modes respectively. The behaviour of each of these three N-H modes will now be 

analysed on the basis of the six possible symmetries that they possess.  
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From the results provided in Table IV.1 one might expect that the H/D isotope dependence 

of the N-H Out-of-Plane Bending (OPB) mode would be the easiest to follow. For 

instance, in H2TAP the OPB mode is 1 of only 8 (B2g) modes while the N-H stretch should 

be the most difficult, being 1 of 19 (Ag) modes. In H2TBP this stretching mode is 1 of 31 

modes. However, as has been found experimentally5 for H2Pc, identifying the OP bending 

in H/D substitution is far from obvious when the frequency of this mode in D2Pc increases. 

The contrasting behaviour of these modes arises, as will be elaborated later, for two 

reasons. The first is that the N-H stretch modes occur at high frequencies, energetically 

distinct from all other modes except for the C-H stretching modes, while the In-Plane 

Bending (IPB) and OPB modes occur in congested regions where multiple mode crossings 

may occur. The second reason is that the internal N-H stretching modes are very well 

localised on the N-H bonds. In contrast, avoided-crossings occur in the IP and OP bending 

motions rendering mode attributions in the deuterium isotopomer difficult.  

IV.3.I: N-H Stretching (Ag and B1u) Modes  

The frequencies of the N-H stretching modes are shown in Figure IV.2 and Figure IV.3 for 

the four molecules studied P, TAP, TBP and Pc as a function of incrementally increasing 

the H-atom mass from 1 to 2 amu. Taking porphyrin as an example, (upper left in Figure 

IV.2) the Raman-active (but weak) Ag N-H stretching mode crosses directly over three C-

H stretching modes and continues to decrease monotonically from 3593.5 cm-1 in H2P to 

2638.3 cm-1 in D2P . This corresponds to a shift of 955.2 cm-1 and a νH/νD (ISR) ratio of 

1.362. This value is close to the expected value of approximately √2 for H/D isotopic 

substitution of a normal mode involving nearly pure N-H motion. The solid curve in Figure 

IV.2 shows the theoretical mass dependence (1/√݉H) given by Equation IV.1. It is evident 

that the agreement between the predicted data and this theoretical dependence is good.  
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Figure IV.2: Dependence of the vibrational frequencies of the Raman-active N-H stretch 
(Ag symmetry) normal modes of the four (D2h) free-base tetrapyrrole molecules with H/D 
isotope substitution of the two inner hydrogens. The values shown are harmonic results 
calculated by increasing the H mass from 1 to 2 in increments of 0.05 amu. The solid trace 
provides the predicted dependence of the frequency on the square root of the mass, 
indicating close agreement with the calculated values. The frequencies of the C-H 
stretching modes are completely unaffected by the H/D isotope substitution of the two 
inner hydrogens.  

 

The mass dependence of the strong IR-active B1u mode, shown in Figure IV.3 exhibits a 

similar pattern with the N-H stretch at 3552.3 cm-1 in H2P crossing over three C-H 

stretches as the masses of the central hydrogens are increased. The N-D mode has a 

frequency of 2611.9 cm-1, which gives a νH/νD ratio of 1.360. This pattern is observed for 

the three other molecules studied as illustrated in Figure IV.3. H2TAP is the simplest 

having the least number of C-H modes, 2 in number. In contrast the tetra-aryl molecules, 

TBP and Pc have numerous C-H modes. However, in all cases direct crossings of the 

normal modes occur indicating the absence of coupling between NH(D) stretching modes 

and CH stretching modes.  
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Figure IV.3: As for Figure IV.2 except for the IR-active B1u symmetry normal modes.  

 

The frequencies of the N-H stretching modes of P, TAP, TBP and Pc are collected in the 

upper section of Table IV.3 for the light and heavy isotopomers. The ISR (νH/νD) values 

calculated from these frequencies are listed for the two symmetries involved. From the 

values provided in Table IV.3 it is clear that they span a small range from 1.364, for the Ag 

mode of phthalocyanine (Pc), to 1.360 for the B1u mode of porphyrin (P). It is evident that 

for the Ag and B1u symmetries presented in Figure IV.2 and Figure IV.3 respectively that 

the N-H stretching mode passes directly through the C-H stretching modes in all four 

molecules without any interaction amongst these high frequency modes. An examination 

of the C-H stretching modes reveals that the change in their frequencies, after being 

crossed by the N-H modes, is extremely small. In all cases except TBP where it is 0.04 cm-

1, these changes are in the third decimal place. With this small magnitude, these shifts are 

less than the uncertainty of the method and are not considered significant.  
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An analysis of the internal modes reveals the small deviation of the calculated ISR values 

(1.36) from √2 arises from the involvement of the pyrrole ring deformation which 

accompanies the N-H stretching motion for kinematic reasons. No other internal motions 

are involved in these nearly pure NH(D) modes. See the upper panels of Table IV.4 and 

Table IV.5 for details of the % internal N-H stretch modes of the smaller tetrapyrroles, 

TAP and porphyrin respectively.  
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Table IV.3: H/D isotope shifts for the 6 internal N-H modes of the four tetrapyrrole 
molecules studied. All frequencies are unscaled DFT results given in wavenumber units. 
The isotope shift ratios (ISR) are calculated as ratio νH/νD i.e., the hydrogen frequency 
divided by the deuterium value. ISR values significantly less than one are highlighted in 
bold as they are indicative of strongly avoided-crossings.  

Motion Molecule νH2 νD2 Shift νH/νD νH2 νD2 Shift νH/νD 

N-H 
 

B1u Ag 

Stretch P 3552.34 2611.88 940.46 1.3601 3593.47 2638.31 955.16 1.3620 

 

TAP 3565.39 2621.13 944.25 1.3602 3629.13 2661.83 967.30 1.3634 

 

TBP 3546.71 2606.78 939.93 1.3606 3583.25 2630.36 952.89 1.3623 

 

Pc 3569.08 2621.36 947.73 1.3615 3625.17 2657.21 967.96 1.3643 

N-H 
 

B3u B2g 
OP Bend P 739.89 541.8 198.09 1.3656 631.22 473.78 157.44 1.3323 

  

651.38 657.91 -6.53 0.9901 NC NC   

 

TAP 760.83 547.66 213.17 1.3892 641.4 479.74 161.66 1.3370 

  

656.65 664.47 -7.82 0.9882 NC NC  

 

 

TBP 766.76 560.41 206.35 1.3682 711.65 520.08 191.57 1.3683 

  
713.22 720.33 -7.11 0.9901 689.24 695.66 -6.42 0.9908 

  

684.58 684.84 -0.26 0.9996 637.72 638.56 -0.84 0.9987 

 

Pc 778.36 566.31 212.05 1.3744 680.33 495.23 185.1 1.3738 

 

 740.49 746.78 -6.29 0.9916 657.47 659.1 -1.63 0.9975 

  

704.03 704.28 -0.25 0.9996 505.86 511.42 -5.56 0.9891 

N-H 
 

B2u B3g 
IP Bend P 1003.52 882.82 120.7 1.1367 1264.1 1184.6 79.5 1.0671 

  
967.16 967.43 -0.27 0.9997 1213.11 1214.33 -1.22 0.9990 

 

TAP 970.33 851.43 118.9 1.1396 1250.89 1240.82 10.07 1.008* 

  

957.24 957.49 -0.25 0.9997 1216.82 1202.66 14.16 1.012* 

 

TBP 1067.7 989.03 78.67 1.0795 1253.59 1181.6 71.99 1.0609 

  

1038.52 1038.81 -0.29 0.9997 1217.56 1218.7 -1.14 0.9991 

 

Pc 1068.39 981.15 87.24 1.0889 1223.56 1191.4 32.16 1.0270 

  

1029.31 1029.37 -0.06 0.9999 1211.42 1211.42 0 1.0000 

*No curve crossings occur between these two modes in TAP. The values chosen for 

inclusion were selected on the basis of the similarities of their motion with the three other 

tetrapyrrole molecules. 
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Table IV.4: Contributions of the N-H internal modes to the normal modes involving 
crossings, or avoided-crossings of TAP. Avoided crossings are easily identified when the 
ISR values are less than 1. Instances with particularly strong coupling, producing large 
avoided-crossings, are highlighted in bold type. 

 
H2TAP D2TAP 

 
Sym. Mode# Frequency % Int.Mode Mode# Frequency % Int.Mode νH/νD 

Ag 96 3629.132 68% N-H Stretch 88 2661.833 61.6% N-D Stretch 1.3634 

B1u 95 3565.385 68% N-H Stretch 87 2621.135 62.4% N-D Stretch 1.3602 

B2g 23 641.4 54.8% N-H OPB 22 479.7375 68.4% N-D OPB 1.3370 

B3u 36 760.8292 52.8% N-H OPB 24 547.6603 72% N-D OPB 1.3892 
24 656.6503 22.4% N-H OPB 25 664.4674 7.6% N-D OPB 0.9882 

B2u 

67 1266.18 21.2% N-H IPB 66 1242.04 7.6% N-D IPB 1.0194 
63 1198.73 18.8% N-H IPB 62 1116.18 18% N-D IPB 1.0740 

52 970.3289 19.2% N-H IPB 46 851.4276 24% N-D IPB 1.1396 

51 957.2362 4% N-H IPB 52 957.4918 0% N-D IPB 0.9997 
38 776.51 10.8% N-H IPB 33 726.39 23.2% N-D IPB 1.0690 

33 748.85 2% N-H IPB 36 754 9.6% N-D IPB 0.9932 

B3g 

62 1164.357 20.4% N-H IPB 61 1108.938 17.2% N-D IPB 1.0500 
65 1250.89 15.6% N-H IPB 65 1240.82 6% N-D IPB 1.0081 
64 1216.82 11.2% N-H IPB 65 1202.66 4.8% N-D IPB 1.0118 

49 950.62 26.4% N-H IPB 45 849.92 16.8% N-D IPB 1.1185 

39 778.95 14% N-H IPB 29 711.09 30% N-D IPB 1.0954 

 

 

 

 

 

 

 

 



      Chapter IV: A DFT Study of Reversed Isotope Shifts in H/D Substitution of Free-base Tetrapyrroles 

159 
 

Table IV.5: Contributions of the N-H internal modes to the normal modes involving 
crossings, or avoided-crossings of porphyrin. Avoided crossings are identified as the ISR < 
1. 

 
H2P D2P 

 Sym Mode Frequency % Int.Mode Mode Frequency % Int.Mode νH/νD 

Ag 108 3593.47 77.8% N-H Stretch 96 2638.31 61.2% N-D Stretch 1.3620 

B1u 107 3552.34 77.8% N-H Stretch 95 2611.88 61.4% N-D Stretch 1.3601 

B2g 23 631.22 50.8 % N-H OPB 22 473.78 65.2 % N-D OPB 1.3323 

B3u 35 739.89 32% N-H OPB 24 541.81 70.4% N-D OPB 1.3656 
24 651.38 21.2% N-H OPB 25 657.91 8.4% N-D OPB 0.9901 

B2u 

71 1260.59 26 % N-H IPB 65 1120.28 16.4 % N-D IPB 1.1252 
67 1179.31 7.6 % N-H IPB 69 1195.31 8 % N-D IPB 0.9866 
57 1003.52 14.8 % N-H IPB 50 882.81 27.2 % N-D IPB 1.1367 
53 967.16 1.6 % N-H IPB 55 967.44 0 % N-D IPB 0.9997 

41 796.36 8 % N-H IPB 38 759.71 18 % N-D IPB 1.0482 

B3g 

72 1264.10 26.4 % N-H IPB 68 1184.59 10.8 % N-D IPB 1.0671 
69 1213.11 4 % N-H IPB 72 1214.33 0 % N-D IPB 0.9990 

43 800.34 8.8 % N-H IPB 36 752.31 24.4 % N-D IPB 1.0638 

56 992.92 16.8 % N-H IPB 49 881.53 20.0 % N-D IPB 1.1264 

 

IV.3.II: Out-of-Plane (B3u & B2g) Bending Modes 

IV.3.IV.a: B3u N-H Bending Modes 

The mass dependences of the out-of-plane B3u N-H bending (OPB) modes of P, TAP, TBP 

and Pc are shown in the four panels of Figure IV.4. In the frequency range 800 - 550 cm-1 

shown in the plot, all four molecules have the same number of normal modes and the mass 

dependence is clearly not simple in any of them. Most conspicuous is the pronounced 

avoided crossing which occurs between two modes in the central-section of the P and TAP 

plots. In both cases a normal mode which starts out strongly mass dependent, and is an N-

H out-of-plane bending motion, becomes mass independent and evolves into a mode that 

involves large amplitude C-H OPBs. This is clearly not a correct mode attribution from the 

light to heavy isotopomers so to help analyse the complex behaviour exhibited, the 

theoretical mass dependence given by Equation IV.1 is overlaid as a solid trace in Figure 

IV.4. This was calculated from the lowest frequency D2 mode because the N-H OPB 
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motion is manifested more strongly in the heavier isotopomers of these molecules than in 

the lighter ones (corresponding to a less congested spectral region for B3u modes), in 

contrast with the previous case of Ag and B1u modes. The internal mode analysis provided 

in Table IV.4 for TAP shows the contribution in D2TAP as 72% while it is only 53% in 

H2TAP. Table IV.5 reveals a similar pattern for the B3u mode of porphyrin.  

 

Figure IV.4: Mass dependence of the IR-active B3u symmetry normal modes for the out-
of-plane bending vibrations. In contrast to the high frequency modes, strong coupling 
occurs between the N-H OP bending modes and especially the C-H OP bending modes. 
This is indicated by the large avoided crossing that is clearly evident in the top two panels 
where P and TAP results are shown. A strong correlation exists between the N-H OP 
bending modes of the light and heavy isotopomers as indicated by the theoretical 
dependence of the frequency on the square root of mass. However, the frequency of the C-
H OP bending mode “crossed” by the N-H mode increases in the deuterated molecule 
leading to a reversed isotope shift ratio (ISR<1).  

 

From the match shown for P in the upper left panel of Figure IV.4, between the calculated 

data and the (mH
-1/2) dependence, it is clear that the frequency of the “pure” N-H OP mode 

decreases from 739.9 cm-1 in H2P to 541.8 cm-1 in D2P. The resulting νH/νD ratio is 1.366, 
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quite close to the expected value of √2. This mode crosses a pure C-H OPB with a 

frequency of 709.5 cm-1, which is H-atom mass-independent and is thereby not affected by 

the N-H isotopic substitution. In contrast, it produces an avoided crossing with another C-

H OP bending mode which has an initial value of 651.4 cm-1 in H2P but increases to 657.9 

cm-1 in D2P. A clear consequence of the avoided crossing is that this mode shifts up in 

frequency by 6.53 cm-1 and produces a νH/νD ratio considerably less than unity - the value 

is 0.9901. As indicted in Table IV.3, similar behaviour is exhibited by this mode in all four 

molecules. The most extreme situation is found for TAP which has an ISR value of 0.9882.  

Vector diagrams for the atomic motions involved in the modes of TAP which exhibits the 

most pronounced reversed ISR effect are shown in Figure IV.5. From the motions 

presented, the association of the 760.8 cm-1 mode with the 547.7 cm-1 mode is 

unquestionable. Thus as illustrated, the vector diagrams for the N-H OP bending motions 

of H2TAP and D2TAP are indistinguishable for these two modes. However, a consequence 

of these mode assignments is that the mode at 656.7 cm-1 must be correlated with that at 

664.5 cm-1 – an upward shift of 7.82 cm-1 in D2TAP. This correlation is supported by the 

very similar C-H OP bending motions illustrated for both isotopomers on the bottom of 

Figure IV.5. However, on closer scrutiny of these two diagrams it can be seen that the 

direction of the N-H bending motion with respect to the molecule is reversed in the N-D 

mode. This change in the motion of the light and heavy isotopomers is found to be a 

characteristic of all the modes exhibiting the large reverse ISR which involve strongly 

avoided mode crossings. This behaviour is in fact the physical explanation of the reverse 

ISR. Reverse ISRs are observed to be larger in cases with more pronounced avoided 

crossings, i.e., with stronger coupling, W, between the modes. The reversal of the 

directions of the H-atom motions in the light and heavy species can be seen as a direct 

consequence of perturbation theory in first order. In the simplified case of two coupled 

modes, one mode, νH, involving large H motion and the other, νN, involving little H motion 

as is the case for when the H→D progression is very flat except in the region of the 

crossing, the result of perturbation theory will give new modes ν’N with 

|ν′ே⟩ = |ν′ே⟩ + ேܧ)/ܹ −  ு)|νு⟩   Eq. IV.2ܧ

 The reason for the reversed directions can be understood as follows. Since the sign of the 

matrix element W (⟨νு |W|ν′ே⟩) does not change from H to D, but it does change for the 

energy term, i.e., (EnN – EnH) < 0 for H, whereas (EnN – EnH) > 0 for D, this means that the 
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motion of H(|mு⟩ appears with opposite signs in the description of |νே⟩ in the 

hydrogenated and the deuterated species, i.e., reversal of directions. This “reversal” is 

larger and more obvious when the coupling W strength is greater. 

H2TAP

760.83cm-1

656.65cm-1 664.47cm-1

547.66cm-1

D2TAP

 

Figure IV.5: Vector diagrams showing the very similar atomic motions involved in the 
pure N-H OP bending motion of TAP for the normal and deuterated molecules – top left 
and right respectively. In the bottom the motions in the C-H mode involved in the avoided 
crossing with the N-H OPB are shown. The mode correlations of the two isotopomers are 
clearly correct, but on closer scrutiny it is evident that the direction of the small N-H 
motion, which this mode possesses, is reversed in the H and D molecules. This behaviour 
is exhibited in all the modes involved in the avoided crossings.  

 

IV.3.IV.b: B2g N-H Bending Modes 

The H/D isotope dependences of the Raman-active B2g N-H OP bending modes of 

porphyrin and TAP are, as shown in the upper panels of Figure IV.6, relatively 

straightforward exhibiting a continuous mode evolution from the hydrogen to the 

deuterium isotopomer. As indicated in Table IV.3, they also exhibit an ISR of 1.33 and 
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follow the simple mass dependence shown by the smooth curve in Figure IV.6. In contrast, 

TBP and Pc are both complicated by the existence of an additional mode which is crossed 

by the N-H B2g OP bending mode at different locations. Again the mass dependence curve 

is very instructive in identifying the correct mode evolution. As listed in Table IV.3, the 

711.7 cm-1 mode of H2TBP correlates with the 520.1 cm-1 mode of D2TBP, giving an ISR 

value of 1.37 – a similar value is present for phthalocyanine. However, the curve-

avoidance which is now present produces ISR values significantly less than 1 in both 

cases. Table IV.3 lists these as 0.991 and 0.989 for TBP and Pc respectively.  

 

Figure IV.6: As for Figure IV.4 except for the Raman-active B2g symmetry OP N-H 
bending modes. Particularly simple behaviour is exhibited in the smaller molecules P and 
TAP as indicated by the close agreement with the solid theoretical curve showing the 
calculated mass dependence.  

 

IV.3.III: In-Plane (B2u & B3g) Bending Modes  

A summary of the isotope dependences of the N-H IP bending modes is provided in Figure 

IV.7 and Figure IV.8. The mass dependences of these modes are quite similar for all four 



      Chapter IV: A DFT Study of Reversed Isotope Shifts in H/D Substitution of Free-base Tetrapyrroles 

164 
 

molecules and evidently are not simple. It is clear that these IPB modes do not show a 

mass dependence that is as strong as (mH
-1/2), shown by the smooth line. Instead, several 

modes appear to have a weak, near-linear dependence on mass. The slope of the (mH
-1/2) 

law is never approached, whatever the isotopomer. This effect is due to an extreme dilution 

of NH IP motions in many modes of the same symmetry. Modes exhibiting the highest 

absolute slope at mH = 1 or 2 correspond in fact to the modes involving the highest % of 

NH or ND IP motion respectively. This can be checked in Tables IV.4 and IV.5 where the 

B2u and B3g modes exhibiting the highest % are reported for TAP and P respectively.  

IV.3.IIV.a: B2u N-H Bending Modes 

Some mode crossings do occur also for this N-H motion and because of the similarity of 

the behaviour in the mid-frequency region for all four molecules; we have chosen the 

modes in this region for inclusion in Table IV.3. 

The IR-active B2u modes of porphyrin and TAP are quite similar, showing a diluted effect 

upon isotopic substitution of the inner hydrogens. As listed in Table IV.3, the mode at 

1003.5 cm-1 in H2P, involving the N-H in-plane bend drops to 882.8 cm-1 in D2P. This shift 

corresponds to a νH/νD ratio of only 1.137 – a value much less than √2. This mode shows a 

weak avoided crossing with the one at 967.2 cm-1 – which is a pyrrole ring stretching 

mode. This avoided crossing has the effect of increasing the frequency of the pyrrole ring 

stretching mode in D2P by a small amount to 967.4 cm-1 and generating a νH/νD ratio of 

0.9997. While the 0.27 cm-1 shift in frequency for the pyrrole mode is small, similar values 

are exhibited by all the tetrapyrroles except Pc where it is yet smaller 0.06 cm-1. The 

significance of these ISR values is hard to ascertain because while it is consistently less 

than 1, it is very close to it. It is worth noting however, that for the pure C-H stretching Ag 

and B1u modes crossed over by the N-H(D) mode (see Figure IV.2 and Figure IV.3), the 

ISR values are much closer to 1. In the present IP bending B2u mode, vector diagrams 

indicate that there is some N-H character in the pyrrole ring stretch, so the small ISR 

values are deemed significant. 
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Figure IV.7: Mass dependence of the IR-active B2u symmetry for the in-plane N-H 
bending modes. Particularly evident is the large number of modes and the fact that they 
nearly all show a dependence on mass. This reveals immediately that the N-H bending 
vibration is diluted over many modes, none of which can show the expected mass 
dependence of a pure mode which is indicated by the smooth curve.  

 

While not included in the global ISR summary provided in Table IV.3, it is evident in 

Figure IV.7 that mode crossings do occur in the lower frequency range but the crossing 

regions vary from molecule to molecule. Thus direct crossings are exhibited by P and Pc 

while avoided crossings are present in TAP and TBP. Information on the avoided crossing 

in the former is provided in Table IV.4, where the 776.5 cm-1 mode of H2TAP decreases to 

726.4 cm-1 for D2TAP with a small ISR value of 1.069. However, this then produces a 

frequency increase in the interacting mode at 748.9 cm-1 which moves up to 754.0 cm-1 in 

D2TAP and has an ISR considerably less than 1 with a value of 0.9932. Porphyrin does not 

exhibit this behaviour, so a corresponding value is not given in Table IV.5.  

In the higher frequency region only P and TBP exhibit avoided crossings and detailed 

information on the behaviour of porphine is presented in Table IV.5. It is evident there that 



      Chapter IV: A DFT Study of Reversed Isotope Shifts in H/D Substitution of Free-base Tetrapyrroles 

166 
 

a reverse ISR is present with an upward frequency shift of 16 cm-1 producing an ISR value 

of 0.9866. Thus the highest frequency N-H IP bending mode at 1260.6 cm-1 correlates with 

the 1120.3 cm-1 mode of D2P yielding a diminished ISR of 1.125. A consequence of this 

attribution is that the H2P mode at 1179.3 cm-1 must be associated with the 1195.3 cm-1 

mode of D2P. This mode was previously highlighted by Li et al6 but their correlation 

involved modes with a much larger frequency gap. The value they proposed was an 

upward shift of 108 cm-1.   

IV.3.IIV.b: B3g IP N-H Bending Modes 

The Raman-active B3g modes presented in Figure IV.8 exhibit similar behaviour to the IR-

active B2u modes, but the mass dependence is even more diluted. This dilution effect is 

extreme in the case of the larger molecules TBP and Pc where every mode, except one at 

1040 cm-1 shows a slight mass-dependence. As a result, most of the modes are parallel 

which mitigates against curve crossings. In contrast, the behaviour in P and TAP is more 

well-defined with two modes at around 810 and 1020 cm-1 clearly mass independent while 

the remainder all show a weak mass dependence.   

Taking porphyrin as an example, the most “pure” N-H IPB mode (listed in Table IV.5 as 

26.4%) has a frequency of 1264.1 cm-1, a value which decreases to 1184.6 cm-1 as the mass 

is increased from 1 to 2 amu. This correlation produces a νH/νD ratio of 1.067 (as quoted in 

Table IV.3) and the aforementioned mode exhibits an avoided crossing with that at 1213.1 

cm-1 containing C-H IPBs. It thereby generates a small increase in the frequency in the 

heavy isotopomer. This increase is listed in Table IV.3 as 1.22 cm-1 and when compared 

with TBP, consistent ISR values of 0.999 are obtained. No curve crossings occur between 

these two modes in TAP. The TAP values chosen for inclusion in Table IV.3 were selected 

on the basis of the similarities of their motion with the three other tetrapyrrole molecules. 
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Figure IV.8: As for Figure IV.7 except for the Raman-active B3g symmetry IP N-H 
bending modes.  

 

IV.4: Discussion 
IV.4.I: Comparison with Other Calculations 

In the detailed theoretical study carried out by Li & Zgierski6 on establishing a force field 

for free-base porphyrin, upward frequency shifts were proposed upon deuteration for the 

B1g and B2u IP bending modes. However, the previous study focussed only on the N-H 

stretching and in-plane bending modes. Because of the use of a different axis system in the 

current and previous works, Li et al6 B1g symmetry corresponds to this works B3g mode, 

while the B2u modes are the same in both. These workers proposed (Scheme I, Ref. 6) a 

large increase in the frequency of two modes upon H/D isotopic substitution, both of which 

involved in-plane bending. Specifically they proposed that the B1g N-H IP bending mode 

crosses with a pyrrole half ring stretch mode. This had the effect of shifting the frequency 

of the pyrrole mode up by 56 cm-1, from 976 cm-1 in H2P to 1032 cm-1 in D2P. The other 
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mode which showed this effect was a B2u mode, in which the asymmetric N-H IP bending 

vibrations and the pyrrole ring stretch cross. This causes the pyrrole stretch to shift up in 

energy by 108 cm-1, from 986 cm-1 to 1094 cm-1. It is not evident why the OP bending 

modes were not analysed for this effect in the earlier study6, but it may have been due to 

their interest in the role of the N-H stretch and IP bending vibrations in the tautomerism of 

free-base porphyrin.  

As indicated in the upper left panels in Figure IV.7 and Figure IV.8, reverse isotope shifts 

of this magnitude are not exhibited by porphyrin in the B3g and B2u IP bending modes 

respectively. It is immediately clear that there are significant differences between Li’s 

results6 and the findings of the present DFT method10. The earlier work identified only two 

instances of this increased frequency, both of which are much larger than what is observed 

in this study. This may arise for a number of reasons. Their calculations were carried out 

with the GF matrix method and a valence force field. While their method was 

parameterised to give a good match with experimental data it is likely the valence force 

field is not capable of accounting for all the interactions present in molecules of this size. 

Complete sets of force constants are of course available from quantum chemical 

calculations and the use of high level DFT calculations are currently the most powerful for 

predicting the ground state vibrational frequencies of large polyatomic molecules. Based 

on the favourable findings from earlier DFT results on ZnPc and H2Pc in matrix-IR 

spectra5 it is likely that the present results are a more accurate reflection of the extent of the 

up-shifted frequencies.  

Li et al.6 identified the NH(D) IPB B2u modes at 1223 (825) cm-1, corresponding to 1261 

(883) cm-1 in our calculations: these modes exhibits the highest % of NH(D) IPB motion 

(Table IV.5). The mode which involves also non-negligible NH bendings is identified at 

986 cm-1 (ν44a) in the previous work and corresponds to the mode at 1003 cm-1 in the 

present work (14.8% N-H IPB in Table IV.5). This mode is found to correlate with the 

mode at 883 cm-1 in the deuterated species, i.e. the mode involving the highest % N-D IPB 

motion. The curves of Figure IV.7 and Figure IV.8 show clearly the correlations between 

H and D species, as summarized in Table IV.5. In the discussed case, they show that 

modes at 1261 and 1003 cm-1 in the H species correlate with modes at 1120 and 883 cm-1, 

with a decrease of the N-“H” IPB % in the highest frequency mode and an increase of the 

N-“H” IPB % in the lowest frequency one, explaining the earlier result. (Note that the B2u 

mode at 1094 cm-1 mentioned by Li et al.6 in the correlations for the D species corresponds 
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to a mode at 1076 cm-1 in our calculation, a mode which does not involve N-D IPB 

motion). Because of a strong mixing of various atomic motions in B1g and B2u modes in the 

frequency range of interest, a slightly different description of normal modes can have 

important consequences in their assignments, as proved by this last discussion. 

IV.4.II: Comparison with Experiments 

The results of the current calculations can be compared with experimental isotope 

substitution work, but because the mass-related shifts are quite small in the congested 1500 

- 500 cm-1 spectral range, high resolution methods yielding narrow line transitions are 

required for analysis. The matrix-isolation technique is particularly well suited for this 

work. Currently however, only a very limited number of tetrapyrroles have been examined 

in this way. One that has been mentioned already is the earlier work on the 

phthalocyanines5 from which the current investigation has emerged. The other is the earlier 

study of Radziszewski et al13 who used matrix-IR spectroscopy to look at deuteration 

effects in free-base porphine. In order to compare the present theoretical results on 

porphine with the experimental matrix work14, the simulated DFT IR absorption spectra of 

H2P and D2P are shown scaled by a factor of 0.98 in Figure IV.9 on the same spectral 

range as shown in Figure 12 of the Radziszewski et al13 paper. The agreement between the 

two studies is very good which testifies to the strength of the current DFT method in 

predicting not only the IR absorption frequencies of the tetrapyrroles but also their 

intensities.  
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Figure IV.9: Low resolution (fwhm = 4 cm-1) plots of the IR absorption spectra generated 
by the DFT/B3LYP method for the vibrational modes of H2P and D2P. The spectral range 
and format has been selected for direct comparison with the matrix-IR absorption data 
published by Radziszewski et al15. The predicted values are scaled by a factor of 0.98 
throughout.  

 

In agreement with Radziszewski et al13 the mode of H2P which they observed at 731 cm-1 

and attributed to OP bend, is predicted at 739.9 cm-1 (scaled x 0.98, 725.1 cm-1) in the 

present calculations. However, their comment that this motion will be distributed over 

several fundamental modes of D2P is not borne out by our calculations. As Figure IV.10 

shows (and listed in Table IV.3), the N-D OP bend is well defined – it is located at 541.8 

cm-1 (scaled x 0.98, 530.9 cm-1) in a sparse region of the IR spectrum. Moreover, it is 

actually much stronger that the corresponding H2P OPB so it should be easily identified. 

However, Radziszewski et al13 did not present any spectra for this lower frequency region. 

The reason it is not diluted over several modes is evident in Figure IV.4. As indicated in 

that plot, its mass dependence is limited to just two modes both of which exhibit the simple 

root of mass dependence. This simple behaviour is entirely attributable to the small number 
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(10) of B3u symmetry modes listed in Table IV.1 for the out-of plane bend of free-base 

porphyrin. Essentially identical behaviour is predicted for TAP, while Figure IV.4 predicts 

the OPB will only be slightly more complex because of the crossing of a single, lower 

frequency mode in TBP and Pc.  

 

Figure IV.10: High resolution (fwhm = 0.2 cm-1) plots of the IR absorption spectra 
generated by the DFT/B3LYP method for H2P and D2P. The spectral range presented is the 
region where the large isotope shift on the OP bend is predicted. This range was not 
presented in the matrix-IR absorption data published by Radziszewski et al.13  
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Figure IV.11: High resolution (fwhm = 0.2 cm-1) plots of the IR absorption spectra 
generated by the DFT/B3LYP method for H2TAP and D2TAP. The spectra range and 
format has been selected for examination of the region where the large isotope shift on the 
OP bend is predicted to occur. 

 

A key aspect of the current work is the upward shift in the frequencies of specific modes 

(highlighted in Table IV.3) in the heavier isotopomer upon H/D substitution. As indicated 

in that table, the most pronounced instance of this effect in free-base porphine is expected 

in the OP bending mode where the 651.4 cm-1 mode shifts up to 657.9 cm-1. This region is 

also highlighted in Figure IV.10 on an expanded intensity scale. Unfortunately this region 

is not presented in the paper by Radziszewski et al15 (perhaps for experimental reasons). 

However, this effect will not be immediately evident in the recorded spectra, because while 

the D2P mode at 657.9 cm-1 has acceptable intensity (4.3 km/mol), that of the related H2P 

mode at 651.34 cm-1 is very weak (0.08 km/mol). In the experimental spectrum of the 

heavier isotope this ISR effect will present an “unknown” peak in the spectrum not easily 

connected with H2P. However, using the matrix-isolation technique which has high 

sensitivity, it should be possible to observe the ISR effect in porphine as already done in 

phthalocyanine5. 
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IV.5: Conclusions 
The results of the present DFT calculations of H/D substitution on the free-base 

tetrapyrroles can be summarised as follows. For the high frequency, N-H bond stretching 

modes are very well localized and crossings occur with the C-H stretching modes. As these 

internal modes involve such different motions and are very localised, no inter-mode 

coupling occurs, yielding the expected H2/D2 ISR ratios. 

Contrary to usual expectations, the lower frequency N-H OP bending motions are not 

distributed over several modes as they are not numerous. As a result, these modes involve 

well defined out-of-plane bending motions in both the N-H to N-D bonds. For the smaller 

tetrapyrroles (P and TAP) no crossings occur for the B2g symmetry Raman-active modes. 

In the larger molecules crossings occur but the B2g modes of Pc and TBP still involve 

localised N-H motions as illustrated by the similarity with the simple mass dependence 

curves. Due to a single mode crossing which occurs in both Pc and TBP, frequency 

increases do occur in the heavier isotopomer but because of the involvement of only two 

modes, instances of reversed ISR can be easily identified in the mass dependent 

calculations.  

The IR-active B3u OP bending modes are slightly more numerous than their Raman 

counterparts and exhibit more complex behaviour. For all four molecules the N-H OP 

bending mode is crossed by two modes. Clear differences exist between crossings of these 

two modes. One is very weakly coupled with the N-H OP bend and passes directly through 

while the other mode is strongly coupled and produces a large avoided crossing. A 

consequence of the strong coupling in the latter case is that the frequency in the heavier 

isotopomer increases significantly yielding reversed ISR values. In all these situations the 

vector diagrams of the motions reveal a reversal of the N-H and N-D motions between the 

light and heavy isotopomer. Based on predictions made in the present work the instance of 

an ISR which has already been identified in matrix-IR work on the phthalocyanines, it 

would appear that TAP is the ideal system to make a definitive study of this effect. 

The OPB modes provide simple examples of the effect of avoided crossing. In situations 

where no effect on the crossing mode without coupling (showing simple crossing) to be 

compared with reversed ISR values obtained in case of large avoided crossing (crossing 

between modes involving same atomic motions) leading to a mixture of these motions 

strongly depending on small molecular effects such as the mass of H. 
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More complicated behaviour is observed for the N-H IP bending modes than the OP 

bending modes just described due to the larger number of modes with B2u and B3g 

symmetries. As a result, the N-H motions are dispersed over many normal modes. 

Accordingly, the decrease in the NH frequencies is much less than the mH
-1/2 mass 

dependence due to the dilution of this motion over several modes. No IPB mode can be 

identified as “the” NH or ND IPB mode, percentages of NH(D) motion are always below 

30%. Another consequence of this is that most of the modes are nearly parallel which 

reduces the extent of modes crossings. Crossings appear in congested spectral region 

where a mode exists involving no NH(D) motion. This is the case in the region of 1000 cm-

1 in all molecules. In all instances the crossing is direct and the modes are clearly not 

strongly coupled. For the B3g modes couplings occur for some molecules in the high 

frequency (1200 cm-1) range but produce only weak avoided crossings. The best examples 

of this are present in porphyrin and TBP. This coupling does not occur in TAP and only 

weakly in Pc.  
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Chapter V: Visible Spectroscopy of GaPcCl Isolated in 
Inert Gas Matrices 

 

V.1: Introduction 
This chapter presents the visible absorption and luminescence spectroscopy of GaPcCl 

isolated in inert gas hosts, focusing on the region of the Q band. Emission spectra recorded 

with pulsed laser excitation will be presented in each host matrix and the vibronic bands 

will be assigned with the help of high level DFT calculations. An analysis of the vibronic 

structure in emission is performed by comparing it to the ground state Raman results 

presented in Chapter III. Excitation spectra were recorded by monitoring specific emission 

bands and scanning with the dye laser. A strong similarity was observed between the 

absorption, emission and excitation spectra. This allows for a vibrational assignment of the 

bands present in absorption/excitation. Fluorescence lifetimes were also measured in the 

matrix and compared to lifetime values predicted by TD-DFT calculations. Due to the well 

documented non-linear optical properties of aluminium phthalocyanine chloride1,2, GaPcCl 

was investigated to see if it exhibits amplified emission (AE) in the solid state at cryogenic 

temperatures as well as the conditions required for samples to exhibit this effect.  

 

V.2: Experimental 
Matrix-isolation experiments were performed in the Low Temperature Laboratory at 

Maynooth University of the National University of Ireland, using the apparatus described 

in Chapter II. Matrix samples were prepared in a variety of hosts which included the 

molecular gas N2 and the rare gases Ar, Kr and Xe. Various deposition conditions were 

used in the preparation of samples, the specifics of which led to different spectral 

properties of a given sample. The three parameters which could be altered were (1) the 

temperature of the oven, (2) the flow rate of the host gas and (3) the temperature of the 

matrix window during deposition. The first two parameters controlled the concentration of 

the sample and the third parameter was associated with properties such as the number of 

sites present in the sample, the extent of aggregation and the optical quality of the sample. 

In addition to this, selected samples were also annealed to investigate the stabilities of the 

sites in each matrix. Solution phase absorption spectra of GaPcCl in ethanol were recorded 
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with a Perkin-Elmer Lambda 35, UV-Vis Spectrometer. Raman experiments were carried 

out in the Focus Institute in DIT, the specifics of which are provided in Chapter II. 

 

V.3: Results 
The results section of this chapter introduces the luminescence spectroscopy of GaPcCl 

isolated in various inert gas hosts. The main spectroscopic results will be presented for 

each individual host, which involve the following; 

Sample preparation techniques 

Absorption spectroscopy 

Emission spectroscopy and emission lifetimes 

Excitation spectroscopy 

Amplified emission 

After the aforementioned topics have been presented for each matrix host, a comparison of 

each host be provided. This highlights some of the effects each host has on the 

spectroscopy of the molecule. A more detailed analysis of the main trends observed are 

presented in the Section V.4, with the exception of the amplified emission results, which is 

discussed in greater detail in Chapter VI. 

V.3.I: Argon 

V.3.I.a: Sample Optimization 

GaPcCl isolated in solid Ar was prepared by co-depositing hot phthalocyanine vapour with 

the host gas onto a cryogenically cooled CaF2 window. In order to obtain the best samples 

for spectroscopic studies, a number of different deposition conditions were examined and 

will be presented below. GaPcCl concentrations were controlled by changing the oven 

temperature and gas flow. Sample composition, i.e. the formation of aggregates, number of 

sites and the resolution of absorption bands were controlled by changing the window 

temperature. The effect of the different deposition conditions were monitored using 

absorption spectroscopy in the region of the Q band. 
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Figure V.1 presents a concentration study of GaPcCl/Ar. The blue trace shows a sample 

prepared with an oven temperature of 324 °C. The spectrum contains two regions of 

interest; from ~700 to 550 nm which corresponds to the Q (S1)  G (S0) transition3,4 and 

the vibronic bands associated with this transition, and the region from ~400 to 300 nm 

which arises from the B (S2)  G (S0) transition3,4. The red trace shows the spectrum 

recorded for a sample prepared with a higher oven temperature of 357 °C. This spectrum is 

saturated in the region of the band origin of the Q band, but the vibronic structure 

extending up to 603 nm is more resolved. The weaker bands located further to the blue (up 

to 550 nm) are beyond the expected region of fundamental vibronic bands of GaPcCl. This 

has been demonstrated in Chapter III, where no fundamental vibrational modes exist 

between 1600 and 3000 cm-1. Instead the bands between 600 – 550 nm in Figure V.1 may 

be caused by combination modes. These are not evident in the low oven temperature 

sample due to their weak intensity.  

 

Figure V.1: The effect of the oven temperature on the absorption spectrum of GaPcCl 
isolated in solid Ar which was prepared with a window temperature of 10 K. The 
absorption spectrum of the sample made with an oven temperature of 10.2 mV (324 °C) is 
shown by the blue trace and the sample formed with an oven temperature of 11.4 mV (357 
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°C) is shown by the red trace. The sharp peak located on the B band at 330.6 (highlighted 
by the asterisks) was present in the earlier samples prepared. This peak corresponds to 
small amounts of pyrene impurities. This material was studied on the matrix-isolation rig 
prior to GaPcCl. Later samples do not show the same band, indicating the impurity was 
removed after several samples were prepared. 

 

A series of bands to the red of the B band are located between 400 and 450 nm, whose 

origin is unknown. They are too far to the red to belong to pyrene (see figure caption) and 

too far to the blue to be vibronic bands of the Q  G transition of GaPcCl. These bands 

may in fact be weak electronic transitions of GaPcCl that are distinct from the Q and B 

bands. This will be discussed in more detail after the TD-DFT results have been presented 

in Section V.4.I. 

The two spectra presented in Figure V.1 show a striking difference in the relative 

absorption strengths. The sample prepared with the low oven temperature deposition (blue 

trace) has a maximum optical density of 0.604 at 670.3 nm, whereas the high temperature 

sample (red trace) is saturated at this wavelenth in absorption. The vibronic bands 

extending up to 603 nm are not saturated in either sample and can be used to get an 

estimate of the optical density of the high temperature sample. The low temperature sample 

has an OD of 0.084 for the band at 603 nm, whereas the high temperature sample has an 

OD of 0.740. This represents an 8.8-fold increase in intensity of the high temperature 

sample. Assuming the same ratio exists on the 0-0 band, the optical density of the high 

oven temperature sample works out to be 5.52. The effect of concentration on samples has 

ramifications in the spectral properties of the emission and excitation spectra, which will 

be presented in a later section. Specifically, high concentration samples exhibited 

amplified emission, whereas lower concentrations were restricted to fluorescence. 

Figure V.2 presents absorption spectra of GaPcCl/Ar samples prepared with the optical 

window held at the specified temperatures during deposition. Only the region of the Q 

band has been shown for clarity. The sample prepared at 22 K (black trace) shows the best 

resolution on the 0-0 transition and the accompanying vibronic bands. It appears that there 

are multiple sites present in this matrix due to the splitting observed on the vibronic bands. 

This sample also appears to contain some aggregate species which is manifested as a broad 

band that is red-shifted with respect to the band origin. The sample prepared at 18 K (red 

trace) shows similar structure to the 22 K sample, with the 0-0 transition located at 670 nm 
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and vibronic bands extending up to 603 nm. The resolution on the 0-0 band as well as the 

vibronic bands is slightly less in this sample and there is an indication of several sites being 

present due to the structure on the vibronic bands. A smaller amount of aggregate species 

is present in this sample but a weak aggregate band can be clearly seen at 673.9 nm. The 

blue trace was prepared with a window temperature of 10 K, which is typically the 

minimum temperature achievable with the cryogenic apparatus. The band origin (0-0 

transition) is identifiable at around 670 nm, as indicated by the dashed line, but is much 

less resolved than in the spectra recorded for the higher temperature samples. The vibronic 

bands are barely resolved and are quite noisy. It is difficult to tell from absorption if there 

are many sites present in this matrix, but it does not appear that many aggregates have 

formed.  

 

Figure V.2: The absorption spectra of GaPcCl isolated in solid Ar prepared with different 
temperatures of the CaF2 window. The blue trace was prepared with a window temperature 
of 10 K, the red trace with temperature of 18 K and the black trace with a temperature of 
22 K. All samples were prepared with oven temperatures below 330 °C to prevent 
saturation of the strongest absorption band at 668.4 nm.  
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The temperature of the CaF2 window clearly changes the composition of the sample. An 

increasing resolution of the 0-0 band is evident as the window temperature increases. This 

is highlighted with the dashed line in Figure V.2, which best matches the 0-0 band of the 

22 K sample. A sharpening on the vibronic bands with increasing temperature can also be 

observed, which indicates a matrix containing better resolved sites. The improved 

resolution of high temperature depositions means that the 22 K data will be analysed in the 

most detail in the upcoming sections. Aggregation becomes more of an issue at higher 

temperatures where the matrix is softer and clustering can occur more easily. The 

properties of these sites of isolation will be investigated in more detail later by studying the 

emission and excitation spectroscopy of these matrices. 

V.3.I.b: Absorption 

The absorption spectrum of a GaPcCl/Ar sample deposited at 22 K is presented in Figure 

V.3 in the region of the Q band prepared with an oven temperature of 340 °C. As 

demonstrated earlier, these deposition conditions yielded the best resolution on the 0-0 

transition and the vibronic bands. The band origin of this spectrum is located at 670.0 nm 

(14925 cm-1), with vibronic bands extending up to 603.6 nm (16567 cm-1). This highest 

energy resolved vibronic band is located 1642 cm-1 above the 0-0 transition, which is in the 

same energy region of the highest frequency fundamental vibrational modes (with the 

exception of the C-H stretching modes) observed in the ground state DFT calculations (see 

Table III.A4). This sample appears to contain more than one site, as indicted by the pairs 

of peaks evident through the spectrum. These features were not apparent in every matrix 

sample prepared, particularly samples made with lower window temperatures. A partially 

resolved peak from an aggregate species is evident at 673.9 nm, to the red of the 0-0 band. 

Because this peak is not present in the absorption spectra of all GaPcCl/Ar samples, it must 

originate from a species that is dependent on the sample deposition conditions, and 

therefore cannot be from the well-isolated molecule. A list of the absorption bands and 

their shift from the band origin are presented in Table V.1. 



                           Chapter V: Visible Spectroscopy of ClGaPc Isolated in Inert Gas Matrices 
 

182 
 

 

Figure V.3: Absorption spectrum in the region of the Q band of GaPcCl isolated in solid 
Ar at cryogenic temperatures. The above sample was prepared with a window temperature 
of 22 K and an oven temperature of 340 °C. The vibronic bands have been identified and 
labelled, with their values given in nm. The equivalent energy values are given in Table 
V.1. 
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Table V.1: Absorption bands of GaPcCl isolated in a solid Ar matrix taken from Figure 
V.3. The bands have been shown in wavelength, energy and as their shift from the band 
origin (0-0). 

Wavelength 

(nm) 

Energy 

(cm-1) 

Shift from 0-0 

(cm-1) 
673.9 14839 -86 
670.0 14925 0 
668.4 14961 36 
661.0 15129 203 
658.0 15198 272 
657.8 15202 277 
657.8 15202 277 
644.6 15513 588 
644.5 15516 591 
641.0 15601 675 
639.5 15637 712 
638.2 15669 744 
633.0 15798 872 
622.1 16075 1149 
620.0 16129 1204 
613.6 16297 1372 
612.6 16324 1398 
603.6 16567 1642 

 

V.3.I.c: Emission 

Fluorescence spectra of GaPcCl isolated in solid Ar were recorded with laser excitation 

using the apparatus described in Chapter II. The spectrum shown by the red trace in Figure 

V.4 was recorded by exciting into the 0-0 band in absorption (λex = 670.3 nm) and gives 

the simplest fluorescence spectrum. It exhibits a set of sharp emission bands (linewidth 

~10 cm-1) extending up to 747 nm. These bands correspond to the excited vibrational 

levels in the ground electronic state. Due to this excitation being into the 0-0 transition in 

absorption, the 0-0 band is not visible in this emission spectrum. However, this region has 

been recorded with λex = 662.7 nm, and yields peaks 0 – 4. The peaks labelled 0 to 23 are 

presented in Table V.2. An indication of the presence of emission from aggregate species 

is evident due to the broad red shoulder on some of the intense emission bands.  Emission 

from a dominant site is observed with this excitation wavelength and allows for a detailed 

analysis of the vibronic bands in emission to be performed. This analysis will be carried 

out in Section V.4.III. 
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Figure V.4: Emission spectrum of GaPcCl/Ar recorded by exciting into the 0-0 band in 
absorption (λex =670.3 nm, red trace). The region of the 0-0 transition in emission was 
recorded at 662.7 nm (blue trace). The vibronic bands have been labelled, with the 
wavelength values of the peaks given in Table V.2. Peaks have been labelled on the basis 
of their resolution. 
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Table V.2: Positions of the emission bands of GaPcCl isolated in solid Argon. The values 
are taken from the red site, obtained by exciting into the 0-0 band in absorption. The 
labelling system is presented in Figure V.4. 

Peak 

 # 

Wavelength  

(nm) 

Energy  

(cm-1) 

Shift from 0-0  

(cm-1) 

0 670.112 14922.9 0.0 
1 674.619 14823.2 99.7 
2 675.110 14812.4 110.5 
3 676.597 14779.9 143.0 
4 677.825 14753.1 169.8 
5 679.871 14708.7 214.2 
6 681.424 14675.2 247.7 
7 683.386 14633.0 289.9 
8 684.284 14613.8 309.1 
9 686.407 14568.6 354.3 

10 692.769 14434.8 488.0 
11 697.980 14327.1 595.8 
12 702.291 14239.1 683.8 
13 703.267 14219.4 703.5 
14 705.867 14167.0 755.9 
15 709.927 14086.0 836.9 
16 710.738 14069.9 853.0 
17 716.254 13961.5 961.3 
18 725.894 13776.1 1146.8 
19 734.633 13612.2 1310.6 
20 736.574 13576.4 1346.5 
21 739.162 13528.8 1394.0 
22 742.719 13464.0 1458.8 
23 747.246 13382.5 1540.4 

 

A series of fluorescence spectra recorded with specified excitation wavelengths in the 

vicinity of the band origin are presented in Figure V.5. The red trace was recorded by 

exciting into the 0-0 transition in absorption (λex = 670.3 nm) and shows the same data 

presented in Figure V.4. The effects of exciting to the blue of the 0-0 band is shown by the 

blue trace (λex = 668.9 nm) of Figure V.5. The emission spectrum changes considerably 

compared to the red trace. A series of emission bands arise with energies that are blue 

shifted with respect to the bands observed in Figure V.4, the most intense of which have 

been labelled ‘B’. These peaks correspond to the vibronic bands in emission from a ‘blue’ 

site. A series of bands (labelled ‘R’) are also present in this spectrum, whose energies 

exactly match those observed in the red trace. This is emission from the dominant ‘red site’ 

which was not directly excited by the laser. The vibronic bands from both sites emit, 
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causing a ‘doubling’ of the emission spectrum. The shift, which is constant throughout the 

entire emission spectrum, is 26 cm-1.  

 

Figure V.5: Fluorescence spectra of GaPcCl/Ar recorded with a range of different 
excitation wavelengths. 

 

Excitations with wavelengths even further to the blue from the 0-0 transition are shown by 

the black and green traces, where λex = 662.7 and 661.3 nm respectively. Exciting in this 

region allows for the 0-0 band in emission to be observed. The location of the 0-0 band in 

emission is also dependent on the excitation wavelength as each site has a unique band 

origin. The band origin of the red-most site has been identified as 670.19 nm. It can also be 

seen that the site splitting of bands (i.e. emission from a blue and a red site) which was 

observed in the blue trace is also present with these excitation wavelengths. The energy 

difference between the emission bands of the red and blue sites does not match the 

difference observed in the blue trace. This indicates that there are more than two sites, and 

this rich site structure of GaPcCl/Ar will be investigated in more detail later using 2D 

excitation-emission spectra. Due to the relative simplicity of the fluorescence spectrum 
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recorded by exciting into the 0-0 band, these results will be presented and discussed in the 

greatest detail, unless otherwise stated. 

The emission decay times of the excited electronic state of GaPcCl/Ar were measured 

using the apparatus and methods described in Chapter II, namely pulsed dye laser 

excitation and iCCD detection. Decay curves of a number emission bands are shown on a 

semi-log plot in Figure V.6. The decay profiles of the shorter wavelength emission bands 

closer to the 0-0 transition are shown in the left panel, and those of longer wavelength 

emission bands in the right panel. This time profile of the excitation laser pulse is also 

shown for comparison in each panel. A wavelength dependence on the emission decay 

time is evident, due to the decay profiles of the various emission bands not matching up 

exactly. The longer wavelength emission bands appear to have the shortest decay times, 

with the shorter wavelength emission bands being more long lived. 

 

Figure V.6: Emission decay curves of GaPcCl/Ar recorded for a number of different 
emission bands. The profile of the laser decay is shown for comparison. 

 

The temperature dependence on the emission lifetime was examined by recording time-

resolved spectra with different CaF2 window temperatures. Time-resolved scans were 

recorded at intervals of 1 K from 10 – 15 K for the sample of GaPcCl/Ar. The results of 
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this study are presented in Figure V.7, in which the emission band at 747.2 nm was 

monitored. The decay profiles recorded at each temperature appear almost identical, with 

slight differences within the margin of error of the experimental setup. This demonstrates 

that this emission decay time is not sensitive to changes in temperature, which is an 

indication that the fluorescence lifetime is being measured.  

 

Figure V.7: Emission decay curves of GaPcCl/Ar recorded at the specified sample 
temperatures.  

 

Figure V.8 shows a single exponential fit overlaid with the emission data in order to 

determine the excited state lifetime. The emission band at 736.7 nm has been chosen as it 

is sufficiently far from the band origin to give a more representative value for the lifetime 

than a short wavelength emission band. The lifetime has been measured as 2.3 ns in Ar. 

This value is in the expected range for a fully allowed electronic transition. The residuals 

shown by the top panel of Figure V.8 indicate an imperfect fit of the single exponential 

function with the experimental data. This means there may be some slight deviation in the 

actual lifetime compared to what has been measured, but due to the short timescales of the 

phenomena being measured, the difference is within the range of the error of measurement.  
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Figure V.8: Semi-log plot of the emission decay curve of GaPcCl extracted from time-
resolved emission spectra recorded at 10 K in solid Ar. The shape of the excitation pulse of 
the laser is also shown. The emission band monitored was located at 736.7 nm and its 
lifetime was measured at 2.3 ns. 

 

V.3.I.d: Excitation 

Excitation spectra were recorded in one of two ways; both of which have been described in 

detail in Chapter II. Lamp scans recorded with the PMT were primarily used for long range 

excitation spectra, whereas laser scans recorded with the iCCD were limited by the tuning 

range of the dye. The advantage of the latter is considerable, as the excitation spectra of all 

emission wavelengths are recorded simultaneously at high resolution (~1 cm-1). From here 

on, all excitation spectra presented will have been recorded by scanning the dye laser and 

monitoring emission with the iCCD, unless otherwise stated. Excitation spectra of 

GaPcCl/Ar recorded for a series of different emission bands are shown in Figure V.9.  
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Figure V.9: Laser excitation spectra of GaPcCl recorded in Ar. The emission bands 
monitored were located at 700.58, 702.37 and 706.35 nm. The shifting of the spectra with 
respect to the excitation wavelength is an indication of multiple sites. 

 

An example of a 2D-EE plot from which these spectra were extracted is shown in Figure 

V.A6. Bands start to inhabit the spectrum from about 670 nm up to 625 nm. The spectra 

show some nice structure and narrow linewidths. The 0-0 band of the excitation spectrum 

is very sharp, with the bands at higher energies becoming slightly broader. A migration of 

the band origin in excitation is evident; an effect of monitoring emission bands from 

different sites in the sample. The same vibronic bands appear in all three spectra shown in 

Figure V.9, albeit with their energies shifted. When the excitation spectra are plotted as the 

shift from the 0-0 transition (as shown in Figure V.A1), the energies of the vibronic bands 

are almost identical. The main difference between the blue curve from the other two is the 

feature immediately to the blue of the 0-0 band (~667 nm). The blue trace shows a very 

broad emission band whereas the red and green traces show fairly narrow bands in the 

corresponding regions. The resolution on the excitation scans recorded for the 700.58 nm 
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emission band (blue trace) is superior to the other two spectra, due to it being the dominant 

site in the matrix and thus carrying the greatest intensity in emission (and hence 

excitation). The broad wings to the red of the narrow 0-0 lines probably arise due to 

aggregate species in the sample, similar to what is observed in absorption. 

V.3.I.e: Amplified Emission 

In samples with an optical density greater than 2, excitation into selected absorption bands 

exhibited a significant increase in the intensity of one of the emission bands with only a 

modest increase of laser power. The fluorescence spectra presented in Figure V.5 were 

recorded using only the oscillator of the dye laser, whereas spectra in the upcoming section 

were recorded with the pre-amplifier. An example of the amplification of one of the 

emission bands of GaPcCl in the Ar matrix is presented in Figure V.10, where the band at 

747.16 nm exhibits the effect. The main area of the plot shows the normalized fluorescence 

spectrum (red trace) produced with excitation into the 0-0 band using the oscillator. When 

the dye laser power is increased, by using the pre-amplifier, the vibronic band at 1540 cm-1 

from the band origin, exhibits a huge increase in intensity as shown by the black trace. 

Such behaviour is an indication that this process being observed might be amplified 

emission (AE). The inset spectrum shows the bands in fluorescence and amplified 

emission, both of which have been normalized. As well as the increase in intensity, there is 

also an obvious narrowing of the linewidth of the AE band; the linewidth of the 

fluorescence band is 10 cm-1 compared to 4 cm-1 for the AE band. The full extent of the 

narrowing of the AE band is limited by the resolution of the 1200 groove/mm grating (0.04 

nm) of the monochromator. A red shoulder on both the fluorescence and amplified 

emission band is apparent, which will be discussed in more detail in Chapter VI. 
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Figure V.10: Emission spectra of GaPcCl recorded in an Ar matrix at 10 K with an 
excitation wavelength of 670.3 nm. The red trace presents the normal emission 
(fluorescence) produced with lower laser power (10 μJ/pulse). The black trace shows the 
significant increase in the intensity of the 747.16 nm emission with the use of 
approximately 100 μJ/pulse. The inset on the right shows details of the lineshape changes 
on the 747.16 nm band under both low and high pulse energies. 

 

The band at 747.16 nm was not the only one to exhibit the effect; by changing the 

excitation wavelength, the position of the amplified band also changes, as demonstrated in 

Figure V.11. As the excitation wavelength moved to the blue so did the AE band. With 

certain excitation wavelengths, such as 668.6 and 666.4 nm, several bands were amplified 

at once. Two such emission spectra are shown by the blue and black traces of Figure V.11 

respectively. The origin of the duplicate AE bands is from the presence of multiple sites in 

the matrix, similar to what was observed in fluorescence. In cases where multiple AE 

bands were observed in a single spectrum, the splitting between the bands was identical to 

those observed in the corresponding fluorescence spectra (some of which are shown in 

Figure V.5). This is another strong indication that many sites exist in this matrix that are 
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sufficiently occupied to exhibit the effect, and will be discussed in more detail in Chapter 

VI. The green trace of Figure V.11 shows the vibronic bands (in fluorescence) of GaPcCl 

from a pair of sites, located at 13610 (734.8) and 13570 cm-1 (736.9 nm), which are 

comparable in intensity. These two peaks are fluorescence bands of a common vibronic 

level from different sites. The next common vibronic level of these two sites shows a 

significant intensity difference. The band from the blue site at 13420 cm-1 (745.2 nm) has a 

similar intensity to the two fluorescence bands mentioned previously. The corresponding 

vibronic band from the red site at 13380 cm-1 (747.4 nm) has gained significant intensity, 

meaning this site has evidently reached the threshold value required to exhibit AE with an 

excitation wavelength of 657.8 nm. 

 

Figure V.11: Amplified emission bands of GaPcCl/Ar recorded with various excitation 
wavelengths. Changing λex excites into different/multiple sites and shows evidence for the 
complex site structure of the sample. 

 

Figure V.12 presents the decay curve of the emission band at 747.16 nm shown in Figure 

V.10 as well as a nearby fluorescence band which does not exhibit an increase in emission 
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intensity. The fluorescence band (black squares) is comparable to the decay curve shown in 

Figure V.8, whereas the AE decay curve (blue stars) is similar to the laser profile. The 

emission band at 747.16 nm was presented after being recorded with both the low and high 

power laser excitation intensities (Figure V.10). When emission was recorded with the 

oscillator (low laser power), regular fluorescence was observed and the decay time of the 

band at 747.16 nm matched that of the results shown in Figure V.6. When the pre-amplifier 

was used to record emission, the fluorescence band at 747.16 exhibited AE and the decay 

time shortened significantly, resembling that of the laser pulse, as demonstrated in Figure 

V.12. Also shown in this figure is the decay curve of a normal fluorescence band (λem = 

736.66 nm) taken from the same time-resolved emission spectrum. From the spectral and 

temporal behaviour observed on this band, it is concluded that the 747.16 nm emission is 

being amplified when the excitation laser intensity exceeds a certain value. It corresponds 

to reaching a threshold value in the population inversion between ν′ = 0 of the excited (Q) 

electronic state and ν′′ = 1 of a specific vibrational mode in the ground electronic state. For 

the mode involved, spontaneous emission is amplified by stimulated emission once the 

threshold value is exceeded. 

 

Figure V.12: The emission decay profile of GaPcCl isolated in an Ar matrix. The black 
squares represent the decay of a normal fluorescence band and resemble the decay in Ar 
observed in Figure V.8. The blue stars come from monitoring the decay of the amplified 
emission band at 747.16 nm. The fact that this band has a similar decay time to the laser 
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temporal profile (red triangles) is further proof that the process is being caused by 
amplified emission. 

 

A series of excitation spectra were recorded of the AE band from various sites and are 

shown in Figure V.13, along with the excitation scan of a fluorescence band. The 

excitation spectrum of the fluorescence band at 702.37 nm is shown as the pink trace in 

Figure V.13. The fluorescence band in question is a separate vibronic band to the one 

which exhibits AE, coming from the same site as the spectrum shown by the red trace, and 

contains several fairly well resolved peaks. A comparison of this spectrum with excitation 

spectra from other sites is shown in Figure V.9. This spectrum appears quite noisy when 

compared to the excitation spectra of some of the AE bands. This is due to the huge 

increase in intensity of emission in these spectra, which completely drowns out electronic 

noise from the CCD detector. There also appears to be a narrowing of the excitation bands 

in the AE spectra, similar to what is observed in emission, but not as dramatic. 

 

Figure V.13: A selection of excitation scans of the site specific AE bands of GaPcCl/Ar 
involving the vibronic mode at 1540 cm-1. Also shown for comparison is an excitation 
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spectrum of a fluorescence band (pink trace). The vertical labels identify the wavelength 
positions of the maxima of the most intense band in each spectrum. 

 

The sharp resolved lines on the excitation spectra at 670.30, 669.02, 668.42 and 667.99 nm 

in Figure V.13 correspond to the zero phonon lines (ZPL’s). These ZPL’s are shifted from 

the 0-0 transition by 7, 31, 44 and 54 cm-1 respectively. The shifting of the ZPL with 

respect to the emission wavelength being monitored corresponds to a progression of the Q 

 S0 transition in excitation. Each AE excitation spectrum shows a very sharp and 

identifiable ZPL (coming from different sites), with a much weaker phonon side band 

(PSB) to the blue. Overlap between the ZPL of a ‘blue site’ with the PSB of a ‘red site’ 

means that excitation into the ZPL of the blue site can simultaneously excite the PSB of the 

overlapping red site. This has been shown earlier in the fluorescence data (Figure V.5), 

where excitation to the blue of the 0-0 transition caused emission from the site being 

directly excited into, as well as emission from the dominant red site. A similar effect is 

demonstrated in Figure V.11 for the amplified emission bands. A lineshape analysis on the 

AE bands in both emission and excitation will be performed using the Wp distribution 

function (Equation II.14) in Chapter VI to extract the characteristics of the ZPLs and PSBs.  

The Ar matrix samples contained many sites of isolation, several of which, as 

demonstrated in Figure V.11 exhibit stimulated emission. The red trace, obtained with 

excitation into the 0-0 band, shows the simplest AE spectrum, where a single feature 

dominates; a sharp band centred on 747.2 nm corresponding to AE from a specific vibronic 

band. A weak shoulder on the red side of the intense band may indicate aggregate species 

being present or the possibility of phonon structure. Exciting to the blue of the 0-0 

transition yields more than one AE band (each coming from the same vibronic band of 

GaPcCl within different sites), as observed in the blue, black and green traces of Figure 

V.11. These spectra demonstrate the rich site structure present in the Ar matrix and will be 

discussed in further detail in Chapter VI. 

V.3.II: Krypton 

V.3.II.a: Sample Optimization 

While the sample deposition conditions were optimized well for Ar matrices, the same 

conditions were not necessarily ideal for preparing good samples in other matrices. As 

such, the same procedure outlined for Ar of varying the deposition conditions was 
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performed for krypton samples. The spectra shown in Figure V.14 illustrate the effect of 

varying the oven temperature on deposition. The blue trace represents the lower oven 

temperature (321 °C) in which the spectrum is moderately absorbing with the Q and B 

bands clearly evident, but the vibronic transitions of the Q band are quite weak. The red 

trace shows a spectrum recorded for a sample prepared with a higher oven temperature 

(360 °C). This sample shows saturation of the band origin, but has an excellent signal-to-

noise ratio on the higher energy vibronic bands in the Q. Some additional structure appears 

to be forming on the Q band. The bands to the red of the B band between 400 – 450 nm 

observed in Ar persist in this matrix. This indicates that either a common impurity inhabits 

both the Ar or Kr matrices or that these bands are part of the GaPcCl electronic absorption 

spectrum. The bands are probably too far from the origin of the Q band (~8000 – 9500   

cm-1) to be considered vibronic bands, combination bands or overtones, but are distinct 

weakly allowed electronic transitions. 

 

Figure V.14: The absorption of GaPcCl isolated in solid Kr prepared with a window 
temperature of 10 K. The blue trace was prepared with an oven temperature of 10.1 mV 
(321 °C) and the red trace with an oven temperature of 11.5 mV (360 °C). The pyrene 
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impurity is not present in either spectrum, indicating it is no longer present in the matrix 
rig. 

 

In a similar manner to Ar, the optical density of the band origin of the high concentration 

sample in Kr can be estimated by measuring the relative increase in one of the vibronic 

bands which is not saturated and extrapolating the intensity of the band maximum. This 

will allow for a determination of the optical density required to produce amplified emission 

in highly absorbing samples. The intensity of the vibronic band at 607.3 nm is 0.103 for 

the weakly absorbing sample and 0.577 for the strongly absorbing sample. This represents 

a 5.6-fold increase in intensity. If this relative intensity difference holds true for the band 

origin at 673.6 nm, then with the low intensity curve having an OD of 0.733, the saturated 

peak should have an OD of 4.11. This was one of the few GaPcCl/Kr samples that 

exhibited AE, indicating that a high optical density is required for the process in this 

matrix. 

A study was also performed to examine the effect of the window temperature on the 

sample composition, the results of which are presented in Figure V.15. The sample 

prepared at 10 K (blue curve) shows some unresolved structure. A shoulder to the red of 

the band maximum may be the unresolved 0-0 transition. The vibronic bands are not 

highly resolved at this deposition temperature either. The 22 K deposition (red curve) 

shows much more resolved structure throughout the spectrum. The region of the 0-0 band 

shows three well resolved bands and the 0-0 transition is clearly identifiable at 675.3 nm. 

The other two sharp bands in this region, located at 673.6 and 671.8 nm, may be the band 

origins of two other sites in the matrix. The vibronic bands in the 22 K sample are also 

much more resolved than in the sample prepared at 10 K. There appears to be a doubling of 

the peaks, indicative of multiple sites being present in the matrix. This is similar to the high 

temperature deposition in Ar. The formation of sites in the Kr matrix does not appear as 

extensive in absorption as that observed in Ar. The reduction of the number of sites in Kr 

may be a property of the host, or may be due to a higher host to guest ratio than what was 

used in the preparation of Ar matrices. 
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Figure V.15: The absorption of GaPcCl isolated in solid Kr, prepared with different 
temperatures of the CaF2 window. The blue trace was prepared with a window temperature 
of 10 K, the red trace with a window temperature of 22 K. All samples were prepared with 
an oven temperature < 330 °C to prevent saturation of the strongest absorption band at 
673.6 nm. 

 

V.3.II.b: Absorption 

Details of the absorption spectrum recorded in the region of the Q  G electronic 

transition of GaPcCl/Kr is presented in Figure V.16 The band origin of this transition is 

located at 675.3 nm (14808 cm-1), which is red-shifted compared to Ar. This is due to a 

stronger interaction between the host and the guest species, caused by the larger 

polarizability of the Kr atoms compared to those of Ar. The vibronic bands extend up to 

607.3 nm (16466 cm-1), which is about 1658 cm-1 above the band origin. A doubling-up of 

some of the peaks indicates that there is more than one highly occupied site of isolation in 

this host. An indication of a small amount of aggregates being present in the sample is 

demonstrated by the weak peak, to the red of the 0-0 band, located at 680.6 nm. The 

vibronic bands located in the absorption spectrum are collected in Table V.3. 
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Figure V.16: Absorption spectrum in the region of the Q  G electronic transition of 
GaPcCl isolated in solid Kr at cryogenic temperatures. The above sample was prepared 
with a window temperature of 22 K and an oven temperature of 340 °C. The strongest 
vibronic bands have been identified and labelled, with their wavelength values given in 
nm. The converted energy values (and their shift from the 0-0 band) are given in Table 
V.3. 
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Table V.3: Absorption bands of GaPcCl isolated in a solid Kr matrix taken from Figure 
V.16. The bands have been shown in wavelength, energy and as their shift from the band 
origin (0-0). 

Wavelength  
(nm) 

Energy  
(cm-1) 

Shift from 0-0  
(cm-1) 

680.6 14693 -115 
675.3 14808 0 
673.6 14846 37 
671.8 14885 77 
666.1 15013 205 
665.5 15026 218 
664.2 15056 247 
661.1 15126 318 
652.2 15333 524 
650.7 15368 560 
647.8 15437 629 
646.0 15480 672 
644.1 15526 717 
642.7 15559 751 
640.0 15625 817 
637.6 15684 876 
635.8 15728 920 
625.1 15997 1189 
624.1 16023 1215 
616.3 16226 1418 
610.8 16372 1564 
609.3 16412 1604 
607.3 16466 1658 

 

V.3.II.c: Emission 

The emission spectrum of GaPcCl/Kr recorded with excitation at 675.3 nm, into the 0-0 

band in absorption, is presented in Figure V.17. This excitation wavelength yields the 

simplest fluorescence with a single set of emission bands extending up to approximately 

760 nm. The linewidths of these bands are slightly broader than those observed in Ar, but 

are still reasonably narrow at 13 cm-1. The 0-0 transition in emission cannot be observed at 

this excitation wavelength, but has been obtained with excitation (λex = 662.8 nm), into a 

vibronic band to the blue of the band origin. In addition to the 0-0 transition at 675.6 nm, it 

shows the vibronic bands labelled 0 – 3 in Figure V.17. Emission from aggregate species 

does not appear in this sample. Only emission bands from a single site are observed which 

makes identification and analysis of the vibronic bands in this spectrum more 
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straightforward. The energies of the vibronic modes are collected in Table V.4. A 

vibrational analysis of the vibronic bands in emission will be performed in Section V.4.III. 

 

Figure V.17: Emission spectrum of GaPcCl/Kr recorded by exciting into the 0-0 band in 
absorption (675.3 nm). The region around the 0-0 transition was obtained with λex = 662.8 
nm. The peaks have been labelled, with their values given in Table V.4. 
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Table V.4: Positions of the emission bands of GaPcCl isolated in solid Kr. The values are 
taken from the red site, and the labels of each of the modes are shown in Figure V.17. 

Peak  
# 

Wavelength  
(nm) 

Energy  
(cm-1) 

Shift from 0-0 
(cm-1) 

0 675.614 14801.4 0.0 
1 676.679 14778.1 23.3 
2 677.989 14749.5 51.8 
3 681.506 14673.4 128.0 
4 686.120 14574.7 226.6 
5 687.096 14554.0 247.4 
6 689.050 14512.7 288.6 
7 692.061 14449.6 351.8 
8 698.652 14313.3 488.1 
9 704.024 14204.1 597.3 
10 708.337 14117.6 683.8 
11 709.150 14101.4 700.0 
12 711.999 14045.0 756.4 
13 716.068 13965.2 836.2 
14 716.719 13952.5 848.9 
15 722.497 13840.9 960.5 
16 732.344 13654.8 1146.6 
17 734.785 13609.4 1191.9 
18 743.249 13454.4 1346.9 
19 749.353 13344.9 1456.5 
20 754.154 13259.9 1541.5 

 

Emission spectra of GaPcCl/Kr were recorded with several different excitation 

wavelengths identified from the absorption spectrum, a selection of which are presented in 

Figure V.18. The red trace (λex = 675.3 nm) is excitation into the band origin and shows 

the data already presented in Figure V.17. Excitations to the blue of the 0-0 band are 

shown by the blue, black and green traces, with excitation wavelengths of 673.6, 666.2 and 

662.8 nm respectively. These excitations yield the same set of emission bands observed 

with excitation into the 0-0 band, albeit with a lower intensity and a set of duplicate bands 

to the blue of each emission band. The reason for the duplication is due to multiple sites 

being present in this matrix; similar to the effect that was observed in Ar matrices. The 

black and green curves in Figure V.18 had excitations sufficiently far from the band origin 

in absorption that the 0-0 transition in emission could be observed. The 0-0 band of 

GaPcCl in emission for the dominant red site has been measured as 675.6 nm in Kr 

matrices.  
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Figure V.18: Fluorescence spectra of GaPcCl/Kr recorded with the specified excitation 
wavelengths. 

 

The emission decay curves of GaPcCl in Kr were recorded for a range of emission bands 

which are plotted in Figure V.19. The rise time of each emission band is almost identical, 

but the decay times are different. The emission band centred on 673.98 nm has the shortest 

decay time of those shown in Figure V.19, whereas the band at 739.16 nm has the longest. 

A wavelength dependence on the emission decay time is evident, with the shorter 

wavelength emission bands exhibiting shorter decay times than those at longer 

wavelengths. This is in contrast to the GaPcCl/Ar system, where the opposite trend was 

observed (i.e. short wavelength emission bands had longer decay times and vice versa). 
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Figure V.19: A series of emission decay curves of GaPcCl/Kr recorded for specified 
emission wavelengths. 

 

The thermal stability of the emission lifetime of GaPcCl/Kr was examined by recording 

time-resolved spectra at several wavelengths, as shown by Figure V.20. No significant 

changes in the decay times are observed, even at temperatures above 20 K. The slight 

variations in the curves are well within the expected range of the experimental error.  

The excited state lifetime of GaPcCl/Kr was measured by recording time resolved emission 

and plotting the decay curve against a single exponential fit. To be consistent, the same 

vibronic band used to determine the lifetime in Ar matrices was also chosen for Kr – the 

band at 743.2 nm. This plot is shown in Figure V.21. The value measured for this system 

was 2.4 ns, which is a reasonable decay time for a fully allowed electronic transition. The 

decay time is slightly longer than that observed in an Ar matrix, which is not what one 

would expect to happen based on earlier studies5. These measurements were confirmed in 

several Kr samples made under different deposition conditions.  
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Figure V.20: Emission decay curves of GaPcCl/Kr recorded at the specified sample 
temperatures. 

 

 

Figure V.21: Semi-log plot of the emission decay curve of GaPcCl extracted from a time-
resolved emission spectrum recorded at 10 K in a Kr matrix. The shape of the excitation 
pulse of the laser is also shown. The emission was recorded with 673.4 nm excitation and 
the lifetime extracted from the fit was 2.4 ns. 
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V.3.II.d: Excitation 

Excitation scans recorded for three distinct emission bands of GaPcCl/Kr are presented in 

Figure V.22, revealing bands from 675 nm up to 630 nm. Each spectrum contains a sharp 

band corresponding to the 0-0 transition in excitation, and slightly broader bands to the 

blue. The location of the band origin in excitation is dependent on the emission wavelength 

monitored. This further consolidates the idea that more than one site is occupied in this 

host solid.  

 

Figure V.22: Excitation spectra of GaPcCl recorded in Kr. The emission bands monitored 
were located at 706.50, 708.28 and 710.07 nm. 

 

The excitation spectrum obtained by monitoring at 706.50 (blue trace) and 710.07 nm 

(green trace) in Figure V.22 share the same 0-0 band and vibronic bands up to 630 nm. 

This means that these two emission bands being monitored originate from the same site. 

As was the case with the emission spectra, the Kr system seems to resemble Ar closely. A 

clear migration of the 0-0 band in excitation is observed by monitoring different sites in 
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emission. The spectrum recorded by monitoring at 708.28 nm (red trace) has its 0-0 band 

located to the red of the other two spectra, indicating it originates from a site to the red of 

the previous one being monitored. There is a shift of about 40 cm-1 between the two sites. 

The associated vibronic bands are all shifted by the same amount. 

Some aggregates are present in this sample, which have manifested as a broad band to the 

red of the 0-0 band in the green trace (λem = 675.94 nm), and a shoulder in the blue trace of 

Figure V.22. This is consistent with the absorption results where a weak band to the red of 

the band origin was observed. 

V.3.II.e: Amplified Emission 

Amplified emission was observed in GaPcCl/Kr samples where the optical density of the Q 

band was sufficiently high (typically greater than 2.5). Figure V.23 shows the normalized 

fluorescence spectrum (red trace) and an ‘amplified emission’ spectrum (black trace). Both 

spectra were recorded with 675.4 nm laser excitation, with the only variable being the laser 

power – fluorescence was recorded with a power of ~10 μJ/pulse and amplified emission 

was recorded at about 10 times that power. The most striking feature of Figure V.23 is the 

gain in intensity of the emission band at 754.1 nm. The inset spectrum shows this band in 

fluorescence (red trace) and after amplification (black trace). The band width is 

significantly narrowed when it is exhibiting stimulated emission, and is limited only by the 

resolution of the monochromator. An evident asymmetry on the curve suggests that there 

may be more than one species exhibiting this effect, but which remains unresolved under 

the current conditions. 
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Figure V.23: Emission of GaPcCl isolated in Kr excited with 675.4 nm pulsed laser 
radiation with low power (red trace) and high power (black trace). The band at 754.1 nm is 
clearly amplified by increasing the laser power. Furthermore, the linewidth of the 
amplified band is narrowed considerably compared to the corresponding florescence band 
as shown in the inset of the figure. The asymmetry of the fluorescence band is probably 
due to unresolved weaker sites very close in energy to the intense band. 

 

V.3.III: Xenon 

V.3.III.a: Sample Optimization 

Samples of GaPcCl isolated in solid Xe were optimized in the same manner as for Ar and 

Kr. The first effect examined was varying the oven temperature, the results of which are 
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is shown by the blue trace. The Q and B bands can be clearly observed in the spectrum, 

albeit with an oddly shaped baseline. The vibronic bands are not very well resolved, 
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V.14 for Ar and Kr respectively. The top of the Q band does exhibit some very well 

resolved structure that will be shown in more detail in Section V.3.III.b. The sample 
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prepared with the higher oven temperature (363 °C) is shown by the red trace. This sample 

is saturated in the region of the 0-0 transition of the Q band, but the vibronic bands 

extending up to 612.9 nm are highly resolved compared to the low temperature sample. 

There is a slight narrowing of the B band, but the triplet of bands observed in the Kr matrix 

is not obvious here.  

The weak bands from around 410 to 450 nm are also present in this matrix and are red-

shifted with respect to their positions in the Ar and Kr matrices. This confirms that they 

originate from a source that is trapped in the matrix, and not from a thin film of material 

present on the surface of one of the CaF2 windows. An interesting observation is that they 

appear more intense in Xe matrices than in any other host. 

 

Figure V.24: Absorption spectra of GaPcCl isolated in solid Xe deposited with a window 
temperature of 10 K. The blue trace was prepared with an oven temperature of 10.1 mV 
(321 °C) and the red trace with an oven temperature of 11.6 mV (363 °C). 
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The effect of the window temperature on the sample composition was also studied for Xe 

matrices. The results of this effect are shown in Figure V.25, where samples deposited with 

three different window temperatures are shown. The blue trace was a sample deposited at 

10 K. This sample shows resolved structure around the 0-0 transition of the Q band, but the 

vibronic bands beyond 665 nm are not very well resolved. There is an indication of sites in 

this sample owing to the number of closely spaced bands centred around 680 nm. It also 

appears that aggregates have formed in this sample due to the broad area under the curve, 

and a wing lying to the red of the band origin. 

 

Figure V.25: The absorption of GaPcCl isolated in solid Xe prepared with different 
temperatures of the CaF2 window. The blue trace was prepared with the window 
temperature held at 10 K, the red trace at 25 K and the black trace at 35 K. All samples 
were prepared with an oven temperature < 330°C in order to prevent saturation of the 
strongest absorption band at 677.9 nm. 

 

The sample prepared with a window temperature of 25 K (red trace) looks quite different 

in the region of the band origin in that resolved structure is lost and the 0-0 band is difficult 

to identify. The vibronic bands appear more resolved, but are not as narrow as those 
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observed in either Ar or Kr. There also appears to be some aggregates present in this 

sample, albeit less than in the 10 K sample. The sample made at 35 K (black trace) is 

different to the two other samples. The region of the 0-0 transition of the Q band closely 

resembles the 10 K sample, although there appears to be fewer bands in the 35 K sample. 

This suggests not as many sites are occupied in the 35 K sample. The vibronic structure 

beyond 665 nm is very broad and individual vibronic bands cannot be identified. This may 

be due to the presence of aggregates, which clearly exist due to the presence of a fairly 

strong wing to the red of the 0-0 transition. 

The differences observed with the various sample deposition conditions made Xe matrices 

the most inconsistent and difficult to control. The highly scattering nature of this solid 

always tends to produce samples with complex baselines. This often affects the resolution 

of the weaker bands in the spectrum, particularly the vibronic bands beyond 665 nm. 

V.3.III.b: Absorption 

In spite of the difficulties associated with obtaining well resolved absorption spectra of 

GaPcCl isolated in solid Xe, an attempt to locate and identify the band origin and the 

vibronic bands was made by using two samples with very different concentrations. A low 

concentration sample was used to identify the band origin and is shown by the blue trace in 

Figure V.26. This has been identified at 682.7 nm. A higher concentration sample was used 

to identify the vibronic bands which extend up to 612.9 nm. The location of two bands 

belonging to aggregate species have also been identified and labelled. The location of the 

band origin and vibronic bands of GaPcCl/Xe are compiled in Table V.5. 

The region of the 0-0 band in the low concentration sample exhibits excellent resolution, 

with several well defined bands occupying the region between 678 and 685 nm. Some of 

these bands may arise due to the presence of sites in the matrix, as they were not observed 

in the absorption spectra of Ar and Kr (at most 3 resolved bands were observed in the 

region of the 0-0 transition in these matrices). The poor resolution and intensity on the 

vibronic bands for this sample is unfortunate, as the corresponding high concentration 

spectrum does not show the same degree of resolution. The region around the 0-0 band is 

saturated in this spectrum, so no direct comparison of the bands can be performed. The 

vibronic bands extending up to 612.9 mm are quite broad however, and certainly appear 

much less resolved than the 0-0 bands in the low concentration sample. This means the site 

structure of the high concentration sample is lost. The broadness of the vibronic bands may 



                           Chapter V: Visible Spectroscopy of ClGaPc Isolated in Inert Gas Matrices 
 

213 
 

be due to the presence of aggregates in the matrix, so some useful information about the 

makeup of the sample (apart from the peak positions) is still obtained. 

 

Figure V.26: Absorption spectrum in the region of the Q band of GaPcCl isolated in solid 
Xe at cryogenic temperatures. The blue trace was prepared with a window temperature of 
10 K and an oven temperature of 320 °C. The red trace was prepared with a window 
temperature of 20 K and an oven temperature of 363 °C. The vibronic bands have been 
labelled, with their values quoted in nm. The corresponding wavenumber values are given 
in Table V.5. 
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Table V.5: Absorption bands of GaPcCl isolated in a solid Xe matrix taken from Figure 
V.26. The bands have been shown in wavelength, energy and as their shift from the band 
origin (0-0). 

Wavelength  
(nm) 

Energy 
 (cm-1) 

Shift from 0-0 
 (cm-1) 

688.6 14522 -126 
684.9 14601 -47 
682.7 14648 0 
682.0 14663 15 
681.4 14676 28 
679.1 14725 78 
678.2 14745 97 
674.2 14832 185 
671.8 14885 238 
657.6 15207 559 
649.0 15408 761 
642.6 15562 914 
629.6 15883 1235 
622.0 16077 1429 
612.9 16316 1668 

 

V.3.III.c: Emission 

The emission spectrum of GaPcCl/Xe produced with excitation into the region of the band 

origin (0-0 band), where many sites are located in absorption, is presented in Figure V.27. 

Excitation at 683.1 nm yields the simplest fluorescence with the fewest emission bands. 

This spectrum shows a similar structure to that observed in the Ar and Kr matrices, 

however, the linewidths of the emission bands in Xe are broader (25 cm-1) than those 

observed in Ar and Kr. This may be due to an abundance of sites being present, located 

close together in energy, or because of the presence of aggregates in the sample. This 

reflects what was observed in the absorption spectra of Xe samples, where many sites were 

present. The region around the 0-0 band in emission was obtained with λex = 652.6, and 

allows for the low energy vibronic bands (0 – 2) to be observed. A list of the emission 

bands of the red-most site of GaPcCl/Xe (labelled 0 – 13 in Figure V.27) are presented in 

Table V.6. These will be compared to ground state Raman results and analysed in Section 

V.4.III. 
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Figure V.27: Emission spectrum of GaPcCl/Xe recorded by exciting into the 0-0 band in 
absorption (683.1 nm). The region of the 0-0 transition was obtained with an excitation 
wavelength of 652.6 nm. The peaks have been labelled, with their values given in Table 
V.6. 
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Table V.6: Energies of the emission bands of GaPcCl isolated in solid Xe. The values are 
taken from the red site. The labelling used for the peak numbers is shown in Figure V.27. 

Peak 
# 

Wavelength  
(nm) 

Energy  
(cm-1) 

Shift from 0-0 
(cm-1) 

0 683.059 14640.0 0.0 
1 686.489 14566.9 73.2 
2 687.224 14551.3 88.7 
3 707.213 14140.0 500.0 
4 716.728 13952.3 687.7 
5 717.702 13933.4 706.7 
6 720.464 13880.0 760.1 
7 725.008 13793.0 847.1 
8 731.330 13673.7 966.3 
9 741.286 13490.1 1150.0 
10 745.006 13422.7 1217.3 
11 752.520 13288.7 1351.4 
12 757.445 13202.3 1437.8 
13 763.739 13093.5 1546.6 

 

A variety of fluorescence spectra recorded with selected excitation wavelengths are shown 

in Figure V.28. The excitation wavelengths chosen do not coincide with the maxima of the 

absorption bands because this tended to yield fairly broad fluorescence bands, probably 

due to the high number of sites in Xe matrices. The spectrum shown by the red trace was 

recorded by exciting at 683.1 nm, which has already been shown in Figure V.27. 

Excitation to the blue of the 0-0 band shows the site structure more clearly, as 

demonstrated by the blue trace (λex = 675.0 nm) of Figure V.28. The vibronic bands in 

emission are more resolved and the site splitting can be clearly seen throughout the entire 

range of the spectrum. The locations of the most resolved vibronic bands from the ‘red’ 

and ‘blue’ sites have been marked with R and B respectively. The set of duplicate bands 

are shifted compared to those in the red trace, which suggests more than two sites occupy 

this matrix. 
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Figure V.28: Fluorescence spectra of GaPcCl/Xe recorded with a range of different 
excitation energies. 

 

Excitations even further to the blue of the 0-0 band are shown by the black and green 

traces of Figure V.28, where λex = 669.8 and 652.6 nm respectively. Using wavelengths to 

the blue of the band origin in absorption allows for the band origin in emission to be 

identified. This has been assigned as 683.1 nm. The region around the 0-0 transition in 

emission shows some sharp features that are not present throughout the rest of the 

spectrum. This may be due to the significantly greater intensity of the emission bands in 

this region having a vast improvement on the signal to noise ratio. Site splitting is also 

observed with these two excitation wavelengths, although it is not as pronounced as in the 

blue curve.  

Decay curves recorded for a number of emission bands of GaPcCl/Xe are presented in 

Figure V.29. The decay time does not vary significantly with respect to the emission 

wavelength. The rise time is almost identical for all emission bands and the decay profiles 

are all similar and within the margin of error of the experimental measurement. This 
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suggests that little or no wavelength dependence exists on the emission decay time of 

GaPcCl/Xe. This result is in contrast to the Ar and Kr matrices where a slight wavelength 

dependence on the decay time was observed. 

 

Figure V.29: Decay curves of GaPcCl/Xe recorded for various emission bands in the 
fluorescence spectrum. The laser profile is shown for comparison. 

 

The excited state lifetime of GaPcCl/Xe was measured by recording time-resolved 

emission, and plotting the decay curve against a single exponential fit. The emission decay 

plot of the vibronic band at 752.5 nm is shown in Figure V.30. This emission band is the 

same vibronic band used to determine the lifetimes in Ar and Kr matrices. The value 

measured for this system was 2.3 ns, which is a reasonable decay time for a fully allowed 

electronic transition. The decay time is identical to that observed in an Ar matrix (2.3 ns), 

but shorter than that in a Kr matrix (2.4 ns). These results will be discussed in greater detail 

in a later Section V.4.I. 
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Figure V.30: Semi-log plot of the emission decay curve of GaPcCl extracted from time-
resolved emission spectra recorded at 10 K in solid Xe. The shape of the excitation pulse 
of the laser is also shown. The emission was recorded with 682.1 nm excitation and the 
lifetime was measured at 2.3 ns. 
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Figure V.31: Excitation spectra of GaPcCl recorded in Xe. The emission bands monitored 
were located at 706.56, 716.40 and 757.36 nm. 

 

V.3.III.e: Amplified Emission 

Amplified emission was observed in Xe matrices, although samples capable of exhibiting 

the effect were difficult to prepare reproducibly. The best sample that exhibited the effect 

in a Xe matrix was prepared with a high oven temperature, gas flow and window 

temperature. Figure V.32 shows fluorescence (red trace) and AE spectra (black trace) 

overlaid. Both spectra were recorded with excitation at 675 nm. Unlike most of the other 

data which has and will be presented in this chapter, the data presented in Figure V.32 was 

not obtained by exciting into the red most site. It was observed that excitation at 675 nm 

gave the most resolved AE spectrum. The emission band at 763.2 nm is amplified in the 

black trace compared to its fluorescence counterpart. This vibronic band lies 1547 cm-1 

above the band origin. The inset spectrum is a good demonstration of how strong the 

amplified vibronic band at 763.2 nm is compared to a regular fluorescence band. Two 

fluorescence bands are located close together in energy originating from separate sites, 
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only one of which exhibits AE with excitation at 675 nm. By increasing the laser power 

only the AE band from the ‘red’ site gets amplified, with the ‘blue’ emission band showing 

regular fluorescence. By changing the excitation wavelength, the blue site can be 

preferentially excited, with the vibronic band at 1547 cm-1 exhibiting AE and the 

corresponding band from the red site exhibiting normal fluorescence. These results will be 

discussed in Chapter VI in relation to the sites in GaPcCl/Xe matrices. The spectral 

narrowing normally associated with AE is more difficult to appreciate in the current 

spectrum as there are two fluorescence bands located close together. Linewidth narrowing 

does occur in Xe however, as shown in Figure V.31, although perhaps not to the same 

extent as in the other matrices.  

 

Figure V.32: Emission of GaPcCl isolated in Xe excited with 675 nm pulsed laser 
radiation with low power (red trace) and high power (black trace). The band at 763.2 nm is 
amplified by increasing the laser power. The changing linewidth of the band is shown on 
the inset spectrum. 
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Higher laser powers were required to induce stimulated emission in Xe matrices than in Ar 

and Kr, and the relative intensity of the AE bands to the fluorescence bands was much 

lower than in the other matrices, as indicated in Figure V.32. There are two possible 

reasons for this difficulty; the heavy atom effect6 of the matrix may partially quench 

emission or the optical density may be ‘diluted’ by the presence of many sites or highly 

scattering samples. The heavy atom effect may be ruled out because this would shorten the 

emission lifetime compared to the lifetimes recorded in Ar and Kr. Certainly the region of 

the band origin in absorption spectra, pointed to an abundance of sites in the Xe matrix. 

Even though there are sufficient GaPcCl molecules located in the matrix, they are 

separated into many different sites, meaning the optical density of a given species is not 

large enough to exhibit the same degree of amplification as in the other matrices. This may 

also help to explain the difficulty associated with getting samples to exhibit the effect in 

the first place in this matrix. 

V.3.IV: Nitrogen 

V.3.IV.a: Sample Optimization 

Samples of GaPcCl in solid nitrogen were optimized following the method described 

previously for the other matrices. The first variable to be examined was the effect of the 

oven temperature. Figure V.33 shows two samples of GaPcCl/N2 prepared with an oven 

temperature of 320 °C (blue trace) and 357 °C (red trace). Similar to other matrices, the Q 

and B bands can be clearly seen in both spectra. The location of the 0-0 transition of the Q 

band in N2 has been identified at 667.6 nm. This band is saturated in the high temperature 

sample, but the intensities of the weaker vibronic bands and the B band are improved 

greatly compared with than the low temperature sample.  
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Figure V.33: Absorption of GaPcCl isolated in solid N2 prepared with a window 
temperature of 10 K. The blue trace was prepared with an oven temperature of 10.1 mV 
(320 °C) and the red trace with an oven temperature of 11.4 mV (357 °C). The pyrene band 
(highlighted by an asterisks) observed in Ar is also present in this matrix. 

 

The optical density of the Q band in the saturated absorption spectrum can be estimated by 

extrapolating a value based on the ratio between the vibronic bands in both absorptions. 

The band at 603 nm has an OD of 0.071 in the low concentration sample. This is increased 

to 0.345 in the high concentration sample; representing a 4.86-fold increase. Assuming the 

same ratio exists for the main absorption band at 665.9, and knowing the OD of the low 

concentration sample is 0.762, the OD of the high concentration sample is calculated to be 

3.703. It was noted that all samples in N2 that were saturated in absorption exhibited 

amplified emission with pulsed laser excitation. These results will be shown in a Section 

V.3.IV.e. A series of bands extend beyond 603 nm up to around 550 nm, which may be 

due to overtones or combination bands, as described for the rare gas samples. The weak 

absorption bands which have been observed in the other matrices between 400 – 450 nm 

are also present in the N2 matrix.  
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The other variable examined was that of the window temperature on the sample 

composition. Figure V.34 presents samples prepared with the window held at 10 K (blue 

trace) and 15 K (red trace). Unfortunately, all of the higher temperature samples attempted 

ended up in saturation. Both samples look quite similar in absorption. The resolution on the 

0-0 band is better on the 15 K sample, but is not as well resolved as any of the band origins 

observed in the rare gas matrices. Vibronic bands extend up to 601.5 nm and show similar 

structure in both samples. There is a very slight improvement in resolution of these bands 

in the 15 K sample. Small amounts of aggregates are present in both samples, indicated by 

the shoulder to the red of the 0-0 transition. Thus, the window temperature does not appear 

to affect the number of sites present in a given sample, at least in absorption. 

 

Figure V.34: Absorption spectra of GaPcCl isolated in solid N2 prepared with different 
temperatures of the CaF2 window. The blue trace was prepared with a window temperature 
of 10 K and the red trace at 15 K. Both samples were prepared with an oven temperature < 
330°C to prevent saturation of the strongest absorption band at 667.1 nm. 
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V.3.IV.b: Absorption 

The most resolved absorption spectrum recorded for GaPcCl in solid nitrogen is shown in 

Figure V.35. The band origin of the Q transition has been identified and is located at 667.6 

nm. This is blue shifted compared to the rare gas matrix values reported earlier. Vibronic 

bands extend up to 601.5 nm, about 1669 cm-1 above the band origin. The splitting on the 

vibronic bands is not evident in this matrix, possibly indicating the existence of only a 

single dominant site in absorption, or a very small shift between sites. A small amount of 

aggregation is manifested as a weak shoulder to the red of the band origin at 670.8 nm. The 

location of the vibronic bands in absorption and their shift from the band origin are 

collected in Table V.7. 

 

Figure V.35: Absorption spectrum in the region of the Q band of GaPcCl isolated in solid 
N2 at cryogenic temperatures. The above sample was prepared with a window temperature 
of 15 K and an oven temperature of 320 °C. The vibronic bands have been labelled, with 
their values given in nm. The corresponding wavenumber values are given in Table V.7. 
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Table V.7: Absorption bands of GaPcCl isolated in a solid N2 matrix taken from Figure 
V.35. The bands have been shown in wavelength, energy and as their shift from the band 
origin (0-0). 

Wavelength  
(nm) 

Energy  
(cm-1) 

Shift from 0-0  
(cm-1) 

670.8 14908 -71 
667.6 14979 0 
667.1 14990 11 
665.7 15022 43 
660.0 15152 172 
645.7 15487 508 
636.8 15704 724 
632.4 15813 834 
619.5 16142 1163 
617.2 16202 1223 
612.3 16332 1353 
601.5 16625 1646 

 

V.3.IV.c: Emission 

Figure V.36 shows the fluorescence spectrum of GaPcCl/N2 recorded by exciting into the 

0-0 band in absorption with pulsed laser excitation. This spectrum shows a similar and 

possibly simpler structure to that observed in the rare gas matrices. Emission bands extend 

up to 745 nm and are quite broad (linewidth = 18 cm-1) compared to Ar and Kr. Only a 

single set of emission bands are evident, although the broadness of the bands may indicate 

multiple unresolved sites are present. The 0-0 transition in emission has also been shown 

(λex = 652.3 nm) in order to obtain the positions of all of the vibronic bands in emission. 

The values of the 0-0 transition and the vibronic bands in emission are presented in Table 

V.8. These bands will be analysed in greater detail in Section V.4.III. 
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Figure V.36: Emission spectrum (red trace) of GaPcCl/N2 recorded by exciting into the 0-
0 band in absorption (667.6 nm). The region showing the 0-0 transition in emission (blue 
trace) was recorded with a excitation at 652.3 nm. The peaks have been labelled, with their 
values shown in Table V.8. 
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Table V.8: Energies of the emission bands of GaPcCl isolated in solid N2. The values are 
taken from the red site, obtained by exciting into the 0-0 band in absorption. The labelling 
of the peak #’s is the same as that in Figure V.36. 

Peak 
# 

Wavelength 
 (nm) 

Energy  
(cm-1) 

Shift from 0-0 
(cm-1) 

0 668.800 14952.2 0.0 
1 671.588 14890.1 62.1 
2 674.619 14823.2 129.0 
3 681.929 14664.3 287.9 
4 684.571 14607.7 344.5 
5 690.904 14473.8 478.4 
6 696.227 14363.1 589.0 
7 700.472 14276.1 676.1 
8 701.206 14261.1 691.0 
9 704.057 14203.4 748.8 

10 708.285 14118.6 833.5 
11 714.370 13998.3 953.8 
12 723.924 13813.6 1138.6 
13 726.513 13764.4 1187.8 
14 734.601 13612.8 1339.3 
15 740.508 13504.2 1447.9 
16 745.126 13420.6 1531.6 

 

A selection of fluorescence spectra, recorded with various excitation wavelengths 

matching some of the strongest absorption bands, is shown in Figure V.37. The red trace 

was recorded by exciting at 667.6 nm and presents the same date shown in Figure V.36. 

Excitation into the blue of the 0-0 band tended to have the effect of resolving the site 

structure in other matrices, so this was attempted in N2 in order to elucidate more 

information on the existence of sites. The blue trace in Figure V.37 was generated by 

exciting with 667.1 nm laser light. This spectrum is almost identical to the red trace. The 

duplication of emission bands observed in the rare gas matrices does not occur in N2, but 

the blue shoulders persist at this excitation wavelength.  
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Figure V.37: Fluorescence spectra of GaPcCl/N2 produced with the specified excitation 
wavelengths. 

 

Two more excitation wavelengths were used to produce emission spectra; 659.6 and 652.3 

nm. These are shown by the black and green traces on Figure V.37 respectively. These 

spectra are noisier than the two shown above, owing to the weaker intensity of the 

absorption bands being excited into. The black and green traces were obtained with 

excitation energies far enough away from the 0-0 band in absorption that the 0-0 band in 

emission could be observed instead of being drowned out by scattered laser light. The 0-0 

transition in emission has far more intensity than the other vibronic bands in emission. This 

transition is located at 668.8 nm, and allows for the energies of the vibronic bands to be 

displayed as their shift from this position.  

The decay curves of a number of GaPcCl/N2 emission bands are shown in Figure V.38. 

This plot shows the decay curve of the excitation laser pulse as well as the emission decay 

profiles. The rise time of each emission band is almost identical, but this is not the case 

with the decay profile, where some bands are more long lived than others. This indicates a 
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wavelength dependence on the emission lifetime, similar to what was observed in Ar and 

Kr matrices. The shorter wavelength emission bands appear to be more long-lived than the 

long wavelength counterparts, with the exception of the band at 700.3 nm. 

 

Figure V.38: Emission decay profile of GaPcCl/N2 recorded for some of the main 
emission bands. The laser profile is also shown for comparative purposes. 

 

A series of lifetime measurements were performed at various temperatures in N2 in order to 

probe whether or not the 10 K emission decay curves are representative of the true 

fluorescence lifetime. The results of this study are shown in Figure V.39. Emission spectra 

were recorded with 666.1 nm excitation between 10 K and 22 K at 2 K intervals. A kinetic 

slice was taken through the emission band at 702.4 nm at each temperature. The remaining 

emission decays were then overlaid on the same scale to see if they matched up with the 10 

K data and the fit. With the exception of the 22 K decay curve, there is no significant 

shortening of the decay time with increasing temperature, indicating that the true 

fluorescence lifetime has been measured below 20 K. This was repeated by monitoring 

other emission bands and using various excitation wavelengths and found to be a 

consistent result. 
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Figure V.39: Emission lifetime of GaPcCl isolated in an N2 matrix recorded at various 
temperatures between 10 and 22 K. The emission band monitored was located at 702.4 nm 
and was excited by 666.1 nm pulsed laser excitation. The stability of the measurement 
indicates that the true fluorescence lifetime has been detected. 

 

The emission decay curve of GaPcCl/N2 was measured as described earlier, with the decay 

plot shown in Figure V.40. Time resolved emission was recorded by exciting at 665.7 nm 

and a kinetic slice was taken through the emission band at 734.6 nm. This is the same 

vibronic band that was monitored for the lifetime measurements in the rare gas matrices. A 

single exponential fit was overlaid on the emission profile to determine the fluorescence 

lifetime in solid N2, which was measured to be 2.6 ns, a similar value to what has been 

measured in the rare gas matrices. The decay time is very slightly longer than that observed 

in an Ar, Kr and Xe matrices (2.3 2.4 and 2.3 ns respectively). These results will be 

discussed in greater detail in a Section V.4.I. 
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Figure V.40: Semi-log plot of the emission decay curve of GaPcCl extracted from time-
resolved emission spectra recorded at 10 K in N2. The shape of the excitation pulse of the 
laser is also shown. The emission was recorded with 665.70 nm excitation and the lifetime 
was measured at 2.6 ns. 

 

V.3.IV.d: Excitation 

Excitation spectra of GaPcCl/N2 were recorded by monitoring a range of different emission 
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spectrum contains a narrow band around 669 nm corresponding to the band origin in 

excitation, with broader excitation bands extending up to 625 nm. Monitoring the emission 

band at 713.98 nm is shown by the red trace. This shows a somewhat similar structure to 

the excitation spectra recorded in the rare gas matrices, although the bands are not as well 

resolved.  
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Figure V.41: Excitation spectra of GaPcCl recorded in N2. The emission bands monitored 
were located at 691.14, 713.98 and 732.77 nm. 

  

The excitation spectrum recorded by monitoring the emission band at 691.14 nm (blue 

trace) has its 0-0 transition red-shifted in excitation by 2.7 cm-1 compared to the red trace. 

This typically indicates that the excitation spectra of two different sites have been 

recorded, however this may not be quite the same situation in this case. In the rare gas 

matrices, the excitation spectra originating from different sites were similar in structure, 

with the vibronic bands exhibiting a constant shift with respect to one another (i.e. if the 0-

0 band in excitation was red shifted by 10 cm-1 from the 0-0 transition of a second site, so 

too would each of the vibronic bands). The different structure observed throughout the 

spectrum in N2 indicates that a different species is being observed. Some of the vibronic 

bands in this spectrum are split into doublets, which may be due to Davydov splitting7. The 

splitting between the doublets is typically 10 cm-1. Davydov splitting has previously been 

identified in the Raman spectra of GaPcCl by Aroca7. The presence of Davydov splitting 

may indicate another species exists in the matrix (e.g. a dimer). 
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The green trace (λem = 732.77 nm) shows remarkable similarity to the blue trace. Almost 

all of the bands in these two spectra match up exactly, and the presumed Davydov splitting 

is also evident (with the splitting ~10 cm-1). The only exception is in the region of the 0-0 

transition, where a fairly broad structure is observed to the red of this wavelength in the 

green trace. A weaker equivalent of this is present in the blue trace also.  

V.3.IV.e: Amplified Emission 

N2 was the easiest matrix in which to observe amplified emission, with many samples 

made under various deposition conditions capable of exhibiting stimulated emission. 

Figure V.42 shows the fluorescence (red trace) and AE (black trace) spectra overlaid. The 

intensity of the AE band, shown by the black trace, dwarfs that of the rest of the 

fluorescence bands present in the spectrum. The inset spectrum shows the normalized 

vibronic band at 744.9 nm under conditions that yield fluorescence and AE. The band is 

significantly narrowed when the laser power has been increased to produce AE. Unlike the 

other matrices there is little indication of another site close by that can exhibit the effect. 

Nevertheless, a series of excitation energies were investigated to see if they could produce 

AE, with all experiments yielding a single AE band. The band at 744.9 nm shifted by a 

single pixel number on the CCD; a shift of 0.04 nm. The close energy of the sites in solid 

nitrogen may explain why AE is so easy to observe in this matrix. Because the OD and the 

laser power are the only two variables governing AE, when the sites are so close in energy, 

the OD will be very large. All of the other matrices had sites split by several wavenumbers 

and this ‘dilutes’ the OD of a given site, reducing their capacities to exhibit AE. 
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Figure V.42: Emission of GaPcCl isolated in N2 excited with 666.1 nm pulsed laser 
radiation with low power (red trace) and high power (black trace). The band at 744.9 nm is 
significantly amplified by increasing the laser power. Furthermore, the linewidth of the 
amplified band is narrowed considerably compared to the corresponding florescence band 
as shown in the inset of the figure. 

 

V.3.V: Matrix Comparison 

V.3.V.a: Absorption 

Figure V.43 shows a comparison of the room temperature solution phase absorption 

spectrum of GaPcCl and a spectrum recorded in solid Ar at 10 K. The solution phase 

absorption spectrum of GaPcCl dissolved in EtOH show two main features – an intense 

band at 676.1 nm (14791 cm-1) corresponding to the fully allowed Q (S1)  G (S0) 

electronic transition and a weaker band at 352.4 nm (28409 cm-1) which corresponds to the 

B (S2) band. The region of the solution phase spectrum between 700 and 600 nm contains 

three features in ethanol. The red-most feature, centred on 676.1 nm, is clearly the origin of 

the Q band due to its position and intensity. A second, weaker band, located at 645.4 nm 
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(15494 cm-1) is not fully resolved but clearly present as a shoulder in the spectrum. 

Another weak but better resolved band located at 609.8 nm (16399 cm-1) hints at more 

vibronic transitions in absorption. 

 

Figure V.43: The absorption spectra of GaPcCl recorded in ethanol at room temperature 
(red trace) and in solid Ar at 10 K (blue trace). The main peaks in the solution phase have 
been labelled (in nm) as well as the corresponding peaks in the matrix spectrum. 

 

The main absorption bands in solid Ar match the two main bands observed in solution; the 

strong Q band at 670.0 nm and the weaker B band at 353.8 nm in solution. The most 

obvious difference between the matrix and solution phase spectra is the band width; the 

bands are much narrower in the matrix absorption spectra due to much weaker interactions 

between the host and the guest material. This effect is also observed to the blue of the main 

absorption band where the matrix spectrum shows several resolved vibronic bands. In 

contrast, the structure of the B band is remarkably similar in both spectra. The B band does 

not become more resolved in the matrix, and no vibronic structure can be observed.  
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Bursa et al.8 described the solution phase absorption spectrum of a substituted GaPcCl 

molecule (2,3-tetrakis(4-benzyloxyphenoxyphthalocyannato)gallium(III)). The structure of 

the spectrum is remarkably similar to the results presented here for the unsubstituted 

molecule. Bursa correctly identified the location of the band origin of the Q band and noted 

the presence of the two weaker bands to the blue of the 0-0 band. However, the band at 

645.4 nm was identified as an aggregate species by Bursa. From the matrix data recorded, 

the assignments of the bands by Bursa appear to be incorrect. Thus the band to the blue of 

the 0-0 transition at 664.4 nm is unlikely to originate from an aggregate species, as the 

matrix spectrum presented in Figure V.43 shows that vibronic bands are located in the 

region of the unresolved solution peak. The intensity of the matrix band is comparable to 

that of the solution phase band. The solution phase band at 609.8 nm is located 703 cm-1 

from the band origin, comparable to the value of the vibronic band at 712 cm-1 in Ar. The 

solution phase band at 609.8 nm also agrees well with vibronic bands in the matrix 

spectrum. The shift from the 0-0 band is 1608 cm-1, and probably corresponds to the 

vibronic band in Ar located at 1642 cm-1. It is unclear if Bursa has assigned the equivalent 

bands in their results as vibronic transitions or as a separate Q band (possibly from another 

species). 

The Q band absorption spectrum of GaPcCl recorded in four different inert host matrices - 

N2, Ar, Kr and Xe - are shown in Figure V.44. The spectra are dominated by an intense 

band located between 665 and 680 nm corresponding to the fully allowed Q (S1)  G (S0) 

transition. The band origins (0-0) of the Q  G electronic transitions in absorption are 

14959, 14916, 14806 and 14680 cm-1 in N2, Ar, Kr and Xe respectively. Several weaker 

vibronic bands are also present ranging from 680 – 600 nm (about 2000 cm-1 above the 

band origin). Vibronic bands are expected to arise up to 1600 cm-1 beyond the band origin 

based on the vibrational study performed in Chapter III, but bands at higher energies may 

arise due to combination modes or overtones. The vibronic bands beyond 1600 cm-1 are 

also much weaker than the bands up to 1600 cm-1 which is another good indication that 

they are not fundamental modes. The fact that they appear in both the solution phase and 

the matrix spectra rules out the possibility of hot bands, as the temperature in matrix 

samples is too low for thermally occupied vibrational levels to exist. The B (S2) band is 

located around 350 nm in each host (region not shown in Figure V.44), but carries less 

intensity than the Q band. N2 has the highest absorption energy for the 0-0 transition of the 

Q band. The equivalent bands in Ar, Kr and Xe are red-shifted with respect to N2 by 54, 
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171 and 331 cm-1 respectively, as matrix interactions between the host and the guest 

species get stronger. Table V.9 lists the location of the main resolved absorption bands of 

GaPcCl in various hosts, as well as their shifts from the band origin. Well resolved 

structure is observed around the 0-0 band in some of the matrices, possibly an indication of 

sites being present. Furthermore, most matrices show a very weak shoulder to the red of 

the 0-0 band which is probably originating from the presence of a small amount of 

aggregates within the sample; a common occurrence under low temperature depositions.  

 

Figure V.44: Absorption spectra in the region of the Q band of GaPcCl isolated in solid 
matrices of N2, Ar, Kr and Xe, recorded at 10 K.  
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Table V.9: Absorption energies of the Q band and its vibronic transitions of GaPcCl 
recorded cryogenic matrices of N2, Ar, Kr and Xe. All energies are reported in 
wavenumbers (cm-1). The right hand side column for each system includes the shift (in cm-

1) from the band origin of the electronic transition. The values highlighted in italics are 
believed to be from overtones or combination bands. 

N2 Ar Kr Xe 
Energy Shift Energy Shift Energy Shift Energy Shift 

- - - - - - 14522 -126 
14908 -83 14839 -86 14693 -115 14601 -47 
14979 0 14925 0 14808 0 14648 0 
14990 11 - - - - 14663 15 
15022 43 14961 36 14846 37 14676 28 

- - - - 14885 77 14725 78 
- - - - - - 14745 97 

15152 172 - - - - 14832 185 
- - 15129 203 15013 205 - - 
- - - - 15026 218 - - 
- - 15198 272 15056 247 14885 238 
- - 15202 277 15126 318 - - 

15487 508 - - 15333 524 - - 
- - 15513 588 15368 560 15207 559 
- - 15516 591 - - - - 
- - - - 15437 629 - - 
- - 15601 675 15480 672 - - 

15704 724 15637 712 15526 717 - - 

  15669 744 15559 751 15408 761 
15813 834 - - 15625 817 - - 

- - 15798 872 15684 876 - - 
- - - - 15728 920 15562 914 

16142 1163 16075 1149 15997 1189   16202 1223 16129 1204 16023 1215 15883 1235 
16332 1353 16297 1372 - - - - 

- - 16324 1398 - - - - 
- - - - 16226 1418 16077 1429 
- - - - 16372 1564 - - 
- - - - 16412 1604 - - 

16625 1646 16567 1642 16466 1658 16316 1668 
17268 2289 17238 2322 17112 2306 16981 2301 
17727 2748 17683 2767 17587 2781 17425 2745 
17976 3000 17940 3024 17819 3013 17687 3007 

 

Basova9 recorded the absorption spectrum of GaPcCl in thin solid films and observed the 

Q band at 13333 cm-1 with a shoulder at 14925 cm-1. The width of the absorption band in 

the thin films is much broader than that recorded in inert gas matrices due to the high 

degree of aggregation and absence of isolated molecules owing to the method by which 
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these samples are produced. Linsen and co-workers10 have determined the band origin lies 

at 15374.5 cm-1 in superfluid helium droplets. Del Cano et al.11 have measured the 

absorption spectra of mixed films of GaPcCl and bis(neopentyl)-3,4,9,10-

perylenebis(dicarboximide), and have reported the origin of the Q band at 13698.6 cm-1. 

This result was verified by growing neat thin films of GaPcCl12. To the best of the author’s 

knowledge, the gas phase position of the Q0-0 band origin of the QG transition has never 

been recorded.  

V.3.V.b: Emission 

Emission spectra recorded by exciting into the 0-0 band in absorption for the four matrices 

used in this study are shown together in Figure V.45. Fluorescence bands were observed up 

to around 740 – 760 nm depending on the host matrix. Emission spectra recorded in N2 

(blue trace) yielded fluorescence with the fewest emission bands, although these bands are 

quite broad, especially when compared to emission in Ar (red trace). This is perhaps 

indicative of there being several unresolved sites occupied by GaPcCl in N2. These sites 

must be very close in energy, as they were not resolvable with laser excitation, which 

typically excites into a single site selectively. The fluorescence from the Ar matrix is more 

resolved than in N2, with a hint of there being some site structure present. The shoulders to 

the red of the narrow emission bands are not resolved with excitation into the 0-0 band, 

and their broadness suggests that they are emission from an aggregate species. The 

vibronic bands in emission are red-shifted in the rare gas matrices with respect to N2. 

Emission spectra from the Kr matrix closely resemble those from Ar, with quite sharp 

bands and a red wing coming off each emission band. Xe matrices always yielded the 

broadest emission bands, probably due to the presence of sites located close together in 

energy. 
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Figure V.45: Fluorescence spectra of GaPcCl isolated in solid matrices of N2, Ar, Kr and 
Xe at 10 K. These spectra were recorded by exciting into 0-0 transition of the Q band – 
namely 667.6, 670.1, 675.6 and 683.1 nm for N2, Ar, Kr and Xe respectively. 

 

The vibronic structure of GaPcCl observed in each matrix appears, as shown in Figure 

V.45, to be quite similar. To analyse this further the emission spectra recorded in each 

matrix are plotted in Figure V.46 as the shift from the 0-0 transition. The plot has been 

split into two regions; the region close to the 0-0 band from -100 – 250 cm-1 and the region 

from 250 – 1700 cm-1. An almost identical set of signature peaks are evident in all 

matrices, albeit with different relative intensities. The existence of a blue site can be clearly 

seen in Ar and Kr at about -20 cm-1 from the band origin of the dominant site. This also 

manifests itself throughout the rest of the emission spectrum, where a doubling of the 

peaks is observed. A list of the vibronic frequencies (in cm-1) of GaPcCl in each matrix is 

compiled in Table V.12. Where multiple sites are present in the matrix, the frequency of 

the red site has been selected. It is also evident in Figure V.46 that the 0-0 transition 

dominates the emission intensity. This is consistent with the results of measurements made 
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for ZnPc in which the 0-0 transition was found to carry most of the Franck-Condon 

intensity13. 

 

Figure V.46: Emission spectra of GaPcCl isolated in solid matrices of N2, Ar, Kr and Xe 
at 10 K plotted as the shift from ν0-0. In samples where multiple sites were observed the 
spectra are shifted from the band origin of the red site. Spectra were recorded by exciting 
into the blue of the 0-0 band in absorption in order to see the band origin in emission. The 
excitation wavelengths were 659.6, 658.8, 666.2 and 652.6 nm for N2, Ar, Kr and Xe 
respectively. The dashed line highlights the location of the 0-0 transition in each spectrum. 
The dotted line highlights the vibronic band located at ~1540 cm-1 (in Ar). 

 

A slight change in the emission spectra is observed in most matrices when the laser 

excitation frequency is tuned to the blue of the 0-0 transition (Figure V.46) of the Q band 

compared with direct excitation of the first excited state (Figure V.45). This change occurs 

because a different site is being preferentially excited depending on the laser wavelength. 

Slight differences in terms of frequency shift and shape of the vibronic bands are evident. 

Generally, 2 – 3 main families of sites are present in each matrix, with the exception of N2, 

where it appears that a single site dominates, but is in fact an indeterminate number of 
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unresolved sites. The sites in N2 are clearly different to those in the rare gas matrices as 

they cannot be resolved by changing the excitation wavelength of the laser. Instead, a 

single broad emission band is observed with all excitation wavelengths. Certain Ar 

samples also showed a continuum of sites which were not observed in any of the other 

matrices. In order to determine the location of the band origin in emission it was necessary 

to excite to the blue of the 0-0 band in absorption. A by-product of a higher energy 

excitation is that sites other than the main site will be excited. Emission from one of these 

sites can be reabsorbed by a red site and re-emitted from there. This will then result in a 

‘doubling’ of the bands in the emission spectrum, with one set of bands arising from 

excitation into the desired site, and another set arising from a site to the red. The vibronic 

bands present in emission in each matrix are highly consistent, with only the weakest 

bands not showing up in emission in each host. The frequencies of the vibronic modes 

change very little in the different hosts (when considered as the shift from the 0-0 

transition), with frequencies typically differing by less than 10 cm-1 between matrices, as 

shown in Table V.12.  

A summary of the emission decay curves recorded for GaPcCl isolated in different inert 

gas solids (N2, Ar, Kr and Xe) is given in Figure V.47. The same vibronic band was 

monitored in each host, located approximately 1345 cm-1 from the 0-0 transition in 

emission. This band was chosen because it has a long wavelength, and therefore is more 

representative of the true decay time. Furthermore, this band is not prone to exhibiting AE, 

so it will not be shortened by this effect. The fluorescence decay curves were measured 

with time-gated iCCD detection and the lifetimes extracted by single exponential fits. 

Fluorescence lifetimes were measured to be 2.6, 2.3, 2.4 and 2.3 ns in N2, Ar, Kr and Xe 

respectively. The recorded lifetimes are all in the nanosecond range, as expected for fully 

allowed electronic transitions. These results closely resemble the results obtained by 

Murray5 for ZnPc, which were typically around 3 ns. The slight shortening of the 

fluorescence lifetime of GaPcCl may be due to the internal heavy atom effect caused by 

the gallium atom and/or chlorine counter ion.  
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Figure V.47: Semi-log plots of the emission decay curves extracted from time-resolved 
emission spectra recorded at 10 K for GaPcCl isolated in a variety of low temperature 
matrices. The emission wavelength being monitored in each matrix coincided with a 
common vibronic band located ~1345 cm-1 from the band origin. The shape of the 
excitation pulse of the laser is also shown. 

 

V.3.V.c: Excitation 

The excitation spectra recorded of GaPcCl isolated in different matrices are shown in 

Figure V.48. The spectra are presented as the shift from the band origin (ν0-0) up to 900  

cm-1. Obtaining data beyond 1000 cm-1 from the band origin was limited by the tuning 

range of the dye used, which has been specified in Chapter II. Well resolved vibronic 

structure is evident in all matrices up to 750 cm-1, with the exception of N2, which has 

quite broad excitation bands. The frequencies (in cm-1) of the vibronic bands observed in 

excitation are presented in Table V.10. 
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Figure V.48: Excitation spectra of GaPcCl recorded in N2, Ar, Kr and Xe. The emission 
bands monitored were located at 734.6, 700.6, 706.4 and 716.4 nm for N2, Ar, Kr and Xe 
respectively and were scanned with the dye laser. 

 

The excitation spectra recorded in Ar and Kr are quite similar. A well-defined 0-0 

transition in excitation is evident in both matrices and the vibronic bands match up 

excellently over the entire range of the spectra. The data presented in Table V.10 show 

these bands agree to within 2 cm-1 in most instances. N2 shows broader bands than those 

observed in Ar and Kr, but appear in the same regions as observed for the other matrices. 

Xe has weaker intensity around the 0-0 band compared to the other three host materials 

studied, but the excitation bands are comparable to those measured in Ar and Kr. The 

results presented in Table V.10 show how the three rare gas matrices (Ar, Kr and Xe) are 

much more similar than the molecular matrix (N2) when it comes to the excitation spectra. 

The reason for the excitation spectra in N2 being so different than the other matrices is 

unexpected, but may be related to the fact that the sites cannot be resolved in emission. 
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Table V.10: Energies (in cm-1) of the observed bands in the excitation spectra of GaPcCl 
isolated in various matrices. The values are given as shifts from the band origins (taken 
from Figure V.48) and indicate the vibronic bands in excitation.  

N2 Ar Kr Xe 
21 30 - 18 
- 73 - 80 
- 110 - 121 
- 138 138 134 

172 168 167 168 
- - 216 214 

252 245 244 252 
- 280 278 279 
- - 317 322 

335 - 338 358 
- 402 408 408 
- 486 483 484 

524 519 519 - 
- - 555 556 

589 587 585 590 
- 619 620 - 

650 675 675 676 
- 703 713 - 

741 747 747 748 
809 - 772 822 

- - 877 842 
 

V.3.V.e: Time Dependent DFT Calculations 

The absorption spectrum of GaPcCl was predicted using time dependent DFT (TD-DFT) 

calculations. The structure of the molecule used was the optimized structure from Chapter 

III. The same basis set (6-311++g(2d,2p)) and functional (B3LYP) were used and the first 

50 singlet excited states were calculated. A list of the transition energies and oscillator 

strengths calculated for this system are presented in Table V.A1. The molecular orbitals 

associated with the QG and BG transitions have been shown in Figure V.A4 and 

Figure V.A5 respectively.  

The predicted absorption spectrum from TD-DFT is shown in Figure V.49, as well as the 

absorption recorded in Ar. Time dependent DFT results show the same general structure in 

absorption as those measured experimentally, with the Q and B bands clearly dominating 

the spectrum. The Q and B bands are located at 621.95 and 338.94 nm respectively, both of 

which are blue-shifted with respect to the experimental results. The calculated spectrum 
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does not account for the vibronic structure of the excited state, but this will be analysed in 

Section V.4.III using the Raman scattering spectra presented for GaPcCl in Chapter III. 

 

Figure V.49: The absorption spectra of GaPcCl predicted by time dependent DFT 
calculations (red trace) and experimental results in solid Ar at 10 K (blue trace). A 
linewidth of 200 cm-1 was used in the generation of the TD-DFT spectrum. A stick 
spectrum showing the wavelengths of the electronic transitions are shown by the black 
lines. An extended view of the region of weak intensity between the Q and B bands is 
shown in the inset, as well as in Figure V.A2. 

 

V.4: Discussion 
V.4.I: TD-DFT 

Time dependent DFT predicts the Q  G electronic transition to be located at 16078 cm-1 

and the B  G transition at 29504 cm-1. These values are comparable to the values 

measured in solid N2 of 14979s and 28409 cm-1 for the Q and B bands respectively. Both 

predicted transitions are blue-shifted with respect to the N2 results by 1088 and 1095 cm-1 

for the Q and B transitions respectively. This represents a 7% and 4 % difference between 

300 400 500 600 700
Wavelength (nm)

A
bs

or
ba

nc
e

203040
x103 Photon Energy (cm-1)

TD-DFT

Ar

360 380 400 420 440 460

22242628



                           Chapter V: Visible Spectroscopy of ClGaPc Isolated in Inert Gas Matrices 
 

248 
 

the theoretical and experimental findings. This is perhaps unsurprising, as the theoretical 

approach does not consider any external species (such matrix host atoms) interacting with 

the molecule, which can perturb the energy gap between the ground and excited electronic 

states. The closest experimental approach for determining the accuracy of the calculation 

would be measuring the gas phase absorption energy, but as far as the author is aware, no 

such data exists. A similar oscillator strength is predicted for the Q and B bands, where f = 

0.3915 and 0.3802 respectively. The difference in intensity of the two bands measured 

experimentally is clearly much greater. A similar result was observed with a TD-DFT 

calculation on ZnPc. Because TD-DFT does not account for additional external 

interactions (such as host matrix atoms), it indicates that there is something erroneous in 

the way that it calculates the excited states of molecules.  

The TD-DFT calculation shows several weak transitions just to the red of the B band, the 

strongest of which arises at 373.52 nm with an oscillator strength of f = 0.011. Similarly, 

weak bands are present in the experimental matrix absorption spectra of GaPcCl in Figure 

V.1, Figure V.14, Figure V.24 and Figure V.33 for Ar, Kr, Xe and N2 matrices 

respectively. These bands were tentatively assigned as weak electronic transitions of the 

GaPcCl molecule, and the TD-DFT results give more credibility to this assignment. These 

weak bands in each host, as well as the calculated transitions are shown in Figure V.A2. A 

similar structure is observed in each matrix, and the bands appear to be experiencing a 

matrix shift, similar to the Q band. The weak bands situated between the Q and B bands 

have also been predicted by TD-DFT for AlPcCl, H2TAP, ZnTAP and the entire group II 

M-TAPs (shown in Figure V.A3), as well as in ZnPc. This may indicate that there are 

weak bands present in the absorption spectra of the phthalocyanines which have not been 

documented before. The matrix absorption spectra presented in the results section showed 

some weak absorption bands in the 400 – 450 nm region of the spectrum. It may be the 

case that these weak bands are the experimental evidence of the bands predicted by TD-

DFT. It is clear that these bands originate from a species isolated in the matrix because 

they shift location depending on the host gas as shown in Figure V.A2. While these 

potential electronic transitions have been noted, they have not been analysed in significant 

detail and warrant further study, particularly as they have not been widely mentioned in the 

literature. 

The excited state lifetime can also be obtained from the extinction coefficient measured in 

absorption. Due to solubility problems with the GaPcCl/EtOH system, the accuracy of the 
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molar concentrations was put into doubt, particularly at higher concentrations. This in turn 

will affect the molar extinction coefficient recorded. Nevertheless, a molar extinction 

coefficient for GaPcCl/EtOH was calculated from absorption data to be ε ~ 7.2 x 109 m/M 

at 676.07 nm. The oscillator strength can then be calculated by the following equation: 

݂ = ଶଷଷఌబ
మ

మ  ଵଶ    Eq. V.1ܤ

where ε0 is the vacuum permittivity, c is the speed of light and me and e are the mass and 

charge of an electron respectively. B12 is the Einstein coefficient. By substituting the 

relative physical constants, Equation V.1 simplifies to: 

݂ = 4.32ܺ10ିଽ ∫  Eq. V.2   ݒ݀ߝ

where ∫  is the integral of the extinction coefficient over the range of the absorption ݒ݀ߝ

band. Substituting in the value for the extinction coefficient calculated from the absorption 

data gives an oscillator strength, f = 0.313. The fluorescent lifetime (τ) of a transition may 

then be calculated from the oscillator strength (f) and transition wavelength (λ) using the 

Strickler and Berg14 equation, 

߬ = ఒమఌబ
ଶగమ

     Eq. V.3 

where the constants are the same as in Equation. V.1. Applying Equation V.3 with λ and ݂ 

values for the lowest energy Q transitions determined from the absorption data in ethanol 

(676.07 nm and 0.313) and TD-DFT (621.95 nm and 0.3915), the lifetimes calculated for 

GaPcCl are 2.16 ns and 14.8 ns respectively. The difference of the TD-DFT calculated 

lifetime may be reduced by applying a field correction to the predicted oscillator strength, 

݂, to approximate the apparent oscillator strength ݂ᇱᇱ given as: 

݂ᇱᇱ =  (௦൫మିଵ൯ାଵ)మ


    Eq. V.4 

Where n is the index of refraction of the host material and s is a shape factor for the cavity 

related to the depolarization factor15. Taking into account the experimentally measured 

matrix shifts from the 0-0 transitions measured in N2, ߂, the value for λ becomes: 

ߣ = ିி்்ߣ +  Eq. V.5    ߂
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Substituting in the values calculated for ݂ᇱᇱ and ߣ into Equation. V.3 allows for the 

lifetimes of GaPcCl in different matrix hosts to be predicted. The results of these 

calculations are displayed in Table V.11. 

Table V.11: Theoretically predicted (τTD-DFT) and experimental (τExp) lifetimes of GaPcCl 
trapped in different media. All values are reported in ns. 

n τTD-DFT τExp 
Vacuum 1 14.8 - 

N2 1.22 2.25 2.6 
Ar 1.29 2.23 2.3 
Kr 1.428 2.18 2.4 
Xe 1.49 2.17 2.3 

EtOH 1.36 2.16 - 
 

When the field correction is applied to the TD-DFT results, the fluorescence lifetime 

becomes comparable to the values measured experimentally in the matrix. The expected 

trend of a shortening of the fluorescence lifetime in the heavier hosts also becomes 

apparent. This expected trend was not observed experimentally however, with Kr showing 

a longer lifetime than Ar, and Xe having an identical lifetime to Ar. The reason the 

predicted lifetimes do not match the experimental results may be due to the margin of error 

associated with the lifetime measurements, typically around 0.1 ns. Because of the short 

timescales being measured, a small error will appear exaggerated, and this may be the 

source of the skewed lifetimes in the different matrices. The lifetimes measured in the rare 

gases all lie within the margin of error, and could be considered to be identical, but a more 

accurate measurement is required to make a definitive assessment of this idea.  

V.4.II: Comparison of the Absorption, Emission and Excitation Spectra 

Figure V.50 provides a comparison of the absorption, excitation and emission spectra 

recorded for GaPcCl in Ar. An enhanced region of this plot is shown in Figure V.A7, 

where the correlation between the 0-0 transition and the vibronic bands in absorption and 

excitation is evident. The apparent weak intensity of the 0-0 emission band (shown on the 

inset of Figure V.50) is an artefact due to strong re-absorption arising from the overlap 

between absorption and emission bands for this fully allowed electronic transition. A 

mirror symmetry exists between the absorption (excitation) and emission spectra in Figure 

V.50. While the emission spectrum is better resolved than the absorption and excitation, 

the vibronic structure is similar. The vibronic bands above 16000 cm-1 were not recorded 
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in excitation due to the limitations of the dye laser. The broad absorption bands make it 

difficult to accurately compare with the sharp vibronic bands in emission. The similarity 

between the absorption, emission and excitation spectra is best illustrated in Ar data but is 

also present in the other matrices. The frequencies found for the vibronic modes in 

emission and excitation are listed for a variety of matrices in Table V.12 and Table V.10 

respectively. 

 

Figure V.50: A comparison of the absorption (blue trace), excitation (black trace) and 
emission (red trace) of GaPcCl in Ar. Very close agreement exists between the excitation 
and reversed emission indicating very strong mirror symmetry of the two spectra. The 
spectrum shown on the inset shows the overlap between the 0-0 bands in absorption, 
emission and excitation and is highlighted by the dashed line. 

 

The same selection rules exist for vibronic coupling for an electronic transition in both 

absorption and emission. The similarities in the vibronic intensity distributions in emission 

and excitation indicate that the molecular geometry in this molecule is not greatly changed 

when in the first excited electronic state compared to the ground state. Another important 

observation has been highlighted by the dashed line at 670.1 nm; the positions of the 0-0 
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band in absorption, emission and excitation are all very close together, to within 1 cm-1, 

which is less than the experimental error in the current setup. 

V.4.III: Vibronic Structure in Emission 

The normal Raman scattering spectrum of GaPcCl recorded in KBr discs with CW 660 nm 

excitation is shown by the red trace in Figure V.51. The vibrational frequencies measured 

for the Raman active modes of GaPcCl have been presented and analysed in Chapter III. 

What is evident from Figure V.51 is the strong similarity between the visible emission in 

Ar (blue trace) and the recorded Raman spectrum. The good agreement between the 

Raman and fluorescence frequencies was expected because of the similar selection rules, 

but the observed intensities in Raman and fluorescence spectra are also very similar. This 

is consistent with the fact that all the vibronic transitions observed in fluorescence are 

transitions from ν’=0 to νn”=1 for different vibrational modes. Thus it appears that no 

overtones or progressions are observed in emission. This allows for the vibrational 

structure of the excited electronic state of GaPcCl to be analysed in the same manner as the 

ground state Raman by using high level DFT calculations.  

The correlation between the Raman modes and the vibronic bands is shown in Table V.12. 

The normal vibrational modes associated with the vibronic bands in emission spectrum are 

compiled in Table V.13 and all involve a distortion of the macrocycle, either directly such 

as a breathing mode, or indirectly from a distortion of the isoindole units for example. 

Almost all of the strong vibronic bands are in-plane modes of A1 or B2 symmetry. Weaker 

B1 and E modes are also evident in the spectrum, but tend to occur below 300 cm-1. In all 

matrices the strongest vibronic band in emission was a B2 mode, located around 1540 cm-1 

in Ar (1552 cm-1 for scaled DFT), and corresponds to the strongest band in the Raman 

spectrum (both experimental and predicted). This mode involves an asymmetric stretch of 

the Cα-Nm-Cα bonds of the inner macrocycle. This mode will be discussed in more detail in 

Chapter VI in relation to amplified emission. 
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Figure V.51: Raman shifts of GaPcCl recorded in KBr (red trace) with a 660 nm CW laser 
excitation and predicted by DFT calculations (black trace) which have been scaled by a 
factor of 0.98. Emission recorded in Ar has been compared as the shift from the 0-0 
transition. 
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Table V.12: Frequencies (in cm-1) of the vibronic bands of GaPcCl present in emission for 
different matrices. The measured frequencies compare very well to ground state Raman 
energies. The symmetries come from the DFT results of the Raman vibrational modes 
presented in Chapter III. The same scaling factors used in Chapter III have been applied to 
DFT results here. 

Emission KBr DFT        

x 0.98 

DFT     

Raw 
Sym 

N2 Ar Kr Xe Raman 
- - 23 - - 20 21 B2 

62 - 52 73 - 51 52 B1 
- 100 - 89 - 89 91 E 
- 111 - - - 114 116 B1 

129 143 128 - - 129 132 B2 
- 170 - - 165 158 162 B2 
- 214 227 - 221 215 220 B1 
- 248 247 - 237 244 249 B1 

288 290 289 - 285 275 281 A1 
- 309 - - - 303 309 E 

344 354 352 - 347 345 352 A1 
478 488 488 500 484 483 493 B1 
589 596 597 - 590 589 601 A1 
676 684 684 688 674 678 692 A1 
691 704 700 707 701 699 713 B2 
749 756 756 760 748 753 768 B2 
834 837 836 - 827 834 851 A1 

- 853 849 847 - 879 897 E 
954 961 960 966 951 955 974 B1 

1139 1147 1147 1150 1140 1144 1167 B2 
1188 - 1192 1217 1181 1182 1206 B2 

- 1311 - - 1302 1307 11334 B1 
1339 1347 1347 1351 1335 1339 1366 A1 

- 1394 - - 1335 1346 1373 B2 
1448 1459 1457 1438 1447 1454 1483 B2 
1532 1540 1541 1547 1523 1552 1584 B2 
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Table V.13: Normal mode descriptions of the main vibronic bands in emission of GaPcCl. 
Mode descriptions have been derived from the vector diagrams of the vibrational modes 
from DFT calculations presented in Figure V.51. Correlations between the DFT 
frequencies and the experimental Raman and matrix emission bands can be seen in Table 
V.12. 

DFT x 0.98 DFT Raw Sym Mode description 
20 21 B2 Isoindole OOP twist 
51 52 B1 Isoindole OOP twist 
89 91 E Isoindole OOP twist 

114 116 B1 Isoindole IP twist 
129 132 B2 Isoindole OOP twist 
158 162 B2 Macrocycle breathing, Isoindole rocking 
215 220 B1 Macrocycle OOP twist 
244 249 B1 Macrocycle OOP twist 
275 281 A1 Isoindole OOP twist, N-Ga-N bend 
345 352 A1 N-Ga-N OPB, Cα-Nm-Cα OPB 
483 493 B1 Macrocycle breathing 
589 601 A1 Macrocycle breathing 
678 692 A1 Macrocycle breathing 
699 713 B2 Macrocycle OOP deformation, C-H OPB 
753 768 B2 Macrocycle In-Plane Twisting 
834 851 A1 Macrocycle breathing 
879 897 E C-H OPB 
955 974 B1 Macrocycle breathing, Isoindole rocking 
1144 1167 B2 C-H IPB 
1182 1206 B2 C-H IPB, isoindole breathing 
1339 1366 A1 Isoindole Breathing 
1346 1373 B2 Isoindole Breathing 
1454 1483 B2 C-H IPB 
1552 1584 B2 Cα-Nm stretch 

 

V.4.IV: Site Structure in Emission 

The emission spectroscopy of GaPcCl produced with laser excitation can shed light on the 

site structure of the various matrices, as the narrow linewidth of the dye laser can 

selectively excite into an individual site. A good indication of the presence of multiple sites 

in the matrix is when the emission bands shift with respect to the laser excitation 

wavelength. A series of emission spectra of GaPcCl recorded with different excitation 

wavelengths in each matrix host are presented in Figure V.52 and Figure V.53. The left 

hand panel of Figure V.52 presents emission spectra of GaPcCl/Ar recorded with several 

excitation wavelengths between 670.3 and 661.3 nm. The red trace shows excitation at 

670.3 nm, which is very close to the 0-0 band in absorption. This spectrum shows a single 

set of sharp emission bands extending up to 747 nm. The broad red shoulders on these 
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peaks most likely originate from emission from an aggregate species. Due to the single set 

of sharp bands, it is apparent that a single site dominates at this wavelength.  

 

Figure V.52: The fluorescence of GaPcCl trapped in solid Ar (left panel) and N2 (right 
panel) produced with a number of different excitation wavelengths. Ar matrices show a 
range of sites in emission whereas N2 produces similar structure in emission regardless of 
excitation wavelength. 

 

The blue trace shows excitation at 668.9 nm, which is slightly to the blue of the 0-0 

transition. The same vibronic bands observed with excitation at 670.3 nm are present in the 

spectrum, as well as a duplicate set of bands to the blue. This indicates a second site has 

been excited. The splitting between the two sites is 26 cm-1. The red shoulders present in 

the red trace are no longer as pronounced with the λex = 668.9 nm, indicating this 

wavelength cannot excite the aggregate species. The black trace shows excitation even 

further to the blue, at 662.7 nm. This spectrum also shows signs of emission emerging 

from two sites, this time split by 32 cm-1. The red bands are at identical wavelengths to 

those observed with excitation into the 0-0 band, with the blue bands originating from a 
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site to the blue of the red-most site in the matrix. The green trace presents the emission 

spectrum recorded with an excitation wavelength of 661.3 nm. A similar result is observed 

as with the other two excitations shown to the blue of the 0-0 transition. A set of emission 

bands emanating from the red site are evident as well as a duplicate set of bands from a 

blue site. The site splitting in this case was measured at 30 cm-1. The fact that the splitting 

between the red and blue sites varies with respect to the excitation wavelength indicates 

that numerous sites exist in the matrix. This will be investigated in greater detail in a later 

chapter by employing 2D excitation-emission spectra in the region of the amplified 

emission bands. 

The right hand panel of Figure V.52 presents emission spectra of GaPcCl/N2 recorded with 

several excitation wavelengths between 667.6 and 652.3 nm. The red trace shows 

excitation at 667.6 nm, which is into the 0-0 band in absorption. Emission bands extend up 

to 745 nm, which correspond to the vibronic bands of the ground electronic state. A subtle 

asymmetry is observed on the emission bands, with a slight shoulder appearing to the red 

of the band maximum. This is indicative of emission from an aggregate species, similar to 

what was observed with excitation into the 0-0 band in Ar. The blue trace shows excitation 

at 667.1 nm, which into the 0-0 transition of a blue site absorption. This spectrum is almost 

indistinguishable from the red trace. The black trace was obtained with excitation at 659.6 

nm, which is to the blue of the 0-0 transition. This spectrum is made up of the same 

emission bands observed in the previous two spectra, but the band shapes are slightly 

different. Shoulders to the blue of the band maxima are observed instead of to the red. This 

is indicative of the presence of another site of isolation in the matrix. Some bands almost 

show splitting into two distinct bands, as was observed in Ar, but are not resolved. A 

similar phenomenon is observed with the green trace (λex = 652.3 nm). The spectrum is 

noisier than any of the previous spectra shown, but clearly resembles the black trace most 

closely. The emission bands all have a blue shoulder, the sign of a second site of isolation. 

Unfortunately, even so far to the blue from the 0-0 band, the two sites cannot be resolved. 

Because the sites in N2 are located too close together to be resolved with fluorescence they 

will be examined by looking for AE from the two sites in Chapter VI. 

The emission bands in Ar matrices are considerably narrower (10 cm-1) than those 

observed in N2 (18 cm-1). This is most likely due to the sites present in the respective 

matrices, with Ar containing many sites located sufficiently far apart to be resolved, and N2 

containing sites very close together in energy. Changing the excitation wavelength allows 
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emission from different sites to be observed in Ar matrices. In contrast, changing the 

excitation wavelength in N2 matrices exhibits negligible changes on the emission spectra. 

The emission data recorded with a range of different excitation wavelengths for GaPcCl/Kr 

are shown on the left panel of Figure V.53. The red trace was obtained by exciting close to 

the 0-0 band in absorption (λex = 675.6 nm). A single set of sharp emission bands are 

observed up to 754 nm. Emission from an aggregate species is observed, which has 

manifested itself as red wings on the strong emission bands.  

 

Figure V.53: The fluorescence of GaPcCl trapped in solid Kr (left panel) and Xe (right 

panel) recorded with a number of different excitation wavelengths. 

 

The blue trace shows excitation to the blue of the 0-0 band, where λex = 669.7 nm. A 

duplication of the emission bands is noted, with intense emission from the red site 

(identical to the emission bands shown by the red trace) and weaker emission bands 

located to the blue. The splitting between these two bands is rather large, approximately 50 
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cm-1. The splitting is larger than anything observed in the Ar matrix. The black trace shows 

the excitation at 666.2 nm, where emission from the blue site dominates and emission from 

the red site appears weaker. This is due to an overlap between the excitation wavelength 

with a strong absorption band of the blue site and a weak absorption band of the red site. A 

number of weaker emission bands are also observed, which indicate more sites occupy the 

region between the red and blue sites. The green trace shows excitation at 662.8 nm; 

further to the blue of the 0-0 transition in absorption. The same splitting pattern is observed 

in this spectrum, with the red and blue sites separated by 50 cm-1. The presence of weak 

shoulders to the blue of the emission bands of the red site indicate that there may be more 

sites present in this matrix that remain unresolved in fluorescence. This will be explored 

further by examining the sites capable of exhibiting amplified emission in a Chapter VI. 

Emission spectra of GaPcCl/Xe recorded with a series of different excitation wavelengths 

are presented in the right panel of Figure V.53. The red trace shows excitation in the region 

of the 0-0 band in absorption, at 683.1 nm. The spectrum contains emission bands up to 

763 nm, many of which show a red shoulder reminiscent to emission from aggregates in 

the other hosts. The emission bands in Xe are broader than in the other matrices owing to 

the number of sites within the host. The blue trace shows an excitation to the blue of the 0-

0 band (λex = 675 nm). This excitation yields two sets of emission bands; one from a blue 

site which has been excited directly, and one from a red site, which was excited due to 

overlap between the emission from blue site and absorption of the red site. The emission 

bands from the two sites are split by 16.7 cm-1. The black trace shows an excitation at 

669.8 nm. A similar spectrum to the blue trace is observed, with emission bands 

originating from a pair of closely situated sites dominating the spectrum. The splitting 

between these two sites is 12.4 cm-1. The green trace presents the emission spectrum of 

GaPcCl generated by exciting at 652.6 nm. This spectrum does not show two sets of 

resolved bands, but a single set of bands each with a blue wing. This indicates that two 

sites are again excited at this wavelength, but are very close together in energy. This is a 

trend which appears to be common in the Xe matrix regardless of the excitation energy. 

The largest splitting observed between the site furthest to the red and furthest to the blue 

was measured at 24.6 cm-1. This is around half of the value measured for the largest 

splitting in Kr, and significantly smaller than in Ar also. Only N2, with negligible site 

splitting is smaller. The movement of the location of the emission bands in Xe with respect 

to the excitation wavelength suggests that the matrix contains many sites. 
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Emission spectroscopy has been used to probe the site occupancy of each matrix host. Ar 

and Xe appear to be filled with many sites. Kr matrices also contain several sites, but two 

of these sites dominate the emission spectra. N2 forms at least two sites of isolation, but 

they are located so close in energy that they cannot be resolved with the current 

experimental setup. In order to further investigate the site structure of the matrices, 

emission from strongly absorbing samples capable of exhibiting AE will be analysed in 

Chapter VI. 

 

V.5: Conclusions 
The electronic spectroscopy of GaPcCl was studied in four inert gas hosts – namely N2, Ar, 

Kr and Xe – at cryogenic temperatures as well as in an ethanol solution at room 

temperature. The origins of the Q bands were identified in absorption for each host and the 

main vibronic bands in absorption were also documented. The 0-0 transition shifts 

depending on the host environment, with the lighter matrix hosts having a higher energy 

band origin than the heavier hosts.  The band origins of the Q  G electronic transitions in 

absorption are 14959, 14916, 14806 and 14680 cm-1 in N2, Ar, Kr and Xe respectively. 

Vibronic bands extend up to ~1650 cm-1 in each host, with weaker combination bands 

extending up to around 3000 cm-1 (as shown in Table V.9). The B band was located around 

352 – 354 nm in each host matrix. A series of weak transitions to the red of the B band 

were observed between 400 – 450 nm which may be weak electronic transitions of 

GaPcCl. This assignment is supported by TD-DFT calculations, which also predicts a 

number of weak transitions located slightly to the red of the B bands. 

Emission was recorded in each of the matrix hosts and fluorescence bands were observed 

up to 740 – 760 nm depending on the host. Tuning the excitation wavelength allowed for 

selective excitation of individual sites which manifests as a constant energy shift on the 

location of the fluorescence bands. In many cases emission from the site being excited as 

well as emission from a dominant red site (obtained with excitation into the 0-0 band) was 

observed on the same spectrum. This is due to good overlap between the ZPL of a blue site 

being directly excited into and the PSB of a site located to the red of this. The decay 

profiles of the emission bands were investigated and a wavelength dependence on the 

decay time was noted in Ar, Kr and N2. Short wavelength emission bands in Ar and N2 

matrices exhibited the longest decay times, whereas longer wavelength emission bands 
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showed the shortest decay times. The opposite effect was observed in Kr matrices. No such 

wavelength dependence was seen in Xe matrices. The fluorescence lifetimes of a common 

vibronic band was measured in each host and found to be between 2.3 – 2.6 ns; an 

appropriate timescale for such a strongly absorbing dye molecule. 

The vibronic bands in absorption, emission and excitation were found to be very similar, 

indicating the structures of the ground and excited electronic states do not differ 

significantly. A vibrational analysis of the emission bands could thus be performed by 

making a comparison with the vibronic bands observed in emission with the ground state 

Raman bands owing to the similar set of selection rules that govern both sets of transitions. 

The strongest emission bands coincide with Raman active modes of A1 or B2 symmetry, 

usually involving in-plane motion of the macrocycle. Weaker B2 and E modes are also 

evident in both the emission and Raman spectra. 

Excitation spectra tend to show a fairly sharp 0-0 band corresponding to the ZPL. Vibronic 

bands in excitation were recorded up to ~1000 cm-1 beyond the band origin. This region 

was limited by the tuning range of the dye used (as shown in Chapter II). Good overlap 

between the ZPL of a blue site and the PSB of a red site allowed for more than one set of 

emission bands to occupy a given spectrum and allowed for the observation that there were 

many sites present in the rare gas matrices.  

Amplified emission was a feature consistently observed for samples with large optical 

densities (> 2.5). This phenomenon was observed in each of the hosts used in the current 

study and was often noted to have occurred from many sites in a given sample. A single 

vibronic band, located ~1540 cm-1 from the band origin (in Ar), was determined to be 

responsible for the effect. The AE bands are shorter lived than their fluorescence 

counterparts and show spectral narrowing of their linewidths – both characteristics 

determined by the excitation laser. The narrow linewidths will be taken advantage of in the 

upcoming Chapter, which will analyse the site structure in each matrix by looking at the 

high resolution emission and excitation spectra in the region of the AE bands. 

The choice of host material can have a significant effect on the spectroscopy of GaPcCl, 

affecting properties such as the band origin of the electronic transition, the linewidth of 

emission bands, the number of sites present and how easily it can exhibit stimulated 

emission. Ar and Kr matrices tend to give the simplest fluorescence spectra with sharp 

bands and clear site structure evident. N2 and Ar matrices were excellent host materials for 
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observing amplified emission and this was also used to study the sites present in these 

matrices. It was more difficult to prepare samples of GaPcCl in Kr and Xe that were 

capable of exhibiting AE, but it was achieved nonetheless.  
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V.7: Appendix 

 

Figure V.A1: Laser excitation spectra of GaPcCl recorded in Ar plotted as the shift from 
the 0-0 band in excitation. The emission bands monitored were located at 700.58, 702.37 
and 706.35 nm and correspond to slices through vibronic bands from different sites.  

 

Figure V.A2: Absorption spectra of GaPcCl isolated in inert gas matrices in the region 
between the Q and B bands. The predictions made by TD-DFT calculations are also shown 
for comparison. 
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Figure V.A3: Electronic absorption spectra of selected M-TAPs predicted by TD-DFT 
calculations. In all instances, the Q and B bands have the greatest intensity. Weaker bands 
located between these well-known transitions are evident in each spectrum. 
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Table V.A1: Time Dependent DFT results for the first 50 singlet excited states of GaPcCl. 
The MO contributions of the Q and B bands are shown in Figure V.A4 and Figure V.A5 
respectively. 

Excited 
state Sym Energy 

(eV) 
Wavelength 

(nm) 
Oscillator 
strength 

1 Singlet-E 1.9935 621.95 f=0.3915 
2 Singlet-E 1.9935 621.95 f=0.3915 
3 Singlet-E 3.2905 376.8 f=0.0000 
4 Singlet-E 3.2938 376.42 f=0.0000 
5 Singlet-E 3.3193 373.52 f=0.0110 
6 Singlet-E 3.3193 373.52 f=0.0110 
7 Singlet-E 3.3775 367.09 f=0.0000 
8 Singlet-B2 3.458 358.54 f=0.0000 
9 Singlet-E 3.4681 357.5 f=0.0042 
10 Singlet-B1 3.5122 353.01 f=0.0000 
11 Singlet-E 3.5206 352.17 f=0.0019 
12 Singlet-E 3.5206 352.17 f=0.0019 
13 Singlet-E 3.5323 351.01 f=0.0043 
14 Singlet-E 3.5323 351.01 f=0.0043 
15 Singlet-E 3.5644 347.84 f=0.0000 
16 Singlet-E 3.6525 339.45 f=0.0033 
17 Singlet-E 3.658 338.94 f=0.3802 
18 Singlet-E 3.658 338.94 f=0.3802 
19 Singlet-A2 3.6719 337.66 f=0.0000 
20 Singlet-E 3.6829 336.64 f=0.3036 
21 Singlet-E 3.6829 336.64 f=0.3036 
22 Singlet-E 3.6832 336.62 f=0.0000 
23 Singlet-E 3.7229 333.03 f=0.0000 
24 Singlet-E 3.7627 329.51 f=0.0000 
25 Singlet-E 3.7676 329.08 f=0.0000 
26 Singlet-E 3.7865 327.44 f=0.2486 
27 Singlet-E 3.7865 327.44 f=0.2486 
28 Singlet-E 3.8025 326.06 f=0.0000 
29 Singlet-E 3.8498 322.05 f=0.0033 
30 Singlet-E 3.9838 311.22 f=0.0000 
31 Singlet-E 3.9876 310.93 f=0.0000 
32 Singlet-E 4.0194 308.46 f=0.0000 
33 Singlet-E 4.023 308.19 f=0.0004 
34 Singlet-E 4.2318 292.98 f=0.1009 
35 Singlet-E 4.2318 292.98 f=0.1009 
36 Singlet-E 4.3613 284.29 f=0.0042 
37 Singlet-E 4.3613 284.29 f=0.0042 
38 Singlet-A2 4.5562 272.12 f=0.0000 
39 Singlet-E 4.697 263.97 f=0.0062 
40 Singlet-E 4.697 263.97 f=0.0062 
41 Singlet-E 4.7571 260.63 f=0.0000 
42 Singlet-E 4.7571 260.63 f=0.0000 
43 Singlet-B1 4.9778 249.07 f=0.0000 
44 Singlet-E 5.0033 247.81 f=0.0018 
45 Singlet-E 5.0033 247.81 f=0.0018 
46 Singlet-A1 5.0132 247.31 f=0.0001 
47 Singlet-A2 5.0226 246.85 f=0.0000 
48 Singlet-B2 5.1299 241.69 f=0.0000 
49 Singlet-A2 5.141 241.17 f=0.0000 
50 Singlet-E 5.1621 240.18 f=0.0005 
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Figure V.A4: Molecular orbitals involved with the Q  G electronic transition predicted 
by TD-DFT calculations. TD-DFT predicts the transition energy to be 621.95 nm. The MO 
# of each orbital is given. 

 

Figure V.A5: Molecular orbitals involved with the B  G electronic transition predicted 
by TD-DFT calculations. TD-DFT predicts the transition energy to be 338.94 nm. The MO 
# of each orbital is given. 
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Figure V.A6: Example of a 2D Excitation-Emission scan of GaPcCl/Ar. Emission and 
excitation ‘slices’ were extracted from files such as this for presentation in the present 
chapter. 

 

Figure V.A7: Comparison of the absorption and excitation spectra of GaPcCl/Ar. 
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Chapter VI: Amplified Emission of GaPcCl Isolated in 
Inert Gas Matrices 

 

VI.1: Introduction 
This chapter develops the results presented in Chapter V for GaPcCl isolated in inert gas 

matrices, where the molecule was shown to exhibit amplified emission (AE). The 

vibrational mode responsible for AE is identified using DFT calculations, by comparing 

the amplified band to the vibronic bands observed in emission spectra presented in Chapter 

V. The site splitting of each matrix host is probed by employing 2D excitation-emission 

(2D-EE) plots in the region of the AE bands. Emission and excitation ‘slices’ of the 2D-EE 

plots are extracted to highlight the main spectral features within a given matrix sample. A 

comparison of the different matrix hosts is provided by concentrating on the emission 

spectra. The results of annealing the matrix are also presented, with an emphasis given to 

the Ar system, where the most significant effects were observed. The phonon structure of 

GaPcCl/Ar is investigated with the so-called Wp lineshape function. 

 

VI.2: Experimental 
Matrix-isolation experiments were conducted in the Low Temperature Laboratory at 

Maynooth University, using the apparatus described in Chapter II. Matrix samples were 

prepared in a variety of hosts which included the molecular gas N2 and the rare gases Ar, 

Kr and Xe. From the absorption data presented in Chapter V, it was determined that the 

minimum optical density (OD) a sample required in order to exhibit AE was in excess of 

2.5. All data presented in this chapter was recorded using a pulsed dye laser for excitation 

and the time-gated iCCD Camera for detection. Unless otherwise stated, the high 

resolution 1200 grooves/mm grating installed in the SP-500i monochromator was used for 

the recording of spectra. 
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VI.3: Results 
The phenomenon of amplified emission was, as indicated in Chapter V, observed for 

GaPcCl isolated in each of the matrices examined in the present study. A summary of the 

AE spectra recorded in the four inert gas hosts is shown in Figure VI.1. A vibronic band, 

located in the range of 1532 – 1547 cm-1 (depending on the host) from the 0-0 in emission 

is observed to exhibit amplified emission. Table VI.1 gives the location of this vibronic 

band in each host, as well as the recorded Raman and predicted DFT Raman values. For 

ease of discussion, the frequency of this mode in Ar (1540 cm-1) will be used from this 

point onwards when referring to the AE vibrational mode. The left panel of Figure VI.1 

demonstrates the striking enhancement in the intensity of the vibronic band at 1540 cm-1 

when it undergoes AE compared to fluorescence. In Ar samples the emission band at 

747.16 nm achieves a 20-fold increase in intensity with the increased laser excitation 

energy. In contrast, the emission band at 736.66 nm is only 1.1 times more intense with the 

increased laser energy. A similar phenomenon is observed in the other matrices, although 

the extent of the intensity change is variable and is highly dependent on the laser intensity, 

sample concentrations and site occupancies.  

 

Table VI.1: Vibrational frequencies of the vibronic band of GaPcCl in emission associated 
with AE for each host material. The values reported in the matrices have been extracted 
from the red-most site. The KBr and DFT Raman results are shown for comparison. 

Host Material Frequency (cm-1) 
Ar 1540 
Kr 1541 
Xe 1547 
N2 1532 

Raman (KBr) 1523 
Raman (DFT x 0.98) 1552 
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Figure VI.1: Fluorescence (red trace) and amplified emission (black trace) of GaPcCl 
recorded in N2, Ar, Kr and Xe at 10 K. The left panes show the increased intensity of the 
vibronic band at ~1540 cm-1 in the AE spectrum compared to the fluorescence. The right 
panel shows the normalized plots and clearly demonstrates the narrowness of the AE bands 
compared to those of the fluorescence bands. 

 

The right hand side panel of Figure VI.1 shows normalized plots of spectra exhibiting 

fluorescence and amplified emission recorded in each matrix. These spectra clearly 

demonstrate the narrow linewidths of the AE bands compared to those of the fluorescence 

bands. This characteristic will be exploited in the present chapter to gain additional 

information on the features present in the host solids. Although the actual wavelength 

position of the AE band shifts depending on its environment, it is always the same vibronic 

transition that is responsible for the effect – the vibrational mode around 1540 cm-1. Figure 

VI.2 shows the amplified emission of GaPcCl recorded in the various matrices plotted as 

their shift from the band origin. When plotted in this manner it is clear that the same 

vibrational mode is associated with amplified emission in each matrix. In a similar manner 

to Figure V.44, the emission bands shown in Figure VI.2 (dashed lines) in each matrix also 
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show excellent agreement, exactly what is expected given the results presented in Table 

V.12. Due to the same vibrational mode being responsible for AE in every matrix, it is 

possible to use this phenomenon to analyse the different sites occupied in each host. This 

will be presented ahead in Section V.4.VI, where 2D-EE plots will be used to characterise 

the site splitting. 

 

Figure VI.2: Amplified emission of GaPcCl (solid trace) recorded in N2, Ar, Kr and Xe at 
10 K plotted as their shift from the band origin (ν0-0). The normalized emission (dashed 
trace) from the same scan is also presented to show that there is also good agreement for 
the vibronic bands in each matrix. The dashed vertical line highlights the location of 1540 
cm-1 on the scale. 

 

The dependence of the intensity of the amplified emission was investigated by varying the 

laser energy and monitoring the effect it had on the intensity of a fluorescence band and the 

AE band, the results of which are shown in Figure VI.3. This was achieved by keeping the 

wavelength of the dye laser constant and changing its energy. As described in Chapter V, 

the dye laser was operated under two conditions; the first used only the oscillator, which 
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has a typical output of  ~10 μJ/pulse, while in the second the pre-amplifier was used which 

has an energy of ~100 μJ/pulse. Generally only fluorescence was observed with the 

oscillator. The energy of the pre-amplifier beam hitting the matrix window was reduced by 

placing neutral density filters in the path of the beam. The intensity of the laser beam was 

measured at the sample window prior to an emission spectrum being recorded. The data 

shown in Figure VI.3 is for the dominant site in emission at 747.2 nm for GaPcCl/Ar, 

produced with excitation at 670.3 nm. The band exhibiting amplification at 747.2 nm is 

represented by the red triangles. For comparison, normal fluorescence from a nearby 

vibronic band at 736.7 nm is also shown in Figure VI.3, which is not amplified with the 

increase in laser pulse energy.  

 

Figure VI.3: The dependence of the amplified emission intensity of GaPcCl in Ar with 
respect to the excitation laser energy. The red triangles show how the intensity of band at 
747.2 nm increases dramatically as the laser energy increases from 10 μJ/pulse to 100 
μJ/pulse. The black squares show how a regular fluorescence band at 736.7 nm is not 
significantly affected by the increasing the laser intensity. The inset shows up to laser 
energies of around 50 μJ/pulse. On this scale it can be seen that only a small difference 
manifests between the intensity of the fluorescence and the AE bands when low laser 
energies are used. 
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At lower excitation laser energies (< 20 μJ/pulse) the intensity of the two bands being 

monitored is almost identical on the scale shown. As the intensity increases up to around 

45 μJ/pulse it is evident that there is a slightly higher intensity associated with the AE 

band. When the energy of the laser is increased above 50 μJ/pulse the intensity of the band 

at 747.2 nm is greatly enhanced compared to the band at 736.7 nm. At this energy 

stimulated emission has been ‘switched on’, having reached a certain threshold value. As 

the laser energy is increased even further, the AE band gains more and more intensity until 

the iCCD becomes saturated at laser energies above 90 μJ/pulse. 

Excitation scans of the AE vibronic band of GaPcCl were recorded in the same manner as 

the excitation spectra of the fluorescence bands shown in Chapter V. The excitation spectra 

of the dominant site in each matrix are presented in Figure VI.4 as their shift from the band 

origin. The excitation spectra recorded of the AE bands are far more resolved than those 

recorded of the same fluorescence bands. Spectra recorded in Ar and Kr each contain a 

sharp band corresponding to the zero phonon line (ZPL) of GaPcCl which has been 

identified with the dashed line in Figure VI.4. Ar shows the most resolved ZPL, which can 

be easily identified for a number of different sites. This will be discussed in more detail in 

Section VI.4.II. The ZPL is noticeably weaker in Kr, and is difficult to identify in Xe and 

N2. A weaker PSB band is present to the blue of the ZPL in Ar, but cannot be identified in 

the other matrices. A much broader band is evident in Ar and Kr hosts up to around 50 cm-

1, and out to 100 cm-1 in N2 and Xe. These features are too broad to be considered vibronic 

bands, so may originate from a different species in the matrix, possibly an aggregate. 

 Vibronic bands in excitation are observed in each matrix from 100 cm-1 and are quite 

similar up to 750 cm-1. The most resolved bands are observed in Ar, which is due to the 

massive intensity of the AE bands. These bands also have the narrowest linewidths of any 

recorded in the rare gas matrices in the current study. The positions of the bands in Kr and 

Xe are in good agreement with Ar. GaPcCl/N2 shows different excitation spectra for the 

AE bands with broad, unstructured profiles extending up to 750 cm-1. While the positions 

of the broad vibronic bands in N2 roughly match those observed in the rare gas matrices, 

they are not sufficiently resolved to make a proper comparison. The positions of the 

vibronic bands in excitation are given in Table VI.2. The high resolution excitation spectra 

recorded for the AE bands of GaPcCl allow for highly accurate positions of the vibronic 

bands to be extracted, as their absolute shift from the ZPL can be easily determined. As 
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such, the values in Table VI.2 are given to more significant figures than the corresponding 

numbers in Table V.10. 

 

Figure VI.4: Excitation spectra of the amplified emission band of GaPcCl isolated in 
various matrices. The dashed vertical line represents the location of the ZPL in each host. 

 

The vibronic bands in excitation are consistent for all sites in the matrix. To demonstrate 

this, a series of excitation spectra of GaPcCl/Ar are shown in Figure VI.A5 as their shift 

from ν0-0 in excitation. It is evident from this plot that the vibronic bands are common to all 

of the excitation spectra extracted at the given emission wavelengths. The main difference 

between spectra shown in this figure is the broad band below 50 cm-1, which will be 

discussed in detail in Section VI.4.II.a. While only the Ar results have been presented, the 

same argument is valid for the excitation spectra recorded in the other matrices in the 

current work. 
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Table VI.2: Vibronic bands in observed in the excitation spectra recorded for the AE band 
of GaPcCl in various hosts. All values are given in cm-1 and have been taken as their shift 
from the 0-0 band in excitation. 

N2 Ar Kr Xe 
- 4.45 6.13 6.91 
- - 17.55 17.27 

26.97 26.76 28.99 31.99 
48.62 - 49.26 47.60 

- 109.43 - 114.77 
158.71 140.21 133.57 149.02 

- 167.48 165.77 - 
- 191 198.11 195 
- 217.73 218.85 - 

237.01 246.19 238.74 225.12 
- 279.39 277.21 262.56 
- 305.01 - 315.49 
- - - 384.21 

498.87 - 482.49 464.58 
- - - 525.43 

583.65 586.73 587.91 566.26 
- - 623.05 - 

673.28 678.65 676.55 658.00 
725.39 - 714.99 728.01 
791.75 748.05 743.94 790.03 

 

From the data presented in Figure VI.4 it is clear that the sharpest ZPL and vibronic bands 

in excitation occur in the Ar matrix. A lineshape analysis of the emission and excitation 

spectra of the site furthest to the red of GaPcCl/Ar is presented in Figure VI.5. The regions 

where these emission/excitation spectra were extracted are shown in the 2D-EE plot shown 

in Figure VI.A2. This site was chosen because it is known from Chapter V to yield the 

simplest emission spectrum. Furthermore, being the most red site enables only a single site 

to be excited, which allows for the true structure of the bands in emission and excitation to 

be recorded.  

Both spectra show a sharp and intense band which corresponds to the ZPL, as well as some 

weaker bands. A Wp line fit was performed on both the excitation and emission 

bandshapes. The position of the band origin (ν0,0), or ZPL in this case, was located at 

14918 and 13384 cm-1 in excitation and emission respectively. The gap between the ZPL 

and PSB, ħω, was measured to be 4.4 and 3.9 cm-1 in excitation and emission respectively. 

Both spectra were recorded at 9.8 K and had a linewidth (fwhm) of 1.3 cm-1. The electron-
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phonon coupling strength, S, was found to be 0.2 following the fitting procedure outlined 

in Section II.10. When these parameters were substituted into the Wp function given by 

Equation II.14, the band profiles shown by the black traces in FigureVI.5 are generated. 

 

Figure VI.5: A comparison of the emission and excitation spectra recorded from the red-
most site of GaPcCl/Ar. The locations through which these slices were taken from are 
shown in Figure VI.A2. The zero phonon line and phonon side band are clearly visible in 
both excitation (left panel) and emission (right panel). The Wp fit was performed within 
the single-configurational-coordinate model described in Chapter II using Equation II.14. 

 

The left panel of Figure VI.5 shows the excitation spectrum in the region of the ZPL, 

which is located at 670.32 nm (14918 cm-1). A weaker band to the blue at 670.12 nm 

(14923 cm-1) corresponds to the first PSB. The Wp fit matches these bands very closely. A 

broad unstructured band even further to the blue, centred on 669.2 nm, does not exhibit any 

resolved ZPL or PSB (or the vibronic bands from Figure VI.4), suggesting the existence of 

a different species such as an aggregate. This proposal will be discussed in more detail in 

Section VI.4.I. The Wp fit predicts a weak phonon side band in this region, but if it exists, 
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it is obscured by the broad feature. The fit also predicts a fairly intense band to the red of 

the ZPL, but only a weak band is observed in the experimental spectrum. This is a hot band 

and is the region of the fit with the greatest discrepancy between the calculated and 

measured intensities. The difference in intensity of this hot band may be due to the 

threshold conditions associated with AE, i.e. the density of thermally excited molecules 

may be insufficient to reach the threshold value for stimulated emission to occur. 

The emission recorded by exciting into the ZPL of the most red site is shown in the right 

hand panel of Figure VI.5. With the exception of the broad excitation feature at 669.2 nm, 

mirror symmetry is apparent between the excitation and emission spectra. The ZPL in 

emission is located at 747.2 nm (13384 cm-1), with the PSB located at 747.4 nm (13380 

cm-1). As was the case in excitation, the Wp fit matches the experimental ZPL and PSB 

excellently. Two weaker phonon bands further to the red are also predicted by the Wp 

function, and evidence of this is present from the partly resolved shoulder centred on 747.7 

nm and the wing extending up to 748 nm in the experimental spectrum. This region is 

obstructed in the excitation spectrum by the broad band. The fact that this broad band does 

not show up in emission is evidence that it originates from a different species in the matrix. 

The weak band to the blue of the ZPL in emission (~746.8 nm) represents a hot band 

which arises at temperatures as low as 9.8 K due to the low frequency of the coupling 

mode (~3.9 cm-1). While the intensity of the hot band in emission is not as strong as that 

predicted by the Wp fit, it is stronger than that observed in the excitation spectrum. This 

may be due to the slightly larger coupling frequency in the excited state (~4.4 cm-1).  

Because the excitation and emission spectra shown in Figure VI.5 were extracted from the 

extreme red portion of the 2D-EE scans (see Figure VI.A2), they represent the simplest 

profiles for the AE bands. Accordingly, they are considered the intrinsic profile of a single 

type of site, one in which the monomer GaPcCl is isolated. From the good agreement with 

the Wp fits, it is concluded that the spectral structure exhibited arises from very weak 

electron-phonon coupling. 
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VI.4: Discussion 
VI.4.I: Amplified Emission 

In spite of the fact that several studies1,2,3 have already been performed on the electronic 

spectroscopy of GaPcCl, the current work is the first known instance of this molecule 

demonstrating amplified emission. This is a surprising situation since aluminium 

phthalocyanine chloride (AlPcCl) has been known to exhibit amplified emission for a long 

time4. In fact it was the first example of an operational dye laser. The mechanism for the 

process of AE in this system can be described by the 3-level energy level diagram shown 

in Figure VI.6. Level 1 in the diagram is the ground state (S0 (ν″ = 0)), which is highly 

populated at the cryogenic temperatures used in matrix-isolation experiments. Level 2 (S1 

(ν′ = 0)) is only populated following laser irradiation, and must be sufficiently long lived 

for a population inversion to take place with respect to Level 3. This level is a specific 

vibrational mode of the ground electronic state (S0 (νn″ = 1)). It is the vibrational mode 

observed at 1523 cm-1 in the Raman spectrum and at 1540 cm-1 in emission of GaPcCl/Ar. 

This mode is of B2 symmetry and corresponds to the normal mode #144 from the DFT 

vibrational analysis. 

 

Figure VI.6: Energy level diagram depicting the process of amplified emission in 
GaPcCl/Ar. A 3 level system is involved; Level 1: The electronic ground state (S0) where 
ν″ = 0, Level 2: The first excited electronic state (S1 (Q)) where ν′ = 0, and Level 3: An 
excited vibrational level corresponding to mode #144 at 1540 cm-1 in S0. 

 



                           Chapter VI: Amplified Emission of ClGaPc Isolated in Inert Gas Matrices 
 

280 

In order to produce stimulated emission, Level 2 must be populated with great efficiency. 

This was achieved by pumping the GaPcCl molecule with nanosecond pulsed dye laser 

excitation. A set of experiments by Huang et al.5 did not result in any AE when exciting 

free-base, Mg, AlCl, Zn, and Cu phthalocyanines isolated in Shpol’skii matrices with 

continuous wave (CW) laser excitation. Studies by Dozova6, Crepin7 and Arabei8,9 showed 

that pulsed laser excitation was capable of producing AE in the structurally related systems 

free-base and zinc phthalocyanine, free-base tetraazaporphyrin and free-base 

tetrabenzoporphyrin. Another important factor in achieving AE is exciting into an 

electronic transition with a large extinction coefficient. This has been (tentatively) 

measured as ε ~ 7.2 x 109 m/M at 676.07 nm for GaPcCl in EtOH, although, for solubility 

reasons the actual value is expected to be somewhat larger. Level 3 at 1540 cm-1 

corresponds to a non-thermally populated level so that the population inversion between 

the (2) → (3) transition is easily obtained. To maintain the population inversion during the 

course of the 6 ns laser pump pulse, the vibrational Level 3 must rapidly relax to the 

vibrationless level (ν" = 0) of the ground state. Fluorescence lifetimes of GaPcCl were 

measured as 2.6, 2.3, 2.4 and 2.3 ns in N2, Ar, Kr and Xe matrices respectively, indicating 

that Level 3 must decay much more rapidly than this. The vector diagram representing the 

vibrational mode #144 is shown in Figure VI.7, and involves an out-of-phase asymmetric 

stretching of the Cα-Nm-Cα bonds of the inner ring macrocycle. This mode is now well 

known to be associated with the process of stimulated emission as it has been observed in 

several related porphyrin and phthalocyanine systems8,6,9. Thus it is expected that this 

excited vibrational mode can relax very quickly to the vibrationless ground state.  
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Figure VI.7: Vector diagram showing the atomic motions of vibrational mode #144 of 
GaPcCl at 1540 cm-1 associated with amplified emission which has been calculated by 
DFT with the B3LYP/6-311++g(2d,2p) functional and basis set. As depicted, the mode 
involves mostly an out of phase stretching of the bridging Cα-Nm-Cα bonds, coupled with 
small amounts of ‘in-plane’ C-H bends on the aryl groups. The direction of motion of the 
atoms is depicted with the blue arrows and the extent of the motion is given by the length 
of the arrows. 

 

VI.4.II: Site Splitting of Amplified Emission 

It was observed from the emission data presented in Chapter V that GaPcCl can occupy a 

number of different sites depending on the matrix host it is trapped in. Several sites within 

a given sample can exhibit AE, with the vibronic band at ~1540 cm-1 being the mode 

involved in all cases. This will be demonstrated in Sections VI.4.II.a through VI.4.II.d. The 

spectral features of each matrix will be analysed using the AE bands originating from 

different sites. This method is preferable to using regular fluorescence data owing to the 

exceptionally narrow line widths of the AE bands and the very large signal-to-noise ratios 

compared to those of the fluorescence bands. 2D emission-excitation (2D-EE) plots of 

GaPcCl in each host gas give a complete overview of the emission data that is not always 

obvious from individual emission or excitation spectra. In order to relate these plots to the 

more conventional spectra, emission and excitation ‘slices’ of these 2D-EE plots will be 
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presented to show how the spectra change with respect to the wavelengths (λex and λem) 

monitored.  

VI.4.II.a: Argon 

The 2D-EE plot recorded in the spectral region of the AE bands of GaPcCl/Ar is shown in 

Figure VI.8. This plot presents emission on the x-axis and excitation on the y-axis. 

Emission intensities are plotted as coloured contour lines, whose scale is shown to the right 

hand side of the main plot area. A series of dashed lines are shown on the plot with labels 

Mn and Xn (where n = 1, 2, 3...etc.), which represent emission and excitation ‘slices’ 

respectively of the 2D-EE plot. For example, the line M1 denotes the emission spectrum 

obtained with an excitation wavelength equal to the position of M1 (λex = 670.3 nm). The 

same is true for the excitation spectra, where the emission wavelengths being monitored 

match the position of the Xn lines. A more detailed account of how the emission and 

excitation spectra are extracted from 2D-EE plots is given in Chapter II and accompanied 

by a plot showing an emission and excitation spectrum in Figure II.16. The same method 

will be used for each matrix host. 

The structure of the 2D-EE plot of GaPcCl/Ar shows a white background (low intensity) 

with contours of different colours (higher intensity) in the upper centre of the plot. The 

contour lines represented by pink, red, yellow and green correspond to the strongest 

amplified emission. Turquoise and blues represent weaker AE which is seen predominantly 

at λex < 665 nm, which correspond to the higher energy vibronic bands in excitation. The 

highest intensity regions are shown by the red/pink contours and there are three such 

regions in this plot. The first region (highlighted as region ‘I’ on Figure VI.8) has its 

strongest emission centred at 747.2 nm, with λex = 670.3 nm, and shall be referred to as the 

‘red site’. The other intense region exhibits the strongest emission intensity at ~745.1 nm, 

with λex = 668.6 nm, and shall be referred to as the ‘blue site’ (highlighted as region ‘III’ 

on Figure VI.8). An area of moderate intensity exists between the red and blue sites and 

has been labelled as region II. 

An expanded view of regions I - III of this 2D-EE plot are presented in Figure VI.A1 - 

Figure VI.A4, which provide more details of three main features in the plot. These three 

regions show the features of the most abundantly occupied sites. In Figure VI.A1, the 

location of the strong ZPLs and weaker resolved PSBs are represented by the diagonal 
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features. The Wp fit shown in Figure VI.5 is applicable to all of the excitation bands 

present. In contrast, the spectral band shape of the broad ex/em feature at 669.5/747.2 nm 

has completely different properties. Accordingly it is attributed to a different species, 

possibly an aggregate, as indicated in Figure VI.A1. Immediately to the blue (in excitation) 

of each ZPL lies its corresponding PSB, although this is not evident on the scale shown in 

Figure VI.8. A series of weaker AE bands are located between the red and blue sites in 

what appears to be a continuum of sites in the matrix (highlighted as region ‘II’ on Figure 

VI.8, and shown in detail in Figure VI.A3). The ZPLs of the weaker sites can be clearly 

seen as the region of intense emission between the intersections of M1-X4 and M2-X1. 

The PSBs of the weaker sites are difficult to observe in the contour plot, even on the scale 

presented in Figure VI.A3, due to their low intensity. 

 

Figure VI.8: 2D excitation-emission plot of GaPcCl trapped in solid Ar recorded in the 
region of the amplified emission bands. A number of sites are clearly present. A selection 
of emission slices (M1 – M4) have been extracted from this spectrum and are shown in 
Figure VI.9. A selection of excitation spectra (X1 – X4) have also been taken from the 
spectrum and are shown in Figure VI.10. All slices will be shown in linear energy (cm-1) 
for analysis. 
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Selected emission spectra from the 2D-EE spectrum of GaPcCl/Ar have been extracted and 

are presented in Figure VI.9. The ‘slices’ were chosen based on the intensity of the AE 

bands for different sites. These spectra show how the amplified emission bands change 

drastically with different excitation wavelengths. The red trace corresponds to M1 (λex = 

670.3 nm) and cuts through the AE band of the dominant red site at 747.2 nm in Figure 

VI.8. Similar to the fluorescence data presented in Chapter V, excitation into the 0-0 band 

in absorption yields the simplest emission. This excitation wavelength is only capable of 

exciting the lowest energy sites and a single strong AE band is observed. A weaker 

shoulder to the red of the intense band at 747.2 nm is, according to the Wp fits done, due to 

emission from the PSB. A very weak band even further to the red (λem = 748.05 nm) is 

observed, which is most likely emission of a second PSB.  

The blue trace (M2) corresponds to λex = 668.6 nm on Figure VI.8, which cuts through the 

maximum of the AE band from the blue-most site at 745.1 nm. The PSB of this site (λem = 

745.4 nm) can be seen as a weak band to the red of the intense emission band. This slice 

also cuts through the feature to the blue of the dominant red site (in excitation), which 

manifests as a broad emission band centred at 747 nm. Another broad emission band is 

observed at 746.1 nm. The broadness of the band (at 746.1 nm) may indicate that this is 

emission from more than a single site, similar to why the fluorescence bands in N2 and Xe 

were so broad. Alternatively, this could be emission from an aggregate species.  

Two broad emission features are evident in Figure VI.8, whose excitation maxima are 

located to the blue of the ZPLs of the dominant red and blue sites (regions I and III). The 

emission and excitation slices taken through the maxima of these bands are shown in 

Figure VI.A6. The excitation spectra show that the ZPL dominates the intensity, but that 

the broad features are also emitting strongly. The lineshapes of the ZPL and the broad 

feature are different, with the broad feature perhaps showing some unresolved structure. 

The linewidths of both ZPLs in excitation are 1.3 cm-1 whereas the broad bands have 

linewidths of 22.9 and 23.2 cm-1 for the blue and red features respectively. The emission 

spectra shown in Figure VI.A6 also highlight the difference between the lineshape of the 

ZPL and the two broad features; the ZPL has a linewidth of 1.3 cm-1 and the broad bands 

have linewidths of 11.9 and 8.7 cm-1 for the blue and red sites respectively. This difference 

is also demonstrated by the bands at 745 nm in traces M2 (which shows the ZPL) and M3 

(which shows the broad feature) in Figure VI.9. The very different spectral characteristics 
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indicate that these features do not originate from the well isolated molecule, but may 

instead be due to the presence of aggregates in the matrix. Even though this is not a 

definitive assignment, these features will be referred to as aggregates in future for ease of 

discussion. These bands were present in all samples of GaPcCl/Ar, although changing the 

deposition conditions caused a variation in the relative intensities of emission from the 

‘aggregate’ and monomer species. The spectrum shown in Figure VI.8 was prepared with a 

high oven temperature with the sample window held at 10 K, and is representative of the 

relative intensities of these features in most Ar samples. 

` 

Figure VI.9: A series of emission spectra of GaPcCl/Ar recorded with different excitation 
wavelengths. The position on the 2D-EE plot that each spectrum is extracted from is 
shown in Figure VI.8. 

 

At excitation wavelengths shorter than 664 nm amplified emission has all but stopped, 

except for the vibronic bands of the dominant sites. The same trend for the region around 

the ZPLs is observed here, with some strong emission around 747.2 nm, moderate 
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emission around 745.1 nm and weaker emission between these two regions. This trend 

arises because the same vibronic structure in excitation is common to all of the sites (i.e. 

the shift of a given vibronic band from the ZPL will be identical for every site, as 

demonstrated in Figure VI.A5). Further vibronic structure can be observed at excitation 

wavelengths to the blue of 660 nm for the dominant red site only. 

The black trace (M3) corresponds to λex = 666.4 nm on Figure VI.8 and cuts through the 

AE bands of both the red and blue sites. All of the AE bands observed with excitation at 

M3 are much broader than the bands observed with excitations at M1 and M2. This is due 

to the fact that M3 does not intersect with the narrow ZPLs of these sites, but rather the 

broader aggregate species exhibiting AE in this region. At least 5 emission bands are 

present and exhibit different degrees of resolution depending on the excitation wavelength. 

The final excitation wavelength shown in Figure VI.9 corresponds to M4 (λex = 657.8 nm) 

on Figure VI.8. At this wavelength, AE is only exhibited by the most red site, and with a 

diminished intensity, as fluorescence from the vibronic band at 1540 cm-1 of the blue site is 

clearly visible on the same scale. The band which is exhibiting AE corresponds to one of 

the vibronic bands in excitation which is shown by X4 in Figure VI.10. 

A series of excitation spectra extracted by taking slices at the emission wavelengths 

specified in Figure VI.8, are presented in Figure VI.10. Slice X1(red trace), taken at the 

emission wavelength 745.06 nm, coincides with the maximum of the emission from the 

blue site observed in Figure VI.9 The excitation spectrum shows a very sharp band at 

668.0 nm which corresponds to the zero phonon line (ZPL) for this site. The phonon side 

band (PSB) to the blue of the ZPL is difficult to identify due to its overlap with the broad 

bands centred at 666.6 nm. This broad band corresponds to the feature which has been 

tentatively assigned as an aggregate species. A weak shoulder to the red of the ZPL may be 

a hot band which is thermally populated at 10 K. This is possibly due to the small splitting 

(~4.4 cm-1) between the ZPL and the PSB. A weak vibronic band is evident at 660.6 nm, 

representing a vibronic mode with a frequency of 167.5 cm-1, as listed in Table VI.2.  

The blue trace (X2) was obtained by monitoring the emission band located at 746.20 nm. 

This corresponds to a site (Region II) which exhibits amplified emission, but not as 

strongly as the blue or red sites described earlier. The spectrum is dominated by a sharp 

ZPL located at 668.45 nm, with a broad (~90 cm-1) band, possibly originating from another 

aggregate species. The PSB is located in between the ZPL and the emission band from the 
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aggregate. A vibronic band in excitation is also observed around 661 nm, with a much 

weaker band also arising at 663.3 nm. All of the bands are red-shifted compared to their 

counterparts shown by X1, which is expected as the excitation spectrum is centred on an 

emission band from a site to the red of X1.  

 

Figure VI.10: A series of excitation spectra of GaPcCl/Ar recorded by monitoring various 
emission wavelengths. The relationship between the emission wavelength, Xn, and the 2D-
EE spectrum is shown in Figure VI.8. 

 

The excitation spectrum extracted at X3 (black trace) shows a similar structure to that of 

X2, with an intense ZPL (670.14 nm), a resolved PSB and several vibronic bands further to 

the blue. The broad band from the aggregate species is present, but appears to have a 

different structure to its counterparts in the other excitation spectra. From the 2D-EE 

contour plot shown in Figure VI.8, it looks like X3 cuts through two broad bands, which 

may be two distinct species. The bands in this spectrum are all red-shifted with respect to 

the bands from X1 and X2. The presence of the ‘extra’ bands in the spectrum (highlighted 
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by asterisks) is due to how highly occupied each site is, with the vibronic bands of X3 

exhibiting greater intensity than those of X1 and X2. X2 is moderately occupied, and can 

exhibit AE with only a few excitation wavelengths to the blue of the ZPL. A similar result 

is obtained for the blue site (X1), although this site is well occupied. The site shown by X3 

is very highly occupied as all of the vibronic bands in excitation observed in Figure VI.10 

exhibit AE. 

The spectrum shown by the green trace is a slice taken through X4. Because it is located in 

the extreme red, this was the only site which produced amplified emission with excitation 

at M1. The excitation spectrum is similar to that obtained with X3, exhibiting a sharp ZPL 

and PSB which dominate the spectrum, with much broader excitation bands located to the 

blue of the PSB exhibiting some weaker amplification. These broad excitation bands 

originate from the aggregate species. Pairs of vibronic bands extending up to 658 nm are 

also evident. 

The 2D-EE plot, as well as the corresponding emission and excitation spectra, show that 

GaPcCl/Ar exists in many sites of isolation. A continuum of weaker sites exist between the 

three most abundantly occupied ones (shown in Figure VI.A2 - Figure VI.A4), whose AE 

bands are located at 745.06, 747.17 and 747.49 nm. The splitting between the AE bands of 

the red site at 747.49 nm and the sites whose AE bands are located at 747.17 and 745.06 

nm are 6 and 44 cm-1 respectively. As well as a number of monomer species which exhibit 

narrow ZPLs in excitation, other species also exist in Ar matrices. These ‘aggregate’ 

species also emit strongly in the AE region, although both emission and excitation bands 

from this species are much broader than those of the isolated molecule. Slice M3 in Figure 

VI.9 cuts directly through the maximum of the blue aggregate feature, and demonstrates 

the pronounced broadening of this species in emission, especially when compared to the 

narrow ZPL from the blue site shown by slice M2. The excitation slice X1 passes directly 

through the ZPL of a blue monomer species as well as the maximum of the blue aggregate 

feature. This demonstrates the broadening exhibited in excitation for the aggregate 

compared to the highly isolated monomer. 

The fact that the continuum of sites exists and can exhibit AE indicates that Ar forms very 

stable sites of isolation and is sufficiently robust to withstand high powered laser 

irradiation over long time periods. Due to the high number of monomer sites, and possibly 

other species (aggregates) in the Ar matrix, a complex picture has emerged whereby a 
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single excitation wavelength can result in emission from an array of different sites/species. 

This rich spectroscopy of GaPcCl/Ar is reminiscent of earlier AE work6 done on H2Pc/N2 

and ZnPc/N2. 

VI.4.II.b: Krypton 

The 2D-EE plot of GaPcCl/Kr is presented in Figure VI.11. This plot was generated in the 

same manner as for GaPcCl/Ar, and is laid out the same way. The features present in this 

plot are similar to those observed in Ar. The two broad red/pink regions in the plot 

correspond to the most intense amplified emission in this matrix. The maxima of these 

bands are located at 751.6 and 754.1 nm in emission. This suggests that two highly 

occupied features (probably aggregates) dominate in this matrix, with some less well 

occupied sites also present. The splitting between the two dominant features is 44 cm-1.  

Sharp features which correspond to ZPLs are located to the red (in excitation) of the 

dominant features, which are labelled more clearly in the expanded regions of the 2D-EE 

plot shown in Figure VI.A7 and Figure VI.A9. The fact that the ZPLs do not dominate the 

intensity may mean that Kr matrices do not preferentially form sites where GaPcCl 

molecules get isolated as the monomeric species, but rather tend to arrange into larger sites 

where aggregation can occur. While the ZPLs are not as intense as those observed in Ar, 

and do not have the same phonon structure, they do appear in the correct location.  

In Ar matrices a ‘diagonal’ region showing intense ZPLs (and PSBs) of a continuum of 

sites was clearly identifiable on the 2D-EE plots. A region of lower intensity connects the 

two main bands in Kr, which is similar to Ar, where the continuum of sites was observed 

between the dominant sites. While the region between the red and blue sites does not show 

intense AE in Kr matrices (unlike in Ar) as shown in Figure VI.A8, this may be merely a 

concentration issue. If the sites do not contain a large enough number density of molecules, 

then the process of stimulated emission will not reach its threshold value and AE will not 

occur. Vibronic bands are observed to the blue of the ZPLs in excitation, and extend as far 

as 666 nm for the blue site. 
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Figure VI.11: 2D-EE plot of GaPcCl trapped in solid Kr recorded in the region of the 
amplified emission band. A number of sites are clearly present. A series of emission slices 
(M5 – M8) have been extracted from this spectrum and are shown in Figure VI.12. A 
selection of excitation spectra (X5 – X8) have also been taken from the spectrum and are 
shown in Figure VI.13. 

 

The series of emission spectra extracted from Figure VI.11 at wavelengths represented by 

the dashed lines M5 – M8, are presented in Figure VI.12. Slice M5 (λex = 675.5 nm), 

shown by the red trace, cuts through the amplified emission band of the red-most site. This 

excitation wavelength was chosen as it should yield the simplest emission spectrum with 

the fewest possible features. This is indeed the case as the spectrum is dominated by the 

narrow AE band at 754.2 nm. The equivalent ‘slice’ in Ar (i.e. through the site furthest to 

the red) exhibited phonon structure to the red of the main emission band, as well as a hot 

band to the blue. While the band at 754.2 nm in Kr may be the ZPL of the red site, the 

spectrum does not show any indications of a resolved PSB being present. As suggested 

above, the Kr matrix appears to contain less of the isolated monomer than Ar matrices 

owing to the much weaker intensity on the ZPLs. 
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Figure VI.12: A series of emission spectra of GaPcCl/Kr recorded with different 
excitation wavelengths. The relationship between the excitation wavelength, Mn, and the 
2D-EE spectrum is shown in Figure VI.11. 

 

The blue trace presents slice M6, where λex = 673.4 nm, and contains three peaks and two 

unresolved features. The intense narrow band at 754.1 nm corresponds to AE from the red 

site, and a weak shoulder to the blue is evident on this band. A triplet of partially resolved 

bands is located between 751 and 753 nm. The most intense of these bands is centred on 

752.0 nm. A shoulder to the red of this band is not fully resolved. A shoulder to the blue 

shows better resolution and is centred on 751.7 nm. Each of these bands represents AE 

from a different site in the matrix. They are located too close together to be fully resolved 

under current conditions, but do point to a variety of sites being present in this matrix, 

similar to Ar.  

The black trace shows the spectrum corresponding to M7 (λex = 671.5 nm) on Figure 

VI.11.  This spectrum cuts through the amplified emission band of the blue site, located at 
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751.6 nm. The red site no longer exhibits AE strongly at this wavelength, showing only 

weak intensity in Figure VI.12. This can be explained by the excitation wavelength moving 

too far to the blue to overlap with any of the strong absorption bands of the red site, but 

now coinciding with strong absorption bands of the blue site.  

Slice M8 is shown by the green trace in Figure VI.12, representing an excitation at 666.2 

nm. This is much farther to the blue than the other slices shown earlier and is not in the 

region of the band origin of the AE bands. Instead, this slice cuts through one of the 

vibronic bands of the blue site, where fluorescence is observed. The intensity of the bands 

are much weaker than those of M5 – M7, and electronic noise is evident on the baseline. 

Emission from the blue site is clearly visible. The corresponding emission from the red site 

is located at 668/754 nm in the 2D-EE plot shown in Figure VI.11, manifesting as a broad, 

weak band.  

The excitation spectra extracted from Figure VI.11 are presented by the lines X5 – X8 in 

Figure VI.13. Spectrum X5 was obtained by monitoring the emission band at 751.70 nm, 

and is shown by the red trace. This slice cuts through the AE band of the blue site. Two 

main features dominate the spectrum; a strong, broad band centred on 672 nm, and a 

weaker, narrow band at 673.5 nm.  The narrow band may be the ZPL from a weak site, but 

due to its low intensity, it is clearly not the dominant species in this excitation spectrum. 

The broader band to the blue shows the greatest intensity and corresponds to emission from 

the dominant blue feature. Due to the broadness of this excitation band, it is likely that it 

originates from the suspected aggregate species and not a well isolated monomer.  

The blue trace shows the slice X6, which is located at 753.00 nm, between the intense blue 

and red features. It is known from the emission slice M6 that there is a site present here 

that shows weak amplified emission. This is found to be the case by the peak centred 

around 674 nm. A shoulder to the blue of this is observed centred on 673.2 nm. This would 

suggest two features are present.  

The black trace shows the spectrum X7, which corresponds to an excitation spectrum 

through the AE band of the dominant red feature (754.14 nm). This spectrum is similar to 

the spectrum shown by X5 in that it shows a weak, but narrow line (possibly a ZPL) and a 

broader band consisting of at least two features which may arise from the aggregate 

species. All of these bands are red-shifted compared to X5, as expected for the red site, 
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with the ZPL located at 675.2 nm and the aggregate band centred on 674.3 nm. The 

aggregate feature appears to be showing signs of resolution into two separate bands, but 

this is not certain due to the noise on the top of the band. A series of weaker bands to the 

blue are also present, correspond to the vibronic bands at 133.97 and 165.77 cm-1 given in 

Table VI.2. 

 

Figure VI.13: A series of excitation spectra of GaPcCl/Kr recorded by monitoring various 
emission wavelengths. The relationship between the emission wavelength, Xn, and the 2D-
EE spectrum is shown in Figure VI.11. 

 

The green trace in Figure VI.13 shows slice X8, which was taken through the feature 

furthest to the red capable of exhibiting intense AE. This slice should yield the simplest 

excitation spectrum, yet it appears substantially the same as X7. The ZPL, centred on 675.5 

nm is evident, but lacks a resolved PSB which was evident on the equivalent excitation 

spectra recorded in Ar. Unfortunately, the broad feature is also present in this spectrum, 

which may be obscuring additional structures to the blue of the ZPL. This probably means 
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that the true lineshape of the monomer species cannot be determined in Kr. A solution to 

this would be to attempt a lower concentration sample to reduce the amount of aggregates 

present, but this would also inhibit the samples ability to exhibit AE. 

The 2D-EE spectrum of GaPcCl/Kr, as well as slices through this spectrum, shows that this 

matrix contains two dominant structures reminiscent of the aggregate species present in the 

Ar matrix spectrum shown in Figure VI.8. The sharp ZPLs are not as evident in Kr, yet 

they are present (as highlighted in Figure VI.A7 and Figure VI.A9). Two main features 

exist in the matrix, with their AE bands located at 751.6 nm and 754.1 nm. Several sites 

exist between these blue and red features, but are less concentrated within the matrix, 

meaning the intensity of AE from these sites is weaker than that of the two major features. 

Some sites are so close together that their bands overlap, even given the narrow linewidths 

of the AE band, and this is demonstrated in the emission spectrum shown by M6 in Figure 

VI.12. Excitation slices through the main features of Figure VI.11 indicate that ZPLs from 

highly isolated molecules are indeed present in the regions of the dominant red and blue 

sites, but carry much less intensity than the emission from the so-called aggregate species. 

This is in contrast to the Ar matrices, where the ZPLs from many sites were clearly 

observed, and were of greater intensity than the broad aggregate species. This suggests that 

Ar preferentially traps individual GaPcCl molecules in sites, with small amounts of 

aggregates also forming, whereas Kr matrices tend to form aggregates more easily than 

sites in which the molecule in its monomeric form. 

VI.4.II.c: Xenon 

The 2D-EE plot recorded for AE of GaPcCl/Xe is presented in Figure VI.14. The plot was 

generated in the same manner as the Ar and Kr matrices shown earlier. This system shows 

two main emission features; an intense blue band at 762.1 nm and an even more intense 

red band at 763.2 nm, both located in excitation between 683 and 680 nm. The splitting 

between the two emission features is 19 cm-1. The region in the 2D-EE spectrum of 

GaPcCl/Ar that showed well-defined ZPLs does not manifest itself in this system, 

indicating that Xe matrices are less effective at trapping the GaPcCl molecule as the 

isolated molecule. This suggests that the two dominant features in Xe matrices may be the 

so-called aggregate species described in the Ar and Kr matrices. Both features are broad in 

both emission and excitation. The region between the red and blue sites also shows strong 
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emission intensity, and most likely corresponds to another site that is not as highly 

occupied in the matrix.  

 

Figure VI.14: 2D Excitation-emission plot of GaPcCl trapped in solid Xe recorded in the 
region of the amplified emission band. Two major sites are evident in this host. A selection 
of emission slices (M9 – M12) have been extracted from this spectrum and are shown in 
Figure VI.15. A selection of excitation spectra (X9 – X12) have also been taken from the 
spectrum and are shown in Figure VI.16. The data presented for Xe was recorded with the 
600 grooves/mm grating. 

 

A second pair of excitation bands are evident between 680 and 677 nm, whose emission 

maxima do not exactly match those of the red and blue sites described above, indicates 

additional features being present in Xe. The excitation bands located to the blue of 677 nm 

correspond to the vibronic transitions of the dominant sites, especially the red one and are 

presented in Figure VI.16. 

A number of emission spectra corresponding to the slices M9 – M12 on Figure VI.14 are 

presented in Figure VI.15. The red trace is the emission spectrum represented by M9, 

which is excitation into the red fringe of the AE band from the red site. The spectrum 
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contains one main feature; an emission band at 763.7 nm. A shoulder to the red of the 

absorption maximum possibly corresponds to emission from an aggregate species, or 

perhaps some unresolved phonon structure.  

 

Figure VI.15: A series of emission spectra of GaPcCl/Xe recorded with different 
excitation wavelengths. The relationship between the excitation wavelength, Mn, and the 
2D spectrum is shown in Figure VI.14. The data presented was recorded with the 600 
grooves/mm grating, and is of lower resolution than those presented in the other systems. 

 

M10, shown by the blue trace, represents an excitation at 682.1 nm, which passes through 

the intense region of the AE band of the red site. The spectrum is dominated by the intense 

band at 763.2 nm, although there is a very weak blue wing on the band which is emission 

from another, weaker site. The band is not sufficiently resolved with the 600 grooves/mm 

grating to identify its energy accurately. The blue site is not excited at this wavelength, or 

at least not sufficiently for its emission to be evident on the same scale as the band at 763.2 

nm. 
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 Site splitting is more clearly observed in the emission produced with the excitation at M11 

(λex = 680.83 nm), which excites into the intense region of the blue site. This wavelength 

also excites into a region of the red site where it is capable of exhibiting AE. A region of 

moderate intensity lies between the red and blue sites, which may originate from a distinct 

site that remains unresolved. The maximum of the red band in this spectrum is blue shifted 

slightly compared to the band shown by M10, perhaps indicating a unique site or it being 

part of a continuum of sites. The shifting of the emission bands with respect to the 

excitation wavelength is the same trend observed in Ar and Kr which represented a large 

number of sites being present in the matrix. Based on the results of the absorption and 

emission spectra for GaPcCl/Xe shown in earlier sections, it is highly likely that this host 

also contains a large number of sites. 

M12, shown by the green trace in Figure VI.15, presents the result of excitation into the 

wing of the bluest of the intense amplified emission bands and into one of the vibronic 

bands of the red site (λex = 675 nm). There is one intense band located at 763.2 nm in the 

spectrum and a broader and weaker band to the blue. The intense band is AE from the red 

site, albeit with diminished intensity compared to excitations further to the red. This is due 

to most of the strong absorption bands being located close to the 0-0 transition, with only a 

few bands strongly absorbing to the blue of the 0-0. The blue site does not show AE from 

the corresponding vibronic band to the one excited by M12 for the red site due to it having 

a lower concentration in the matrix than the red site. A complementary slice, M12’ (λex = 

674.2 nm), shows emission from the corresponding vibronic band from the blue site as that 

shown by M12 for the red site. Because the red site is more highly occupied, it can still be 

seen to be exhibiting AE at M12’, but it is not nearly as intense as that shown in M12. 

A series of excitation spectra were extracted from Figure VI.14 by monitoring the emission 

bands labelled X9 – X12 and are presented in Figure VI.16. The spectrum obtained from 

monitoring at X9 (λem = 762.21 nm) is shown by the red trace of Figure VI.16. This slice is 

centred on the most intense emission wavelength from the AE band of the blue site. The 

spectrum is dominated by two broad bands centred at 680.3 and 678.5 nm, with a pair of 

weaker and narrower bands located to the blue (corresponding to the vibronic bands at 

114.77 and 149.02 cm-1 from Table VI.2). The intense bands correspond to AE from the 

two aggregate features, and the weaker vibronic bands originate from the same species. 

There does not appear to be a sharp ZPL present in this spectrum, unlike the Ar excitation 
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spectra, where the ZPL dominates the intensity in excitation or Kr, where the ZPL is weak 

but present. 

 

Figure VI.16: A series of excitation spectra of GaPcCl/Xe recorded by monitoring various 
emission wavelengths. The relationship between the emission wavelength, Xn, and the 2D 
spectrum is shown in Figure VI.14. The data presented were recorded with the 600 
grooves/mm grating. 

 

The blue trace shows the excitation spectrum represented by X10 in Figure VI.14, which 

monitored the blue wing of the emission band at 762.61 nm. This wavelength intersects the 

region between the red and blue sites. The spectrum is also dominated by two broad bands, 

each of which appears to be split into two. The maxima of these bands shift with the 

maxima of the excitation spectra from X9 and X11, as expected for different sites. While 

there may be a distinct site present, it is more likely that this spectrum is the result of the 

overlap of bands from a red and a blue site. Weaker vibronic bands are also present in this 

spectrum. Consistent with X9, the ZPL cannot be identified in X10. 
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The spectrum generated by extracting X11 from the 2D-EE plot is shown by the black 

trace in Figure VI.16. This slice cuts directly through the most intense region of the 

amplified emission band of the red feature. The spectrum shows comparable structure to 

that of X9 and X10, but the relative intensities of the two intense bands (centred on 681.6 

and 679.2 nm) are reversed and the shapes of the broad bands are different. A narrowing of 

the intense blue band is observed, as well as the resolution of a new band, located at 679.6 

nm. Several weaker and narrower bands are observed to the blue of the two intense bands, 

most of which were observed in the other excitation spectra. All of the bands are red-

shifted with respect to the other sites, as expected for the red site. As was the case with the 

other excitation spectra in Xe, no sharp ZPLs were observed. The splitting of the excitation 

bands at 679.2 and 679.6 nm may be indicative of two species being simultaneously 

excited, similar to what was observed with X10. 

The excitation spectrum shown by X12 (green trace) was extracted by monitoring emission 

at 763.74 nm, at the very red fringe of the AE band from the red feature. This emission 

wavelength should give the best opportunity to observe the simplest band structure of 

GaPcCl/Xe because only a single site is excited. Even under these ‘ideal’ conditions, no 

ZPL is evident in the spectrum. It may be due to the spectrum being recorded with the 600 

grooves/mm grating, or it could be intrinsic to the system that no ZPLs can be observed. 

The spectrum itself looks similar to the other excitation spectra recorded in Xe, with two 

intense broad bands (λex = 679.3 and 682.0 nm) to the red and several weaker vibronic 

bands located to the blue. 

The site splitting present in Xe is similar to that of Kr, with two main sites and several 

weaker ones. A continuum of sites is evident, as changing the excitation wavelengths 

causes a shifting of the emission bands. Not many of these sites were strongly occupied 

and very few could exhibit AE. The sites all absorb at wavelengths very close in energy 

and were difficult to resolve. The lack of sites capable of exhibiting AE between the red 

and blue features does not mean that they are not present in the matrix; their concentration 

may be so low that their emission intensity is too weak to be observed compared to the AE 

from the red and blue features. This result was shown by X10, where the excitation 

spectrum in this region shows a pair of bands whose splitting matches the excitation bands 

of X9 and X11, the blue and red sites respectively. As it was difficult to prepare samples of 

GaPcCl/Xe capable of exhibiting AE, no samples with better resolution were obtained. The 
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absence of clearly defined ZPLs (and PSBs) indicates that Xe matrices tend to form 

aggregates of GaPcCl preferentially to trapping single molecules in a given site. This 

follows the trend set by the other rare gas systems, where Ar tends to trap GaPcCl in highly 

isolated sites with a moderate amount of aggregates, and Kr contains a lot of aggregate 

species and less of the monomeric form of the molecule. An interesting experiment would 

be to prepare a sample of GaPcCl trapped in a solid Ne matrix to examine if this host 

preferentially forms the monomeric species ahead of aggregates, in line with what was 

observed with the heavier gases. Unfortunately, due to the low temperatures (~4 K) 

required to form Ne matrices, this proposed experiment cannot be attempted on the 

apparatus used in the current work. 

This tendency for the heavier gases (Kr and Xe) to form aggregates does not agree with 

earlier studies on matrix isolated porphyrins, where contrasting behaviour was observed. 

The previous studies6,8,9 were performed on planar molecules, whereas the GaPcCl 

molecule is known to be non-planar10, having a protruding Cl atom. This may have an 

influence on the ability of the heavier rare gas matrices to form highly symmetric sites of 

isolation. Furthermore, the structures of aggregates of planar and non-planar 

phthalocyanines are different. Planar phthalocyanines have π-π stacking interactions11, but 

this arrangement is blocked by the Cl counter-ion in GaPcCl. Instead, an interaction 

between the Cl atom of one molecule and the Cα atom of another can occur in the metal 

phthalocyanine chlorides. Alternatively, the halogen atom can bridge between two metal 

atoms of neighbouring GaPcCl molecules12. 

VI.4.II.d: Nitrogen 

The 2D-EE plot of the amplified emission region of GaPcCl/N2 is shown in Figure VI.17. 

Only one region of intense emission is present in the plot consisting the band at 745 nm. 

The rich site splitting that was present in the rare gas matrices does not appear to be 

manifested in N2. Where the rare gas matrices contained two strongly occupied sites of 

isolation which could exhibit AE (as well as several weaker sites), N2 lacks this structure 

entirely. Two regions in the AE band are evident in excitation; a narrow band around 668 

nm (perhaps corresponding to the ZPL in excitation) and a broader region around 665 nm 

(which is probably the aggregate species). A region of moderate intensity exists between 

these two maxima, with the intensity dropping off dramatically as the excitation 

wavelengths move further into the blue. 
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Figure VI.17: 2D Excitation-emission plot of GaPcCl trapped in solid N2 recorded in the 
region of the amplified emission band. A number of sites are clearly present. A selection of 
emission slices (M13 – M16) have been extracted from this spectrum and are shown in 
Figure VI.18. A selection of excitation spectra (X13 – X17) have also been taken from the 
spectrum and are shown in Figure VI.19. 

 

A series of emission spectra were extracted from Figure VI.17 labelled M13 – M16 which 

are shown in Figure VI.18. The emission spectrum represented by M13 is shown by the red 

trace and is produced with excitation into the narrower of the intense excitation regions. A 

single peak dominates the emission spectrum at 745.09 nm, indicative of a single site 

exhibiting AE with this excitation wavelength. The blue trace shows M14, which passes 

through the region between the two most intense AE regions on Figure VI.17. A single 

emission band centred on 745.06 nm is observed in this spectrum, similar to M13. No 

asymmetry is observed on the curve at this excitation wavelength, indicating only a single 

site has been excited. A very slight shift between the maxima of M13 and M14 is noted, 

which works out to be 0.75 cm-1.  
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Figure VI.18: A series of emission spectra of GaPcCl/N2 recorded with different 
excitation wavelengths. The relationship between the excitation wavelength, Mn, and the 
2D spectrum is shown in Figure VI.17. 

 

The spectrum obtained by extracting M15 is shown by the black trace. This spectrum is 

very similar to that shown by M14, with a symmetric band indicating a single site 

excitation and an identical position of the band maximum. The green trace shows the 

emission spectrum represented by M16, which is located to the blue of the amplified 

emission region. An almost identical emission profile to M13 is observed. The only 

difference between the two spectra is the intensity of the band (the maximum of M13 is 

about 10 times that of M16), although this is not apparent in Figure VI.18, as the intensities 

of the bands have all been normalized. 

Figure VI.19 shows a series of excitation spectra generated by taking slices through 

various emission wavelengths from Figure VI.17. X13 is a slice taken on the blue edge of 

the AE band (λem = 743.53 nm), and is shown by the red trace. The spectrum contains one 
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strong band around 667.8 nm and a pair of broad unresolved bands to the blue of this 

region. A hint of some structure on the strong band is evident, but due to the low intensity, 

may be noise. A weak side band located to the red of the main excitation band is observed, 

but cannot be definitively assigned. 

 

Figure VI.19: A series of excitation spectra of GaPcCl/N2 recorded by monitoring various 
emission wavelengths. The relationship between the emission wavelength, Xn, and the 2D 
spectrum is shown in Figure VI.17. 

 

The slices through X14 and X15 (λem = 744.90 and 744.98 nm respectively) are shown by 

the blue and black traces. These spectra show excitation spectra of the most intense region 

of the AE band. These excitation spectra were extracted for emission wavelengths 

separated by ~1 cm-1, which is similar to the splitting observed for the two sites showing 

AE. The two excitation spectra are very similar, showing two regions of strong intensity 

(667.99 and 665.02 nm). These bands correspond to the two regions of high intensity in 

Figure VI.17 and are the only regions to show amplified emission in this matrix. The 
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feature at 667.99 nm shows a sharp rise in intensity on the red side of the band, which may 

be indicative of it being a ZPL. The broadness of the band is not what one would expect to 

see for a ZPL, however. A possible reason for the broadness of this may be due to the 

presence of multiple sites. Certainly the fluorescence spectra pointed to there being several 

sites located very close in energy, and this may also be manifested in excitation. While a 

ZPL is not distinct, it may be the case that a series of ZPLs from numerous sites are present 

but unresolved, which causes the broadening of the band. The other excitation band in X14 

is centred on 665.02 nm and probably originates from an aggregate species based on its 

broadness. No weak bands to the blue are observed in either X13 or X14, indicating that 

the vibronic bands in excitation do not exhibit AE. The weak red band suggested to be a 

hot band in X13 does not manifest itself in either X14 or X15. Slice X16 (green trace) was 

taken at the most red region of the intense AE (λem = 745.23 nm). This spectrum appears 

the most narrow in the region where the ZPL is expected to occur, a set of three partly 

resolved bands is observed. These bands are centred at 668.2, 667.9 and 667.4 nm. The 

broad band which has been assigned as the aggregate species is present at ~665 nm. 

Otherwise the spectrum is very similar to X14 and X15. 

Slice X17 (pink trace) is taken at the extreme red edge of the AE band (λem = 745.79 nm). 

This spectrum is similar to X13 in terms of its intensity, but more similar to X14 and X15 

in relation to its structure. The spectrum shows the two strong bands related to the 

amplified emission, but also shows the weaker bands to the blue and the aggregate band to 

the red which were observed in X13. There also appears to be additional, partly resolved 

features in this spectrum around 667.1 nm, which may be similar to the three bands 

observed in X16. 

The number of sites present in GaPcCl/N2 matrices is difficult to elucidate, even using high 

resolution 2D-EE scans with laser excitation. The narrow line widths of the amplified 

emission bands were not sufficient to resolve individual sites, with the possible exception 

of the spectrum shown by X16. Based on the emission and AE spectra it is probable that 

there are several major sites of isolation in N2 matrices, with a splitting of only 0.75 cm-1. 

This is too small to be resolved under the current experimental conditions. This result was 

consistent over a range of different deposition conditions and did not show any changes 

upon annealing the matrix. The lack of any fully resolved ZPLs in excitation is quite 

similar to what was observed in Xe matrices. The difference in N2, however, is that there is 
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evidence of several ZPLs located very close together in energy in the excitation spectra. 

These ZPLs are all located between 667.2 and 668.2 nm, which is a range of about 22 cm-1. 

This evidence of phonon structure in excitation is not backed up in the emission data. The 

site splitting in N2 is not entirely analogous to that in the rare gases, as there are no well-

defined red and blue sites in N2 matrices. 

A study on the structurally related molecules H2Pc and ZnPc by Dozova et al.6 showed that 

nitrogen matrices trapped these molecules in a large number of sites, similar to what was 

observed with GaPcCl/Ar in this study. The complete reversal of site splitting in N2 was a 

surprise but may be explained by structural factors; H2Pc and ZnPc are both planar 

molecules, whereas GaPcCl is non-planar owing to the Cl- counter ion. This may have an 

effect on the type of sites the N2 matrix can form. 

VI.4.II.e: Matrix Summary 

Figure VI.20 provides a comparison of the 2D-EE plots in the AE region of GaPcCl in the 

four matrices used in the present study. The plot shown in the top left of Figure VI.20 

shows GaPcCl trapped in solid Ar. This matrix shows the richest spectroscopy of any of 

the hosts used in the current study. Two major sites of isolation dominate in this matrix, 

with the vibronic bands associated with AE located at 745.1 nm (blue site) and 747.2 nm 

(red site). The red and blue features are split by 38 cm-1. The region between the red and 

blue sites is filled with sites of lower concentration, forming a continuum of amplified 

emission bands. The top diagonal band of high intensity corresponds to the ZPLs from the 

continuum of sites. Immediately to the blue of this narrow band lies a pair of features 

which have been assigned as aggregate species due to their relative broadness in 

comparison to the ZPLs. At shorter excitation wavelengths (λex = 664 – 656 nm) vibronic 

structure is clearly evident for the red site.  

The top right plot of Figure VI.20 shows the Kr data, which looks quite similar to the Ar 

data in that two main regions are evident. The main difference between the two systems is 

the diminished intensity of the narrow ZPL region in the Kr data. In Kr, two main emission 

bands dominate; one coming from a blue site at 751.6 nm and the other from a red site at 

754.1 nm. The two main features are split by 44 cm-1. The sites located between the red 

and blue sites do not exhibit AE as strongly as the corresponding bands in Ar, indicating 

these sites are not as strongly occupied in the Kr matrix. This is a property that is 
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consistent throughout the matrix, as the excitation spectra show AE can be exhibited with 

many bands to the blue of the 0-0 in emission in Ar, whereas Kr is primarily excited in the 

region very close to the 0-0. This is probably due to GaPcCl/Kr samples often having a 

lower ODs compared to the Ar samples prepared. 

 

Figure VI.20: 2D-EE spectra of GaPcCl isolated in various inert gas hosts. The region 
shown in each matrix is centred on the vibronic band(s) at 1540 cm-1 above the band 
origin(s) which is responsible for amplified emission.  

 

The bottom right panel shows the results obtained in the Xe matrix. The spectrum looks 

almost like a compressed version of the Kr data, having two regions of high intensity 

(originating from AE from the vibronic band at 1547 cm-1), a blue site at 762.1 nm and a 

red site at 763.2 nm, corresponding to a splitting of 19 cm-1. The splitting between the two 

sites in Xe is about half of that of the two main sites in Ar and Kr. The Xe plot also lacks 

the ZPL region that was observed in Ar and Kr, a possible indication that aggregate 

formation is predominant in this host. The presence of other sites was also observed in Xe, 

but these sites were difficult to resolve, partly due to how close in energy they are situated. 

Vibronic bands are evident from 677 to 669 nm, reminiscent of Ar. 
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The bottom left panel of Figure VI.20 presents the 2D-EE plot of GaPcCl isolated in N2. At 

first glance this appears to be the simplest of all the matrices, with only a single amplified 

emission band, located at 744.9 nm. However, by taking a closer look at the emission and 

excitation slices through this spectrum (Figure VI.18 and Figure VI.19 respectively) it was 

determined that there were at least two sites of isolation, split by only 0.75 cm-1. The SP-

500i monochromator, with the 1200 grooves/mm grating, can achieve a resolution of 0.04 

nm, so these sites were not fully resolved. This is consistent with the results in emission 

(Figure V.26), where only a single set of bands in the fluorescence spectra was observed, 

but there is evidence for multiple sites being present in the form of shoulders appearing on 

the emission bands with certain excitation wavelengths. A vast difference of the site 

splitting observed on the AE band between the molecular matrix, N2, and the rare gas 

matrices Ar, Kr and Xe is clearly present. An earlier study performed by Dozova6 on H2Pc 

and ZnPc show that N2 matrices isolate these molecules in many sites spread over a wide 

wavelength range in emission, similar to what happens with GaPcCl in Ar matrices. 

A series of emission slices taken through the 2D-EE plots have been plotted side-by-side in 

Figure VI.21 and Figure VI.22. These plots aim to highlight the differences in the site 

splitting of the matrices. Figure VI.21 presents amplified emission bands obtained with 

various excitation wavelenghts of GaPcCl trapped in solid N2 (left panel) and Ar (right 

panel). The emisson wavelenghts are taken from M13 – M16 for N2 and M1 – M4 for Ar. 

This plot is complementary to Figure V.52, which shows the sites in fluorescence from N2 

and Ar. The N2 AE spectra show two sites of isolation capable of exhibiting AE, separated 

by only 0.75 cm-1. Each emission ‘slice’ through the 2D spectrum shows only a single 

band, indicating that only one site is excited at any given time, or if both are excited 

together their bands are overlapping and unresolved. Amplified emission in the Ar matrix 

is the complete opposite, with many sites of isolation all exhibiting AE, and being spread 

far enough apart for each site to be fully resolved. The splitting of the two most intense AE 

bands is 38 cm-1, which allows several bands to be resolved in between. Excitations can 

excite either a single site (M1 for example), or many sites whose absorption bands overlap 

(M2 and M3). Many sites can therefore be observed on a single spectrum. 
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Figure VI.21: Emission slices of GaPcCl in N2 (left panel) and Ar (right panel) recorded at 
the specified excitation wavelengths. The regions shown are located around the amplified 
emission bands in each matrix. 

 

The AE spectra of Kr (left panel) and Xe (right panel) are shown in Figure VI.22 where 

some interesting observations can be made. The Kr data resembles the Ar system most 

closely, with two sites dominating in the matrix, split by 44 cm-1. Several sites are 

observed to occupy the region between the two main sites. Excitation with different 

wavelengths can produce AE from either a single site (black trace) or from numerous sites 

(red and blue traces). This can be achieved by selecting a wavelength that overlaps with a 

strong absorption band of only one of the sites, or with many sites.  
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Figure VI.22: Emission slices of GaPcCl in Kr (left panel) and Xe (right panel) recorded 
at the specified excitation wavelengths. The regions shown are located around the 
amplified emission bands in each matrix. The Xe data were recorded with the 600 
grooves/mm grating while the Kr was recorded with the1200 grooves/mm grating. 

 

Xe is similar to Ar and Kr, but does not contain quite as rich a site splitting as either. The 

two main sites in Xe are split by only 18 cm-1, and no sites can be observed occupying the 

region between the two AE bands of these sites. The splitting is such that the two bands 

cannot be fully resolved under the current experimental conditions. Some sites are 

observed to the blue of these main sites, but can only weakly exhibit AE, and cannot be 

fully resolved either. Nevertheless, some resolution can be achieved on the red site by 

selectively exciting into one of its absorption bands that does not coincide with an 

absorption band of the blue site (λex = 682.1 nm). The Xe sample is similar to Ar and Kr in 

some ways, but unique in others. The shape of the Xe atom is the same as the other noble 

gases, but its van der Waals radius13, and hence lattice parameter is larger, at 6.1 Å 

compared to 5.3 and 5.6 Å for Ar and Kr respectively. This increased atomic radius will 
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have an effect on the size of the trapping sites that it can form and this may explain the 

different site splitting in this matrix. 

An analysis of the excitation spectra of the AE bands in each matrix showed that the choice 

of host can have a dramatic effect on the features present in a sample. Ar matrices tend to 

exhibit sharp ZPLs for all of its sites in excitation, as well as a defined PSB. The excitation 

structures to the blue of the PSB have been assigned as aggregate species based on their 

broadness and lack of structure. Kr matrices also exhibit a sharp ZPL for some emission 

bands, but not all of them. The corresponding PSBs were not easily detected. The broad 

feature which was assigned as an aggregate in Ar is clearly present in Kr matrices and 

dominates the excitation spectrum. This indicates that Kr allows a greater degree of 

aggregation than Ar. Xe matrices do not exhibit any well-defined ZPLs in excitation, 

indication the monomer species is not easily isolated in this but instead show only the 

broad excitation band which was dominant in Kr and present in Ar. This suggests that the 

larger host materials allow for aggregation to occur more easily than the smaller ones. A 

study of this effect in a Ne matrix would be useful to see if this trend is maintained. The N2 

matrix was different in excitation to the rare gas matrices. While no resolved ZPLs were 

observed, evidence for partly resolved features indicate that several sites are present 

located very close in energy. While the sites in the rare gas matrices were spread out over 

an emission range of 40 – 50 cm-1, all of the sites in N2 appear to be located to within 2 cm-

1 of one another. The broad aggregate feature was also present to the blue of the ‘ZPLs’ in 

excitation, indicating that aggregates are easily formed in all hosts. 

The source of the aggregates makes for an interesting discussion. The AE of the planar 

phthalocyanines H2Pc and ZnPc6, as well as the structurally related molecules H2TBP9 and 

H2TAP8 have all been studied in inert gas matrices. None of these studies reported the 

existence of phonon structure, which has been observed for GaPcCl in the rare gases. 

Furthermore, these molecules appear to preferentially form the isolated monomer, whereas 

GaPcCl can form high amounts of both the monomer and aggregate species in the matrix. 

The predominant force of attraction for the planar molecules will be π-π stacking, due to 

the conjugation of the macrocycles. This is clearly not a strong enough force to cause the 

preferential formation of aggregates in the matrix based on the previous studies mentioned 

above. The GaPcCl molecule cannot undergo π-π stacking interactions because it is non 

planar due to the presence of the Cl atom. However, this atom gives the molecule a strong 
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electric dipole moment. The magnitude of the dipole moment has been calculated in the 

current work to be 3.6163 Debye from the DFT results. A depiction of the charge of the 

molecule is given in Figure VI.23. The dark atoms in this diagram have close to a neutral 

charge. The bright red atoms (i.e. the pyrrole nitrogens and the chlorine) are negatively 

charged and the bright green Ga atom is positively charged. The direction of the dipole 

moment is shown by the blue arrow. Interactions between the negatively charged Cl atom 

and positively charged Ga atom of neighbouring molecules will produce a strong 

electrostatic attraction which may be the reason aggregates form so easily in the matrix. A 

complementary calculation on ZnPc shows it to have no permanent dipole moment, 

indicating that the only forces of attraction between neighbouring molecules will be the 

weaker π-π stacking. 

 

Figure VI.23: Depiction of the electric dipole moment of GaPcCl predicted by DFT 
calculations. The brighter atoms have a greater electrostatic charge than the darker atoms. 
The blue arrow shows the direction and magnitude in which the dipole moment (μ = 
3.6163 D) is orientated. 

 

VI.4.III: Temperature Effects 

An investigation into the thermal stability of the AE bands of GaPcCl/Ar is presented in 

Figure VI.24. The left panel shows the intensity of a set of fluorescence bands and the right 

panel shows the AE bands at a range of different temperatures between 12 K and 24 K. As 
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the temperature increases the structure and the intensity of the fluorescence bands remain 

fairly constant. The AE bands, in contrast, change quite clearly with respect to 

temperature. At 12 K (black trace) three resolved bands are present in the spectrum, 

originating from three distinct sites of varying intensities. At 16 K (green trace) the blue 

band appears fairly stable, the middle band is clearly showing less intensity than at lower 

temperatures and the red band is also beginning to show a drop in intensity. When the 

temperature has reached 20 K (pink trace) the blue band has also started to lose some of its 

intensity. The middle band has disappeared completely, indicating AE has been ‘switched 

off’ for this site. The red site is still diminishing in intensity. By 24 K (purple trace) the 

intensity of both remaining bands has dropped further, but the red band is probably close to 

being switched off. No temperatures higher than 24 K were attempted due to approaching 

the melting point of the host material. A curious effect is observed upon cooling the sample 

back down to 10 K (grey trace); the intensities of the red and blue sites have interchanged, 

perhaps indicating that the red aggregate feature is more thermally stable than the blue 

monomer feature. 

 

Figure VI.24: The effect of sample temperature on the intensity of fluorescence (left 
panel) and amplified emission (right panel) of GaPcCl/Ar obtained with excitation at 668.6 
nm. The 10 K spectrum (grey trace) was recorded after the sample was cooled back down. 
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Nitrogen matrices, which show two AE bands (split by 0.75 cm-1) exhibited a curious 

affect upon annealing; the red AE band moved to the blue as the temperature increased 

from 10 K to 24 K, as shown in Figure VI.25. It returned to its original position when the 

temperature was cooled back down to 10 K. The location of the AE band moves from 

745.06 to 744.66 nm. This represents a shift of 7.2 cm-1, much larger than the site splitting 

observed in the matrix at 10 K. The left panel of Figure VI.25 indicates that the same 

process is occurring with the fluorescence bands also. The intensity of the AE band was 

diminished by 4.3 % upon heating, in contrast to what was observed for Ar in Figure 

VI.24, where the intensity of the bands was reduced considerably. The origin of this effect 

may be that the N2 matrix is becoming softer at higher temperatures leading to a small 

change packing structure14 around the GaPcCl molecule, and then returns to its original 

state when the temperature is cooled back to 10 K. Unfortunately, even with the migration 

of the AE band with increasing temperature, only one peak is observed throughout the 

entire process, so the full extent of the N2 temperature site splitting cannot be elucidated in 

this manner. 

 

Figure VI.25: Temperature effects on the fluorescence (left panel) and AE (right panel) 
spectra of GaPcCl/N2. As the temperature of the sample window is increased from 10 K to 
24 K, the location of the emission bands move to the blue. The spectra recorded at the 
intermittent temperatures have not been shown for clarity. The reverse process was 
observed on cooling the window back to 10 K. 
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A similar set of temperature dependence experiments have been performed in Kr and are 

shown in Figure VI.26. The results show some similarities to N2, and some similarities to 

Ar. The emission bands exhibit a blue shift as the temperature increases, just as was 

observed in N2. The other effect being observed is the change in the relative intensities of 

the red and blue features. At 10 K (black trace) the intensity of the red feature is greater 

than that of the blue. The blue feature is also quite broad, indicating it is part of the 

aggregate species.  

 

Figure VI.26: Emission spectra AE bands of GaPcCl/Kr recorded at the specified 
temperatures. The solid lines represent spectra recorded at the specified temperatures 
during the annealing process. The dashed pink line represents a spectrum recorded when 
the sample was cooled back down to 10 K. 

 

At 12 K (green trace) the intensity of the red feature has diminished slightly and has shifted 

slightly to the blue. The blue feature shows an asymmetry on the band, possibly the partial 

resolution of another site. Its intensity has increased and position has shifted to the blue. At 

18 K (blue trace) the red feature continues the pattern of losing some of its intensity and 

getting shifted further to the blue. The blue feature has now lost its asymmetry and the 

band width appears narrower than in the lower temperature spectra. The intensity of the 

band is significantly greater at 18 K than at 10 K. At 22 K (red trace) the trend continues 
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for both features. The growing intensity of the blue feature coupled to the diminishing 

intensity of the red feature may indicate that the two species are connected, with the red 

site transferring its intensity to the more thermally stable blue site.  The positions of the 

maxima of the red site are 13262 and 13264 cm-1 at 10 and 22 K respectively, which 

coincides with a shift of 2 cm-1. The corresponding locations for the blue sites are 13295 

and 13305 cm-1 at 10 and 22 K respectively, which is a shift of 10 cm-1. The two features 

present at 22 K are present when the temperature is returned to 10 K. The intense blue 

band at 13262 cm-1 does not return to the unresolved structure observed in the black trace 

of Figure VI.26, and its position does not shift. This means that the most stable site has 

been formed during the annealing process. The red feature remains the same when the 

temperature is brought back to 10 K. This result indicates that there are two highly stable 

species in the matrix that are related to one another. The two broad bands observed in the 

2D-EE plot in Figure VI.11 are probably aggregates, and the gap between the features may 

be due to Davydov splitting. This is similar to the Ar system, where the red and blue 

aggregate features show temperature dependence. 

Annealing of an Ar sample exhibiting a continuum of sites also led to an interesting result. 

Figure VI.27 shows a 2D-EE plot of the AE observed in an Ar sample before and after 

annealing. The deposited sample shows a continuous region of colour, all of which 

corresponds to different sites exhibiting amplified emission. There are two major sites 

either side of this continuum which carry most of the AE intensity; namely 745.1 nm and 

747.2 nm. A broad feature below the red site shows moderate intensity, and was earlier 

(tentatively) assigned as an aggregate species. Following annealing to 24 K the 2D-EE 

scan was performed again under identical conditions. The interesting result is that, while 

much of the intensity is lost, almost all of the intensity has transformed into the red 

aggregate species, with a small amount of intensity remaining in the red and blue sites and 

almost nothing remaining of the continuum of sites (or at least not enough to reach the 

threshold for amplified emission). The initial scan shows that all three sites are highly 

occupied, and two have almost equal abundancies; the blue site (745 nm) has about 87 % 

the intensity of the red site (747 nm). The middle site is obviously weaker, but still carries 

a significant intensity of about 60 % of the red site.  

Following annealing of the sample, there is a shift in the relative intensities of these bands; 

the blue band is now only about 27 % as intense as the red band, and the middle band is 
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even lower at 13 %. It appears that amplification has in fact switched off for this site, as the 

number density has fallen below the threshold for stimulated emission – in fact this appears 

to be the case for all of the AE bands associated with the continuum of sites observed in 

the deposited sample. The dramatic change in the structure of the sites after an annealing 

process indicates that there is one predominantly stable site – the red site – and a number 

of less stable sites that are only occupied on deposition. The heating process transforms the 

arrangement of the matrix, and appears to promote aggregation. 

 

Figure VI.27: 2D Excitation-emission plots of GaPcCl in Ar recorded at 10 K. The plot on 
the left has been recorded after deposition and the plot on the right after annealing to 24 K. 
These spectra were recorded with the 600 grooves/mm grating installed in the 
monochromator. 

 

A series of emission slices with excitation wavelengths M1 – M4 are presented in Figure 

VI.28 for the deposited and annealed samples of GaPcCl/Ar. The effect of annealing 

clearly has a significant effect on the sites in the matrix which can be seen from the 

differences in the AE bands present with the various excitation wavelengths. The red traces 

show excitation into the 0-0 band in absorption. This has been shown in earlier figures to 

exhibit emission from a single site at 747 nm and is no different in Figure VI.28. Emission 

from the shoulder to the red of the AE band (possibly from the PSB of another site) in the 
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deposited spectrum is not evident in the annealed sample. This may indicate that these 

weaker sites have been rearranged to that of the dominant red site, or have formed 

aggregates.  

 

Figure VI.28: Emission slices extracted from the 2D-EE plots presented in Figure VI.27, 
which show GaPcCl/Ar before and after annealing. The emission wavelengths match those 
of M1 – M4. These spectra were recorded with the 600 grooves/mm grating installed in the 
monochromator. 

 

The blue traces show excitation at 668.6 nm (M2) and display the most dramatic effect of 

annealing. A reversal of the intensities of the AE bands from the red aggregate and blue 

site (located at 747.06 and 745.47 nm respectively) occurs after annealing. This indicates a 

significant restructuring of the sites in the matrix upon a heating and cooling cycle of the 

sample window. The intensity of the aggregate emission is weaker than that of the blue site 

in the deposited sample. Most of the emission intensity is either lost or has shifted to the 

aggregate species after annealing. This restructuring is also evident in the 2D-EE plot, 

where the AE band of the blue site changes from being one of the most intense bands in the 

deposited sample to being just above the fluorescence intensity in the annealed sample. 
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The AE band of the site located at 746.28 nm loses much of its intensity upon annealing. 

This may be due to the matrix softening at high temperatures and allowing the GaPcCl 

molecules to diffuse and, due to the large dipole moment on the molecule, preferentially 

form aggregates in the more thermally stable red feature. The black traces (λex = 666.4 nm) 

also show an interesting effect on the emission before and after annealing. AE from the red 

site appears to have switched off completely after annealing. The AE band at 745.95 nm on 

the deposited sample has shifted to 745.39 nm after annealing (a shift of 10.2 cm-1), and 

also carries much less intensity. 

The green traces (λex = 657.8 nm) indicate that AE has been completely switched off in the 

annealed sample at this excitation wavelength. As the intensity of the emission has been 

shown to decrease after annealing, it is unsurprising that excitations into the vibronic bands 

no longer yield AE. The two bands present in the deposited sample are still evident, but are 

broader and much weaker. This is a good indication that normal fluorescence is again 

being observed. 

VI.4.IV: Matrix Influences on the Amplified Emission of GaPcCl 

VI.4.IV.a: Argon 

Emission of GaPcCl recorded in Ar was notable for its sharp bands and a well-defined 0-0 

transition. Excitation into the 0-0 in absorption gave the simplest fluorescence with a single 

set of emission bands, as shown in Figure V.5. Excitation into the blue produced a 

‘doubling’ of the observed emission bands. Emission from the 0-0 of the ‘blue’ site can be 

reabsorbed by the red site causing a second set of emission bands to appear in the 

spectrum. The location of the of the ‘blue’ emission bands changes with respect to the 

excitation wavelength, indicating multiple sites are present in the matrix. High 

concentration samples also showed amplified emission on the vibronic band measured to 

be 1540 cm-1 above the band origin (747.2 nm from the red site). Due to the absorption and 

emission spectra showing evidence of many sites of isolation, high concentration samples 

could also exhibit amplified emission from a large number of well occupied sites. Figure 

VI.8 and the Figure VI.9 demonstrate the different sites in Ar that can exhibit AE. The 

three major sites responsible for AE emit at 745.1, 746.1 and 747.2 nm. Several more AE 

bands were observed in this matrix, but they were all weaker than the three mentioned 

above. The fact that so many bands exhibit the property indicates a high density of 
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molecules occupying many different sites and a very efficient method for exciting into 

Level 2 of the energy level diagram shown in Figure VI.6. 

The excitation spectra recorded in Ar exhibited the most resolved features in any matrix for 

both the regular fluorescence bands and the AE bands. The spectra shown in Figure V.9 

and Figure V.12 show the shifting of the location of the 0-0 in excitation of a number of 

fluorescence bands and AE bands respectively. These shifts are due to the presence of 

many sites in the matrix. In all instances there is a well-defined sharp peak corresponding 

to the zero phonon line. The phonon side band was evident for the most abundantly 

occupied sites. The very weak phonon coupling (S = 0.2) is responsible for the complicated 

emission spectra recorded with excitations to the blue of the 0-0, as discussed in Chapter 

V. Vibronic bands extended up to 1000 cm-1 in excitation, some of which were capable of 

exhibiting AE.  

A pair of strong features is evident in the 2D-EE spectrum which manifest as broad bands 

in both emission and excitation. The locations of the maxima of the red and blue features, 

which have been assigned as aggregate bands, are located at λem = 747.22 and 745.11 nm 

respectively. These are located very close to the emission wavelengths of ZPLs of the 

dominant red and blue sites, but do not match up exactly indicating that they are a distinct 

species. The relative intensity of these aggregate bands changes with respect to the intense 

ZPLs depending on the deposition conditions used in the preparation of a given sample. 

The ZPL of the red site was typically the most intense band in the spectrum regardless of 

deposition conditions. The aggregate species were found to be more stable than the 

monomers upon annealing. 

VI.4.IV.b: Krypton 

The spectroscopy of GaPcCl recorded in Kr is in part, similar to that in Ar. The 0-0 

transition in absorption becomes more clearly defined with higher temperature depositions, 

as does the resolution of the vibronic bands and this can be seen in Figure V.14. The 0-0 

was identified at 675.6 nm, red shifted with respect to both N2 and Ar. Higher temperature 

ovens and larger gas flows again yielded more concentrated samples, but where N2 and Ar 

matrices typically showed AE once the sample was saturated in absorption, this was not 

the case for Kr. While AE was observed in Kr, it was more difficult to produce samples 

capable of exhibiting the effect in this host than in Ar or N2. In samples where AE was 
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observed, the presence of two strong AE bands was also reported; 751.6 and 754.1 nm. 

Both AE bands involved the vibronic mode at 1540 cm-1, and therefore originated from 

two distinct sites. A number of weaker AE bands are present in the spectrum also, but with 

much lower intensity than the main AE bands.  

The 2D-EE plot presented in Figure VI.11 shows two major features that are quite broad in 

both emission and excitation, similar to the aggregate species reported in Ar. This suggests 

that aggregate formation may be more common in Kr matrices than in Ar matrices. A 

series of emission slices through the 2D plot were presented in Figure VI.12, and show a 

number of intense AE bands. Depending on the excitation wavelength, several bands can 

exhibit AE at once, and in some cases the bands are located too close together to be fully 

resolved. This indicates a continuum of sites is present in Kr, similar to what was observed 

in Ar. 

Excitation spectra in Kr show similar features to those observed in Ar. A selection of 

excitation spectra presented in Figure VI.13 show only weak ZPLs compared to their 

intense counterparts in Ar. The phonon structure observed in Ar is not present in Kr, 

possibly due to the low intensity of the ZPLs. The 2D-EE plot shows two regions of very 

sharp lines (less intense than in Ar, but in the same location) which indicates that a 

continuum of sites exists in Kr. The broad bands which were attributed to aggregate 

species in Ar dominate the excitation spectra in Kr. This is consistent with the earlier 

observation that the 2D-EE plot contains two main sites which are quite broad in both 

emission and excitation. 

VI.4.IV.c: Xenon 

Emission from Xe was comparable to both the N2 system and Ar and Kr systems. The 

broad fluorescence bands are reminiscent of the N2 samples, while the doubling of the 

spectrum due to the presence of sites is more like Ar and Kr. The spectra presented in 

Figure V.44 show how Xe has similarities to all of the matrix hosts used in the current 

work. The broadness of the fluorescence in Xe may be intrinsic due to its light scattering 

properties. Figure V.26 shows how the fluorescence changes with respect to the excitation 

wavelength. Two main sites seem to dominate the spectra and this is verified by looking at 

the amplified emission. Figure VI.14 and right panel of Figure VI.15 show two AE bands 

(762.1 and 763.2 nm), consistent with the fluorescence data. While it is probable that more 
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than two sites are present in this host, only the aforementioned AE bands show any degree 

of resolution. 

Excitation spectra in Xe are less resolved than in Ar or Kr, but do show similar structures 

up to 1000 cm-1. The 0-0 band in excitation is much weaker than in any of the other 

matrices and is not even the most intense peak on the spectrum. The excitation spectra of 

the AE bands are far more resolved and have very similar vibronic structure to the AE 

excitation spectra recorded in Ar and Kr. The ZPL is not evident in Xe, unlike the lighter 

rare gas matrices, which indicates the monomer species is not present in Xe matrices. The 

aggregate species observed in Ar and Kr dominates the AE region in both emission and 

excitation. 

VI.4.IV.d: Nitrogen 

N2 matrices were easily able to exhibit amplified emission with pulsed laser excitation. The 

emission spectra recorded in N2 tended to be quite broad with the hint that there may be 

several sites present very close together in energy. Despite several attempts, these sites 

could not be resolved. Figure V.35 shows the emission spectra of GaPcCl trapped in N2 

excited by a number of different wavelengths. In all instances, the band positions appear at 

the same energy and there is little difference in their shapes either. In spite of this, it is 

likely that a number of sites are the cause for the broadness of the fluorescence bands. The 

more concentrated samples were also capable of exhibiting amplified emission. Only a 

single band was observed at 744.9 nm, 1532 cm-1 above the band origin. Due to the 

narrowness of AE bands, these would be the perfect candidate to elucidate the site splitting 

in this matrix, but alas only two bands could be distinguished (745.06 and 744.98 nm) as 

shown in Figure VI.17 and Figure VI.18.  

Excitation spectra mirror what was observed in emission in the sense that the bands were 

generally quite broad. There is a sharp peak corresponding to the 0-0 in excitation and 

several broader bands extending to about 1000 cm-1 beyond this. The spectra shown in 

Figure V.39 show the excitation spectra in N2 monitoring a host of different emission 

peaks. A very small, but noticeable shift (< 5 cm-1) in the position of the 0-0 is evident 

which indicates the presence of multiple sites. The small energy difference between the 

sites may be the reason they cannot be resolved, as the splitting in other matrices can be as 

large as 50 cm-1. Excitation spectra of the AE band show two broader structures which are 
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believed to the aggregate species observed in the rare gas matrices. Vibronic bands extend 

up to 1000 cm-1, similar to what was observed for the excitation of the fluorescence bands. 

The resolution of the vibronic bands of N2 in excitation is poor in comparison to the rare 

gas matrices and could not be improved despite forming several samples with various 

different deposition conditions. 

VI.5.V: Phonon structure of GaPcCl/Ar 

The high resolution emission and excitation spectra of GaPcCl/Ar contained well resolved 

ZPLs and PSBs. A Wp line fit was performed on the most red site in order to gain insights 

into the phonon structure of this system, the results of which are shown in Figure VI.5. The 

line fit matches the ZPL and first PSB in both emission and excitation. It also correctly 

predicts additional weaker PSBs to the red of the ZPL in emission, although the position of 

this band is slightly off what is observed experimentally. The fit also predicts additional 

PSBs to the blue of the ZPL in excitation, but these are obstructed by the so-called 

aggregate species which has been observed in all matrices. The ZPL and PSB are observed 

in excitation for each site present in the continuum of sites, as shown most clearly in 

Figure VI.A1 and Figure VI.A5. Due to the abundance of features in this host material, the 

same cannot be said in emission, because excitation wavelengths to the blue of 670.3 nm 

tend to produce AE from multiple sites as well as from the aggregate species. Even though 

this is a problem, the intense blue site (region III in Figure VI.8) does show this phonon 

structure, as well as emission from additional sites, as shown by trace M2 in Figure VI.9.  

The aspect of the Wp fit which does not match the experimental data very well are the 

intensities of the hot bands. These bands are predicted to have a comparable intensity to the 

first phonon side band, but are present only as very weak shoulders in the experimental 

spectra. While this may indicate a deficiency of the model to correctly describe the 

behaviour of AE, it may instead be an experimental issue surrounding the threshold 

conditions of the non-linear optical process for the hot bands. Recording spectra at higher 

temperatures should result in some enhancement of the intensity of the hot bands, but these 

experiments have not been performed with the higher resolution 1200 grooves/mm grating. 

High temperature scans recorded with the 600 grooves/mm grating were inconclusive as to 

the effect of the temperature on the intensity of the hot bands, owing to the ZPL and PSB 

not being resolved in these scans.  
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The phonon structure observed for GaPcCl/Ar supports two of the assignments made in 

this matrix; a large amount of the isolated monomer is trapped in this host, spread out 

among a continuum of sites (shown by Figure VI.A1), and that the excitation features to 

the blue of the ZPLs in the 2D-EE plot shown in Figure VI.8 do not correspond to emission 

from the isolated monomer. Instead, due to their broadness and lack of resolved sites, these 

have been assigned as aggregates.  

The same phonon structure observed in Ar was not as evident in any of the other host 

materials used in the current work. Kr showed the presence of a ZPL in excitation, but this 

narrow band was less intense than the broad band from the aggregate species and there was 

no evidence for PSBs. This would indicate that Kr is less effective than Ar at trapping 

GaPcCl as a monomer. Xe matrices contained no traces of any phonon structure, which 

suggests the trend that the heavier matrices promote the aggregation of GaPcCl. These 

observations suggest an interesting follow-up study to investigating the lineshapes and 

possible phonon structure of GaPcCl trapped in Ne matrices. The AE band of GaPcCl in 

N2 matrices exhibits some different effects. In AE it appears that very few sites are present, 

and no phonon structure is observed. In excitation, however, a sharp rise in intensity on the 

band centred at ~668 nm is perhaps indicative of a ZPL, as shown in Figure VI.19. This 

band is unresolved, probably due to the high number of sites which are evident in N2 

matrices. No resolved phonon structures were observed in this matrix. 

 

VI.5: Conclusions 
The observation of amplified emission in all matrices indicates GaPcCl is a robust dye 

molecule which can be isolated in stable sites in a range of different environments. A 

threshold dependence on the AEs process was evident as low concentration samples did 

not exhibit this phenomenon, whereas slightly higher concentration samples could produce 

an array of AE bands, each originating from a different site. The vibronic band associated 

with this phenomenon was identified with input from DFT calculations and this also 

confirmed that the multiple AE bands in a sample were originating from different sites of 

isolation, and not from different vibronic bands. The vibrational mode responsible for the 

effect involved an asymmetric stretch of the bridging Cα-Nm-Cα bonds, and coincides with 

the strongest Raman-active mode observed experimentally and predicted by DFT. 
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2D-EE plots were used in conjunction with amplified emission to extract information about 

the sites present in each matrix. It was observed that N2 produces the seemingly simplest 

matrices with only a single band evident under the highest possible resolution of the 

experiment. Kr and Xe matrices were more complicated, showing several stable sites of 

isolation. Ar was the most complicated matrix, trapping molecules in numerous different 

sites causing what looks like a continuum of emission and amplified emission bands. 

Annealing of the sample showed a preference for the red-most site to be occupied, 

indicating it is the most stable. A reversal of the trend of site occupancies was observed for 

GaPcCl compared to H2Pc and ZnPc6. Where the planar phthalocyanines showed many 

sites in N2 matrices, the non-planar GaPcCl appears to have much simpler site splitting in 

this host. The opposite was observed in the rare gas matrices, where GaPcCl contains 

several highly occupied sites compared to H2Pc and ZnPc, which contain fewer sites. The 

energy gap of the dominant red and blue ‘aggregate’ features was largest in Kr (44 cm-1) 

and Ar (38 cm-1), while that in Xe was only 19 cm-1. The splitting’s in N2 were too small to 

be resolved under current experimental conditions. 

Ar tended to form matrices capable of trapping the molecule in its monomeric form (as 

demonstrated by the Wp lineshape analysis of the simplest emission and excitation bands 

in Figure VI.5), but these samples always contained significant amounts of aggregate 

species. The heavier rare gases, Kr and Xe, were very poor at trapping the molecule in its 

monomeric form, but were efficient at producing samples containing large amounts of the 

aggregate species. The presence of aggregates was also observed in N2 matrices. This trend 

is inconsistent with other porphyrin systems studied in the matrix6, where the heavier 

matrices were excellent at trapping the guest species in highly isolated sites as a monomer. 

The difference between GaPcCl and the other porphyrin systems which have been studied 

in the matrix is that it is a non-planar molecule due to the presence of the Cl- ion. This 

atom prevents π-π stacking of GaPcCl dimer, which occurs in the planar phthalocyanines11, 

and would suggest that the planar Pcs should be more efficient at forming aggregates. 

However, the Cl atom gives the GaPcCl molecule a large electric dipole moment 

(calculated at 3.6163 Debye from DFT calculations in the current work), and this allows 

for strong Coulombic interactions to occur, promoting aggregation.  

The current work on GaPcCl has yielded new insights into the different features that can 

form when non-planar phthalocyanines are isolated in inert gas hosts. This is the first 
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known instance of a phthalocyanine molecule exhibiting phonon structure when isolated in 

solid Ar, and has allowed for the GaPcCl monomer to be identified in Ar and Kr. Its 

position in N2 is also expected to be located around 745 nm in excitation based on these 

results. The narrowness of the ZPL of the monomer has given credibility to the assignment 

of the broad emission/excitation features being aggregate species. The calculation of a 

strong electric dipole moment for GaPcCl also gives a mechanism for how aggregates may 

form more easily than for the planar phthalocyanines. This work also opens the questions 

as to whether phonon structures and aggregation occurs in the other non-planar 

phthalocyanines. The first obvious candidate for a follow-up study would be the well-

known AlPcCl molecule. 
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VI.7: Appendix 

 

Figure VI.A1: An expanded view of the 2D-EE plot of GaPcCl/Ar in the three regions of 
the AE bands. The regions corresponding to the ZPLs and PSBs of the isolated species are 
labelled. The region which has tentatively been assigned as an aggregate species has also 
been labelled.  
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Figure VI.A2: Expanded view of region I (the red features) from the 2D-EE plot of 
GaPcCl/Ar shown in Figure VI.8. Here the region corresponding to the ZPLs are 
represented with the red contour lines. The region immediately to the blue in excitation of 
the ZPLs are the PSBs, which carry much less intensity. Even further to the blue is a broad 
feature which has been tentatively assigned as an aggregate. The red and blue dashed lines 
show the wavelengths of the emission and excitation spectra that were extracted to perform 
the Wp fit function on. 

 

Figure VI.A3: Expanded view of region II (between the red and blue features) from the 
2D-EE plot of GaPcCl/Ar shown in Figure VI.8. Here the region corresponding to the 
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ZPLs are represented with the red/orange contour lines. The PSBs are more difficult to 
identify in this region. There is no evidence of the broad feature which is present in both 
the red and blue regions. 

 

Figure VI.A4: Expanded view of region III (the blue features) from the 2D-EE plot of 
GaPcCl/Ar shown in Figure VI.8. Here the region corresponding to the ZPLs are 
represented with the red contour lines. The PSBs are difficult to identify on this scale. A 
broad feature located to the blue of the ZPLs has been tentatively assigned as an aggregate. 
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Figure VI.A5: A selection of excitation spectra of GaPcCl/Ar extracted from a 2D-EE plot 
at different emission wavelengths. Each spectrum is shown as its shift from the 0-0 band to 
demonstrate that the vibronic structure is common to all sites. 

 

Figure VI.A6: Emission and excitation slices extracted through the maxima of the broad 
red and blue features in Figure VI.8. The broadness of the bands, especially when 
compared to the ZPLs of the monomer species, indicate that these features are aggregates. 
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Figure VI.A7: Expanded region of the red features from the 2D-EE plot of GaPcCl/Kr 
shown in Figure VI.11. The region represented by the red contour lines corresponds to the 
aggregate species identified in the Ar matrix. The ZPLs from the most red sites are located 
to the red of this feature, but carry significantly less intensity. This is contrasting behaviour 
to Ar, where the ZPLs carried the most intensity. 

 

Figure VI.A8: Expansion of the region between the red and blue features from the 2D-EE 
plot of GaPcCl/Kr shown in Figure VI.11. The corresponding area in the Ar spectrum 
showed a series of ZPLs which are not evident here. 
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Figure VI.A9: Expanded region of the blue features from the 2D-EE plot of GaPcCl/Kr 
shown in Figure VI.11. The region represented by the red contour lines corresponds to the 
aggregate species identified in the Ar matrix. The ZPLs from the monomer species are 
located to the red (in excitation) of this feature, but carry significantly less intensity. This is 
contrasting behaviour to Ar, where the ZPLs carried the most intensity. 

 

Figure VI.A10: 2D-EE plots of GaPcCl in Kr recorded at 10 K. The plot on the left has 
been recorded after deposition and the plot on the right after annealing to 22 K. Both 
spectra were recorded with the 600 grooves/mm grating installed in the monochromator. 
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Chapter VII: Conclusions 
 

The aim of this work was to conduct a combined experimental and theoretical study on 

some of the structural and spectroscopic properties of metal phthalocyanines (M-Pcs) and 

metal tetraazaporphyrins (M-TAPs). Experimental work consisted primarily of matrix-

isolation spectroscopy of M-Pcs and M-PcCls. Quantum chemical calculations were 

extensively employed to assist with the analysis of complicated experimental results and as 

a standalone method for investigating other phenomena. Density functional theory (DFT) 

was the preferred theoretical method in this work, as it has a proven track record for 

accurately describing the ground state properties of small to medium sized molecules. DFT 

was used to examine the structure of a number of metal phthalocyanine and metal 

tetraazaporphyrin species. The effect of isotopic substitution of the inner hydrogens on 

free-base porphine and related tetrapyrroles was also studied using DFT calculations. 

Infrared spectroscopy experiments were conducted on MgPc, AlPcCl and GaPcCl isolated 

in inert gas matrices. Raman scattering experiments and DFT calculations were also run on 

these molecules, allowing for a comprehensive vibrational analysis to be performed. The 

visible luminescence spectra of matrix-isolated GaPcCl were recorded in a number of 

different inert gas hosts. The effect of the host on the absorption, emission and excitation 

spectroscopy was thereby analysed. Amplified emission from GaPcCl was observed in 

highly concentrated matrix samples, and this was used to probe the features present in each 

matrix host. 

VII.1: Symmetry of the M-Pcs and M-TAPs 
A theoretical approach was used to determine the effect of a metal occupying the central 

cavity in TAP and Pc using DFT methods. The free-base (metal-free) TAPs and Pcs are 

expected to be planar with D2h symmetry1. Incorporating a metal into the inner cavity 

changes the symmetry based on the fact that it will bind to all four of the pyrrole nitrogens. 

A series of DFT calculations was performed on the M-TAPs and M-Pcs where M = Mg, 

Ca, Sr, Ba, Zn, Cd, Hg, AlCl, GaCl, Al+ or Ga+. Each molecule was given an initial D4h 

symmetry (except for the M-PcCls/M-TAPCls) and the structure was then optimized using 

DFT methods. Where available, the structures predicted by DFT agreed excellently with 

crystal structures. Two structures emerged from the calculations depending on the size of 

the metal atom – planar with D4h symmetry or non-planar with C4v symmetry. The extent 
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to which the metal lies above the plane of the ring was entirely dependent on its size, with 

larger metal atoms sitting higher above the plane. A doming was observed on the rest of 

the porphyrin for the non-planar molecules, the severity of which was also related to the 

size of the metal atom. 

Calculations performed on AlPcCl and GaPcCl showed these molecules to be non-planar 

with the metal atom slightly above the the N4 plane. The porphyrin ring also exhibited the 

doming effect observed when large metal atoms inhabited the cavity. A complementary 

calculation on the related AlPc+ and GaPc+ molecules showed them to be planar with D4h 

symmetry, indicating that the presence of a counter-ion pulls the metal from the 

macrocycle cavity and distorts the planarity of the porphyrin ring. The extent of doming 

observed on the M-PcCls/M-TAPCls was significantly smaller than the M-Pcs/M-TAPs. 

The macrocycles of AlPcCl and GaPcCl are distorted from being planar by only 2.8 and 

3.9 ° respectively. This may explain why these molecules are so strongly absorbing in the 

visible, as they have not lost any of their conjugation – a requirement for aromaticity. 

The symmetry of these molecules has a significant effect on their vibrational spectra. The 

structural difference between a D4h and a C4v M-TAP/M-Pc does not appear great; both 

symmetries will have the same number of atoms and hence the same number of vibrational 

modes (3N-6). The D4h point group contains the ‘i’ symmetry element, denoting a centre of 

inversion exists in the molecule. This implies that the ‘rule of mutual exclusion’ applies, 

where IR active modes are not Raman active and vice versa. This rule does not apply to the 

C4v point group, so IR active modes can also be Raman active. This effect was observed by 

investigating the vibrational spectra of the C4v molecule CaTAP and the D4h molecule 

MgTAP, where some modes of CaTAP show well defined peaks in both its IR and Raman 

spectra, whereas the equivalent mode of MgTAP will appear in only one spectrum. This 

symmetry effect was also observed in the experimental IR and Raman spectra of MgPc and 

AlPcCl. 

VII.2: Vibrational Analysis of Matrix-Isolated MgPc, AlPcCl 
and GaPcCl 
The infrared spectra of MgPc, AlPcCl and GaPcCl have been recorded in solid Ar and N2 

matrices at cryogenic temperatures. Highly resolved vibrational bands were observed in the 

400 cm-1 to 1700 cm-1 region for each molecule. Spectra recorded in inert gas matrices 

were compared to those recorded in KBr discs. A substantial improvement in the resolution 
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and the linewidths of bands was observed in the matrix owing to molecules being highly 

isolated and weakly interacting with the host material. The IR spectra were analysed with 

the input of high level DFT calculations, which agreed excellently with experimental 

results when a scaling factor was applied to the predicted vibrational frequencies. The DFT 

calculations allowed for the symmetries and motions of each vibrational mode to be 

described and it was found that the IR spectra of MgPc (AlPcCl, GaPcCl) consist of mostly 

A2u (A1) and Eu (E) modes, pertaining to out-of-plane and in-plane distortions of the 

porphyrin ring and outer hydrogens.  

The Raman scattering spectra of MgPc, AlPcCl and GaPcCl were recorded in room 

temperature KBr discs using two excitation sources; a 532 and a 660 nm CW laser. 

Deviations in the positions of the high frequency vibrational bands with respect to the laser 

excitation wavelength indicate a slight calibration issue with the spectrometer system. 

Intensities of several bands differed significantly depending on the excitation source, 

which is an indication of resonance Raman effects. A broad fluorescence background was 

also observed with the 660 nm excitation – a wavelength where these molecules tend to 

have their strongest absorption bands2,3. Scaled DFT Raman frequencies compared well 

with the experimental spectra, although not as well as with the IR results. The intensities of 

the modes below 1000 cm-1 were underestimated, but the frequencies were predicted to a 

reasonable accuracy. An analysis of the Raman spectra shows that the Raman active modes 

which carry the most intensity are all in-plane vibrations, usually involving distortion of 

either the macrocycle or the isoindole units. 

VII.3: Reverse ISR of Free-base Porphyrin and Related 
Tetrapyrroles 
The effect of isotopic substitution of the inner hydrogens on the free-base tetrapyrroles 

showed some intriguing effects. Contrary to expectations, not all of the vibrational modes 

associated with the N-H(D) bond showed an isotopic shift ratio (ISR) value of greater than 

1. The high frequency, N-H stretching modes show the expected trend. This is because 

they are highly localized and crossings can occur with the C-H stretching modes as the 

mass of the hydrogen increases. This is due to the fact that there is no inter-mode-coupling 

in these modes and thus the expected ISR ratios are observed for these modes. 

The lower frequency N-H OP bends involve well defined out-of-plane bending motions in 

both the N-H and N-D bonds. No crossings occur for the B2g symmetry Raman-active 
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modes for the smaller tetrapyrroles (P and TAP), but crossings do occur for the B2g modes 

of Pc and TBP as they still involve localised N-H motions, as can be shown with simple 

mass dependence curves. Due to a single mode crossing which occurs in both Pc and TBP, 

frequency increases do occur in the heavier isotopomer but because of the involvement of 

only two modes, instances of reversed ISR can be easily identified in the mass dependent 

calculations. 

The IR-active B3u OP bending modes are slightly more numerous than their Raman 

counterparts and exhibit more complex behaviour. The N-H OP bending mode is crossed 

by two modes for all four molecules. One of these modes is weakly coupled with the N-H 

OP bend and passes directly through the N-H OP bending mode, while the other mode is 

strongly coupled and produces a large avoided crossing. The strong coupling of the two 

modes causes an increase in the frequency of the heavier isotopomer, and this produces a 

reversed ISR value. In all these situations the vector diagrams of the motions reveal a 

reversal of the N-H and N-D motions between the light and heavy isotopomer. The OPB 

modes provide the simplest examples of the effect the reverse ISR effect, where coupling 

of modes is necessary for an avoided crossing to exist. 

The N-H IP bending modes show more complex behaviour than their OPB counterparts 

due to the large number of modes with B2u and B3g symmetries. This results in the N-H(D) 

IP bending modes to be dispersed over many vibrational modes. The change in the N-H 

frequencies is less than the predicted mH
-1/2 mass dependence due to the dilution of this 

motion over several modes. No IPB mode can be assigned as the true NH(D) IPB mode as 

the contribution of NH(D) motion in these modes is always below 30%. These modes are 

located in a congested spectral region (around 1000 – 1200 cm-1) where crossings occur 

with modes containing no NH(D) motion. These crossings all involve modes that are not 

strongly coupled. Some B3g modes experience coupling in the high frequency (1200 cm-1) 

range but produce only weak avoided crossings. The best examples of this are present in 

porphyrin and TBP. This coupling does not occur in TAP and only weakly in Pc.   

VII.4: Visible Spectroscopy of Matrix-Isolated GaPcCl 
The UV/Vis absorption of GaPcCl was studied in the inert gas hosts N2, Ar, Kr and Xe at 

cryogenic temperatures. The locations of the Q and B bands were measured around 670 

and 350 nm respectively. The location of these bands shifted towards the red as the mass of 

the host gas increased and the interaction between the host and guest species got stronger. 
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TD-DFT calculations were performed to determine the electronic transitions of GaPcCl 

and were found to be consistently blue-shifted from their experimental counterparts. Weak 

transitions were observed experimentally in the 400 – 450 nm region which were also 

found in the TD-DFT calculations. A comparison of matrix absorption spectra with 

solution phase results show that the solid state produces much sharper bands with vibronic 

structure extending up to around 600 nm. The solution phase spectrum shows three broad 

features in the region of the Q band. These three bands correspond to the band origin and 

two of the strongest vibronic bands, which were identified in the higher resolution matrix 

absorption spectra. 

Emission spectra of GaPcCl were recorded by exciting into the strong absorption bands. 

Sharp fluorescence peaks were typically observed up to 760 nm. A measurement of the 

shift from the 0-0 shows vibronic bands in emission extending up to about 1600 cm-1 from 

the band origin, and was consistent for all matrix hosts. Shifts in the positions of the 

vibronic bands with respect to the excitation wavelength were indicative of there being 

more than one site present in the matrix. The simplest fluorescence spectra were recorded 

by exciting into the dominant red site, where only a single site produced emission. The 

vibronic bands in emission were compared with ground state Raman results and a good 

agreement was found. This agreement is due to the similar set of selection rules that govern 

both sets of transitions, and allowed for a vibrational analysis of the first excited electronic 

state to be performed. Mirror symmetry between the absorption and emission bands was 

observed, indicating the structures of the ground and excited electronic states do not differ 

significantly. The emission lifetime of GaPcCl was measured in each matrix host and 

found to be consistently between 2.3 – 2.6 ns; a timescale expected for a strongly 

absorbing dye molecule. 

Excitation spectra were also recorded and showed some good structure up to 1000 cm-1 

from the 0-0 in excitation. Similar vibronic bands in excitation were found in all of the 

hosts used in the current work, with varying levels of resolution. Good agreement between 

the 0-0 and vibronic bands in absorption and excitation further reinforced the idea that the 

ground and excited states have a very similar structure. Site structure was also observed in 

excitation, as the 0-0 in excitation shifted depending on which emission wavelength was 

being monitored. 

 



                                                                                                         Chapter VII: Conclusions 

338 
 

VII.5: Amplified Emission of Matrix-Isolated GaPcCl 
In high concentration samples of matrix-isolated GaPcCl a single vibronic band in 

emission showed a significant gain in intensity when excited with a high powered pulsed 

dye laser. This phenomenon was observed in all four host gases and was attributed to being 

amplified emission (AE). This was proven to be the correct assignment by identifying three 

key properties of AE. Firstly was the aforementioned enhancement of the emission 

intensity of a single vibronic band, along with a significant narrowing of the bandwidth of 

the peak compared to that of the normal fluorescence. The second piece of evidence for 

this being AE was the lifetime of this enhanced band, which closely resembled the decay 

profile of the laser pulse more so than the fluorescence decay profile. Finally, a threshold 

dependence on this process was observed by varying the intensity of the laser pulses. The 

threshold dependence argument is also consolidated by the fact that the lower 

concentration samples did not exhibit AE under any circumstances. A comparison of the 

emission and Raman/DFT spectra allowed for identification of the vibronic band 

associated with AE. The most intense Raman active mode is responsible for the effect; a B2 

mode at 1540 cm-1 (for GaPcCl/Ar) corresponding to an asymmetric stretch of the Cα-Nm-

Cα bonds. A similar vibrational mode has been identified to be responsible for AE in the 

structurally related molecules H2Pc, ZnPc4, H2TBP5 and H2TAP6. 

In most samples of matrix-isolated GaPcCl, it was possible to excite more than one AE 

band with a single excitation wavelength. This was indicative of there being several sites 

present in these samples, consistent with observations from the fluorescence data. A Wp fit 

was performed on the high resolution emission and excitation AE spectra of the most red 

site of GaPcCl/Ar (which gives the simplest emission/excitation spectra) in order to 

understand the nature of the electronic transition. A sharp ZPL was observed, along with a 

moderately intense PSB. A second PSB was evident in emission, but was obscured in 

excitation by a different species which was tentatively assigned as an aggregate due to its 

broadness. The Wp fit also predicts fairly intense hot bands to arise, but these were not 

observed experimentally. This may be a threshold issue associated with AE, as the Wp fit 

is generally used to describe fluorescence. 

2D excitation-emission (2D-EE) spectra recorded in the region of the AE bands were used 

to investigate the sites in each matrix due to the highly selective nature of AE, coupled 

with the narrow bandwidths it produces. A continuum of sites was observed in Ar matrices, 



                                                                                                         Chapter VII: Conclusions 

339 
 

each with a well-resolved ZPL and PSB. These sharp lines were attributed to being the 

isolated monomer from different sites. Two major features to the blue of the ZPLs in 

excitation also exhibit AE strongly. These features, separated by 38 cm-1, have been 

tentatively assigned as aggregates due to their broadness, especially when compared to the 

narrow ZPLs. Kr and Xe matrices showed some similarities to the Ar matrix, although they 

did not appear as extreme with the number of sites present, and the phonon structure is not 

as clear in either matrix. The ZPLs from isolated monomers of GaPcCl may have been 

evident in Kr, but they were not the dominant species in this host. Instead, Kr matrices 

showed two main features which exhibit AE (split by 44 cm-1), and a host of sites which 

exhibited weaker emission located between these two sites. These features were most 

likely the aggregate species observed in Ar. Xe matrices also had this structure, although 

the splitting between the two major features was only 19 cm-1. No ZPLs were observed in 

Xe, indicating very little isolated monomer was present in this host, and certainly not 

enough to reach the threshold value required to exhibit AE. N2 matrices showed sites 

located very close together in energy; too close together to be resolvable under the current 

experimental conditions. The rich abundance of features in the atomic matrices and 

apparent lack of sites in N2 was incongruous with previous matrix studies on porphyrin and 

phthalocyanine molecules. The reversal of site structure between the atomic and molecular 

matrices was likely due to the non-planar structure of GaPcCl compared to the planar 

structure of the species use in the earlier studies. The presence of large amounts of 

aggregates in the matrix in the current study was also inconsistent with previous work. The 

most likely explanation for the formation of the aggregate species (particularly in the 

heavier hosts) was due to the permanent dipole moment of GaPcCl. This strong attractive 

force (at short distances) allowed for neighbouring molecules to form dipole-dipole 

interactions, and these ‘aggregate’ species were responsible for the broad AE bands 

observed in the 2D-EE spectra. 

 

The current experimental and theoretical work has given some novel insights into the 

spectroscopy of matrix-isolated phthalocyanines. The Q and B bands are the most well-

known absorption bands of the porphyrins and phthalocyanines. A set of weaker bands 

have been identified immediately to the red of the B band in the absorption spectra of 

GaPcCl isolated in inert gas hosts, and these weak transitions have also been predicted by 

TD-DFT calculations. To the best of the author’s knowledge, these bands have not been 
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described for other porphyrin/phthalocyanine systems, and may warrant further research. 

While the observation of AE for GaPcCl is perhaps unsurprising given the historical 

significance of the closely related AlPcCl molecule7, this phenomenon has allowed for the 

identification of several features in the matrix which could not have been observed with 

normal fluorescence. Resolved phonon structure has been observed in both emission and 

excitation for the continuum of sites in Ar, as well as for the most abundantly occupied 

sites in Kr. This is the first time such an effect has been described for a phthalocyanine 

molecule in the matrix, and its origin may be related to the non-planar structure of GaPcCl. 

While the sharp ZPL was related to the isolated monomer, a broad feature, assigned as an 

aggregate, dominates in the heavier matrices. This arises due to the strong dipole moment 

of the GaPcCl molecule. These interesting behaviours and properties of GaPcCl not only 

advance the literature work on the phthalocyanines, but give rise to new questions and the 

potential for future studies. 
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