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ABSTRACT 

 

The last two decades have facilitated considerable progress in understanding the 

impacts of climate change on crop sensitivity and production, however very few of 

these studies have incorporated the activity of herbivorous insect pests into their 

assessments of potential yield losses. In Ireland, the grain aphid (Sitobion avenae) is the 

most commonly encountered aphid pest in cereal crops. This pest confers significant 

decreases in crop yields owing to its mechanical feeding damage, as well as its ability to 

vector plant viruses. Despite the damage potential, climate-induced changes to aphid 

populations have not been considered in the context of Irish agricultural production. The 

work presented here integrates biological data from various studies to inform the 

development of a simulation model to describe the population dynamics of S. avenae 

for multiple locations in Ireland in response to climate change. The simulation model 

(SAV4) describes the compartmentalised life cycle history of S. avenae in response to 

temperature, incorporating immigration, reproduction, survival, development and morph 

determination, facilitating the calculation of annual phenological and quantitative aphid 

metrics. The model was evaluated using observations describing aphid immigration, 

timing and size of populations in order to ensure that it was fit for purpose. 

 

Projected temperature data derived from three Global Climate Models (GCMs) and two 

green house gas projection pathways, were used to drive the aphid simulation model for 

eleven locations in Ireland. Reported findings include increases in both aphid abundance 

and voltinism, as well as advanced phenology across all sites for Ireland. The extent of 

modelled change was found to differ spatially, with current areas of spring barley 

cultivation experiencing some of the most significant alterations to S. avenae’s 

dynamics over time.  These findings highlight potential increases in pest risk under 

climate change in Ireland, emphasising the need for monitoring programmes in 

conjunction with an Integrated Pest Management (IPM) approach in order to ensure 

crop resilience in the future. This work constitutes the first explicit incorporation of pest 

dynamics into climate change projections for the Republic of Ireland, as well as 

providing a novel pest model for use in pest risk analysis. More broadly, the findings 

presented here contribute to a growing body of work concerning the mediating effects 

of climate-induced pest activities in food security. 
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CHAPTER 1  

RESEARCH INTRODUCTION 

 

1.1 Introduction 

Climate and agriculture are inextricably linked. Unlike most other industries, 

agricultural production is a biological process that produces organic output based on 

soil and atmospheric resources (including water, CO2, minerals and solar radiation). 

While every plant requires the aforementioned resources, large variations exist between 

different plant species regarding the physical conditions that are within their range of 

physiological tolerance. For example, certain physical conditions (temperature, 

moisture) may facilitate maximum growth and development in one plant species, while 

simultaneously limiting the performance of another. These moderating effects are also 

experienced by the host plant’s concomitant herbivore pests. These ‘physical 

conditions’ are generally interpreted as weather or abiotic conditions that are 

experienced by developing plants and other organisms. This interpretation is apposite 

when agricultural crops are being considered on an annual basis, due to the seasonality 

of their cultivation and the ephemeral nature of their presence in-field. However, the 

physical conditions or weather experienced from one year to the next over a longer 

period of time (the climate) not only influences the seasonal development of the crop, 

but also the type of crop (and its pest consignment) that can successfully complete its 

development in different geographic regions. This is due to the regional variation that 

exists in climate variables and the resultant differences in climate-mediated crop 

photosynthetic pathways (the process in which plants produce carbohydrates using light 

energy).  

 

While the geographic distribution of crop types can also be influenced by the prevailing 

socioeconomic conditions, or enhanced using technological advances that facilitate the 

attenuation of the physical environments effects; generally climate can be viewed as one 

of the main limiting conditions to achieving a crop plants maximum potential. This 

limiting effect of climate on crop performance is not only elicited directly, but also 
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indirectly via the activities of pests and pathogens.  Temperature in particular has been 

identified as the main driver of biological processes in plants and pests, owing to its 

directionally proportional effect on enzymatic reactions which regulate biological 

development. 

 

The intensification of land management in the agricultural community through the use 

of irrigation, mechanisation, high-yielding crop varieties, fertilisers and pesticides in the 

1960s; heralded what has been referred to as the ‘green revolution’. This era of 

scientific and technological advance facilitated the doubling of global crop yields 

(Tilman et al., 2001), by moderating the effects of factors listed in Figure 1.1 

(specifically water, nutrients and pest species). A key feature of this trend towards more 

intensified systems was an increase in the degree of specialisation in food production. 

i.e. a reduction in the number of species cultivated, ultimately precipitating a shift 

towards monoculture. This homogeneity, common in modern-day agriculture, has a 

direct impact on the invertebrate biodiversity associated with an area, leading to 

changes in the architecture of the associated biota (Bianchi et al., 2006). Matson et al. 

(1997) refer to this biota as the pest complex, which incorporates herbivorous insects, as 

well as their natural enemies. In naturally diverse systems, pests are typically more 

speciose and lower in abundance, owing to the necessity (and concomitant energy 

expenditure) to find a suitable host species to feed on within their geographic range. 

This limitation of numbers has also been attributed to the effect of higher predation 

rates and higher numbers of natural enemies typical of diverse systems. By contrast, 

insect pests within monocultures tend to be more abundant, highly specialised and less 

diverse than in their natural ecosystem counterpart. This translates to higher levels of 

pest pressure in agricultural crops than in varied polycultures, which ultimately results 

in higher crop losses from more host-specialised, less diverse pest species. 
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Figure 1.1 Abiotic and biotic factors causing crop losses (Oerke, 2006). 

 

Pest activity is not solely determined by the diversity of its environs. The ability of a 

pest to complete its life cycle exemplifies its level of adaptation to both its host plant 

and climatic environment. Akin to plant distribution, the climate experienced also 

influences the mortality, development and geographic pattern of agricultural pests 

owing to their species-specific ‘thermal window’ (the range of suitable temperatures 

between the minimum and maximum rate of development for a species) (Dixon et al., 

2009). Assuming that a suitable host is available, the existence of this range is due to 

the fact that insects are poikilothermic (cold blooded), which facilitates a temperature-

dependent response in these organisms, and directly affects their development, survival, 

geographic range and abundance (Bale et al., 2002).  Consequently, a species typically 

boasts upper and lower latitudinal and elevational limits as a result of this temperature 

dependency, which predetermines the boundaries of its geographic range or distribution 

(Wilson et al., 2007), and infers their sensitivity to their local/regional climate. Due to 

the dependency of both crops and their concomitant pests on climate, both are subject to 

short and long-term fluctuations typical of atmospheric conditions.  

 

Ultimately, climate serves to mediate potential attainable crop yields via both biotic and 

abiotic factors (Figure 1.1) resulting in crop outputs which may not be equivalent to the 

site-specific technical maximum. Projected global environmental changes are expected 

to further impact the productivity of agricultural cropping systems in the future. These 
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changes will be compounded by an increasing global populace, resulting in a potential 

scenario where global food security can not be ensured.  

 

Changes in climate to date have already precipitated ecological changes on global, 

regional and local scales; eliciting alterations in phenology (the natural timing of 

biological events) and distribution of species (Hoegh-Guldberg and Hughes, 2008; 

Parmesan, 2006; Walther et al., 2002). These impacts have been recorded on ‘every 

continent’ and ‘in most major taxonomic groups’ as a result of ‘modern’ climate change 

(Parmesan, 2006:639); and are occurring in both natural and managed (agricultural) 

ecosystems. The aforementioned potential for these changes to impart a negative impact 

on food production systems provides an impetus for the scientific community to further 

elucidate the direct and indirect (pest-mediated) effects of climate change, in an effort to 

maintain and ultimately increase current production levels. Section 1.2 will provide a 

brief synopsis of what is currently known regarding global climate change, as well as 

documented changes in key climate variables. The issues that exist at the interface of 

agricultural production, environmental sustainability and food security under a changing 

climate will be emphasised, owing to their role in the justification of research such as 

the work described later. Finally, the rationale for attempting to model potential 

trajectories of pest population dynamics in agricultural systems will be outlined in the 

context of agricultural production in Ireland. 

 

1.2 Climate change 

According to the IPCCs (2014:5) Fifth Assessment Report (AR5), ‘climate change 

refers to a change in the state of the climate that can be identified (e.g. by using 

statistical tests) by changes in the mean and/or the variability of its properties, and that 

exists for an extended period, typically decades or longer’. It has manifested itself 

globally to differing extents in guises such as retreating glaciers and ice sheets, rising 

sea levels, and increased frequency of heavy precipitation events and heatwaves. 

Furthermore, the IPCC (2013:15) reported that it is ‘extremely likely’ that more than 

half of the observed increases in average global surface temperature from 1951-2010 are 

a result of increases in anthropogenic Green House Gas (GHG) concentrations in the 

atmosphere, along with other anthropogenic forcings. The term ‘extremely likely’ may 

seem indiscriminate at first glance; however this terminology utilised by the IPCC 
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equates to a certainty of 95-100% (Le Treut et al., 2007). In order to fully understand 

what is driving these changes, it is important to first understand some of the basic 

premises regarding our current climate and how it functions.  

 

1.2.1 The greenhouse effect and the global energy balance 

The term ‘greenhouse effect’ refers to a naturally occurring phenomenon wherein the 

planets ambient temperature is maintained approximately 33˚C warmer than it would be 

if the atmospheres’ effect was not accounted for (Harvey, 2000). This means that the 

current biosphere and concurrent biota (including humankind) would not exist in the 

absence of this effect. The process involves unimpeded influx of solar radiation which 

heats the earth surface. The surface in turn, emits long-wave radiation which is then 

absorbed by specific gases in the atmosphere, a portion of which is re-emitted back to 

the surface. This ultimately results in a warmer surface and atmosphere than would be 

expected if the long-wave energy was unimpeded exiting the atmosphere (Robinson and 

Henderson-Sellers, 1999). The main gases to which the greenhouse effect can be 

attributed are those which are capable of both absorbing and re-emitting radiation; the 

most important of which are H2O (water), CO2 (carbon dioxide), O3 (ozone), CH4 

(methane) and NO2 (nitrogen dioxide). It is these gases which are increasing in response 

to anthropogenic activities including combustion of fossil fuels on a worldwide level, 

land use change, as well as the intensification of agricultural production. Changes in 

atmospheric concentrations of these GHGs, as well as solar radiation have been 

implicated in changing the Earth’s energy balance and by proxy, altering global 

temperature (Hansen et al., 2005). The major energy flows of the global system are 

illustrated in Figure 1.2. According to Hansen et al. (2011) the energy imbalance over a 

six year period from 2005-2010 has been reported as 0.59±0.15 W/m2 (surplus energy 

absorbed in comparison to that radiated to space). This measure of energy is attributed 

to a reduction in the amount of infrared radiation lost to space by the atmosphere; a 

process referred to as ‘the greenhouse effect’. This shift in the global energy balance 

can alter both the timing and variability in global climate patterns, increasing the surface 

air temperature as well as impacting the timing and intensity of precipitation events.  
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Figure 1.2 The global energy balance (Kiehl and Trenberth, 1997). 

 

1.2.2 Changes in atmospheric CO2 

CO2 has emerged as the primary gaseous metric by which the phenomenon of human-

induced climate change is measured globally. The most noteworthy data series of 

atmospheric CO2 observations is that of the Mauna Loa observatory in Hawaii (Keeling 

et al., 1976). The observatory is located at a remote site 3400 metres (m) above sea 

level; which is ideal for ‘monitoring constituents in the atmosphere that can cause 

climate change’ due to the undisturbed air surrounding the observatory, as well as the 

‘minimal influences of vegetation and human activity’ (NOAA, 2013). As a result, the 

output from this observatory (which has been monitoring atmospheric CO2 since 1956) 

provides scientific evidence of the upward trend in atmospheric CO2 levels over the 

course of the last 54 years (Figure 1.3). Current mean CO2  levels reported at Mauna Loa 

are registering at 396.48 parts per million (ppm) per annum (NOAA, 2014). This level 

of atmospheric CO2 is quite different from levels reported from the pre-industrial era of 

280 ppm (Petit et al., 1999). 
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Figure 1.3 Monthly mean atmospheric carbon dioxide at Mauna Loa Observatory, Hawaii (NOAA, 
2014). 

 

Further discrepancies between past and present GHGs levels are evidenced in the 

findings of Petit et al. (1999) from the Vostok ice core. Past atmospheric concentrations 

of CO2 and Methane were directly measured from air inclusions within an ice core that 

was drilled at the Vostok station in East Antarctica, under a collaborative interaction 

between Russia, the United States and France. The Vostok research indicated that 

current levels of both CO2 and CH4 are unprecedented within the 420 thousand year 

record accounted for by the ice core. This data accounts for four glacial-interglacial 

cycles, wherein the aforementioned GHGs remained within what the authors termed as 

‘stable bounds’ (Petit et al., 1999:429). When the Vostok dataset is compared with 

current atmospheric CO2 levels from Mauna Loa Observatory (Figure 1.4), it becomes 

apparent that current levels of CO2 lie well outside the bounds referred to above 

(according to the data these bounds range from 182-299 parts per million by volume 

(ppmv)) (Petit et al., 1999). The EPICA Dome C Antarctica ice core extends this record 

even further back to ~800 thousand years ago, illustrating further periods of CO2 levels 

below preindustrial levels, as well as the lowest ever recorded CO2 level (172 ppmv) in 

an ice core (Lüthi et al., 2008). According to the most recent IPCC (2013) report, CO2 

emissions derived from a combination of both fossil fuel combustion and cement 

production averaged at 8.3 Gigatonnes of Carbon (GtC) annually from 2002-2011; 
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while the 2011 average alone equated to 9.5 GtC  (54% above 1990 levels). Agriculture, 

forestry and other land use has been reported to currently account for about a quarter of 

net anthropogenic GHG emission (primarily from deforestation and emissions from soil, 

nutrient management and livestock) (IPCC, 2014b). 

 

 

Figure 1.4 Vostok ice core data representing in excess of 400,000 years of atmospheric CO2 (Source: 
NCDC, 2013) 

 

1.2.3 Changes in the Earth’s energy balance 

Imbalances in the earth’s energy balance as a result of changes in either incoming or 

outgoing radiation (Figure 1.2) due to external factors are termed Radiative Forcings 

(RFs). RFs facilitate the quantification of the strength of both anthropogenic and natural 

actors in contributing to climate change. Positive forcings tend to have a warming effect 

on the surface, while negative forcings generally impart a cooling influence. In the AR5 

(IPCC, 2013), all anthropogenic drivers were totalled in an effort to assess the 

magnitude of the effect (if any) that mankind was contributing towards climate change. 

According to the (IPCC, 2013), ‘human influence on the climate system is clear’, and it 

is ‘extremely likely that human influence has been the dominant cause of the observed 

warming since the mid-20th century’ (IPCC, 2014a). The total RF reported in the AR5  

is positive (Figure 1.5), which has resulted in an uptake of energy in the climate system. 
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GHGs are the best understood of the forcings due to anthropogenic activities and are 

consistently exerting a positive forcing due to the GHGs characteristic of absorbing 

outgoing radiation in the atmosphere. The recent trends in atmospheric GHGs outlined 

above are quantified in Figure 1.5 wherein the largest forcing illustrated is that of CO2 

for the period referenced. 

 

 

Figure 1.5 Summary of anthropogenic and natural radiative forcings. The values represent the 
forcings in 2011 relative to the start of the industrial era (1750). Postive forcing are illustrated using 

red and yellow bars, while negative forcings are displayed in blue (IPCC, 2013). 

 

1.2.4 Observed climate change 

Changes in the RFs and the resultant energy imbalance have precipitated long term 

changes to climate variables on a global scale, many of which are ‘unprecedented over 

decades to millennia’ (IPCC, 2013:4). Almost the entire globe has experienced surface 

warming between 1901 and 2012, while ocean temperature increase between 1971 and 

2010 has been described as virtually certain1. The warming reported for the thirty year 

period leading up to 2012 has been described as likely2 to be the warmest thirty year 

                                                 
1 Virtually certain equates to a 99-100% probability 
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period in the preceding 1400 years. Extreme events such as heatwaves and heavy 

precipitation events have also likely2 increased since 1950. This warming has 

contributed to sea level rise (Shepherd and Wingham, 2007) by expediting the melting 

of icesheets in Antarctica and Greenland (Hanna et al., 2008), along with oceanic 

thermal expansion. These changes have been reiterated in the AR5, citing larger rates of 

sea level rise since the 19th century, than the mean rate of rise in the preceding two 

millennia (IPCC, 2013).  

 

1.3 Ecological response to observed changes 

Climate impacts are not always directly proportionate to changes in climate variables, 

and to date, numerous (sometimes conflicting) outcomes have been documented relating 

climate trends to pest dynamics and changes in agricultural production (Parmesan, 

2006). In the absence of consideration for pests, numerous plant responses to changes in 

climatic variables have been reported. Increases in temperature have been shown to 

illicit decreases in yields of field crops such as wheat and rice (Peng et al., 2004; You et 

al., 2009), along with growth-stage-specific positive and negative crop outputs (Wang 

et al., 2008). In contrast, increases in atmospheric CO2 have been accredited with 

imparting a ‘fertilisation’ effect on developing plants due to intensification of the 

photosynthetic process, facilitating the increased accumulation of biomass (Tubiello et 

al., 2007) and corollary crop yields (although this effect alone has been found to 

produce different outcomes depending on the methodological approach used). Under 

current climate, precipitation events leading to flooding and increased soil moisture 

content have been shown to cause crop losses due to anoxic conditions and decreases in 

soil trafficability (Rosenzweig et al., 2002).  

 

Despite their potential to impact attainable crop yield, pests have not been extensively 

incorporated in crop modelling or climate impact studies to date. This dearth of research 

is in direct contradiction to the evidence currently available: that pest species are 

already responding to documented changes in climate (Thomas et al., 2001; Menéndez, 

2007). Two of the most frequently documented biological responses are geographic 

range shifts and phenological changes (Parmesan and Yohe, 2003).  Latitudinal shifts in 

                                                 
2 Likely equates to a 66-100% probability 
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distribution have been extensively noted in natural ecosystems, but also have particular 

significance in limiting agricultural production; as pest organisms can act as both 

disease vectors and direct herbivores within the system. Correlations have been 

identified between pest range expansion and increasing temperatures in Europe (Bebber 

et al., 2013), while more recently the speed of these range shifts has been found to be 

progressing at a faster rate than previously anticipated (Chen et al., 2011). Range 

expansion trends have been found to vary greatly between species, however the general 

trend when all species data are considered is reported as significantly positive on a 

latitudinal basis (Bebber et al., 2013; Parmesan et al., 1999).  

 

Changes in the phenology of pest events (such as reaching maturity or a ‘damaging’ 

stage of development) have also been demonstrated to occur as a result of increasing 

temperature trends.  Advances in the beginning of spring for the European domain have 

been estimated at 2.5 days per decade between 1971-2000 (Menzel et al., 2006) in 

response to observed temperature trends assessed across nineteen countries. These 

advances have included changes to the flight dynamics of a number of important 

agricultural aphid pest species (Cocu et al., 2005; Harrington et al., 2007). These 

alterations to ecological communities could potentially translate into pest species 

arriving within a crop when it is at a particularly vulnerable stage, or conversely at a 

crop growth stage which is unsuitable for pest feeding, ultimately altering the damage 

profile expected. To date, little work has been carried out on the direct effects of 

precipitation on insect pests, however depending on the biology of the species, both 

negative and positive impacts have been reported in response to changes to temporal 

receipts (Staley et al., 2007). 

 

1.4 Future trends in GHGs 

In order to project future changes in climate variables of interest; future emissions of 

GHGs must be incorporated if realistic projections are to be achieved. GHGs have been 

highlighted as the best understood of the human-driven RFs, however significant 

uncertainty exists regarding the future trajectories of GHG emissions, which 

necessitates the use of a ‘scenario-based’ approach. Different socioeconomic scenarios 

or ‘storylines’ have been constructed, wherein assumptions regarding socioeconomic 

development, land use change, clean energy research and development and demography 



  

12 
 

are made (Nakicenovic et al., 2000). These scenarios provide the basis for different 

potential emissions profiles that could exist in the future, and hence provide ranges of 

trajectories of GHG emissions for use in climate models and impact studies.  The 

utilisation of different socio-economic scenarios, which are translated into emissions 

scenarios incorporating atmospheric consignments of GHGs and aerosols have 

facilitated the formulation of different global climate scenarios for the future. Up until 

the AR4, six ‘storylines’ (as outlined in the Special Report on Emissions Scenario 

(SRES)) (Nakicenovic et al., 2000) had been employed in order to drive Global Climate 

Models (GCMs), all of which vary in their rate of economic and population growth, as 

well as their emphasis on clean and efficient technologies (A1FI, A1T, A1B, B1, A2, 

B2). Since 2006, the IPCC has facilitated the production of new emissions scenarios for 

the Fifth Assessment Report (AR5) (Moss et al., 2010) dubbed Representative 

Concentration Pathways (RCPs). These new RCPs are intended to build on the previous 

SRES scenarios used in preceding assessment reports, by concurrently reflecting 

advances in research and data; as well as reducing the time required to produce future 

projections. As before, the RCPs provide a common set of scenarios across the scientific 

community, facilitating ease of comparison and communication between studies. Four 

pathways have been developed for the recent IPCC (2013) report, each with their own 

RFs (Vuuren et al., 2011) (RCP2.6, RCP4.5, RCP6 and RCP8.5). Each RCP differs not 

only in its RFs, but also in each of their representative emission rates and 

concentrations. Considering the relatively recent nature of the RCPs in climate 

modelling, it stands to reason that the current study has concentrated on the SRES 

approach to climate scenarios. For that reason, only SRES climate projections will be 

considered in the remainder of this work. 

 

The two emissions scenarios ultimately utilised in this analysis are derived from two of 

the SRES storylines: A2 and B2, representing two different trajectories for a more 

‘regionalised’ world. The A2 (medium high) scenario incorporates regionally oriented 

development with an emphasis on economic growth, while the B2 (medium low) 

scenario exhibits local and regional development with the emphasis on environmental 

sustainability. 
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1.5 Projected future climate 

General projected future trends on a global scale include a decrease in cold episodes and 

frost days, as well as concurrent increases in daily temperatures (owing predominantly 

to increases in the minimum daily temperature). According to the AR5 (IPCC, 2013) 

temperature increases are projected in the range of 0.3˚C-4.8˚C for the end of the 

century (2081-2100) depending on the RCP used. Increases in the frequency and 

duration of extreme hot events are also expected to increase. Intensification of the 

global hydrological cycle is set to increase mean precipitation at high latitudes, while 

the opposite is the case for the subtropics and mid latitude dry regions. Extreme 

precipitation events are also expected to increase in intensity and frequency over some 

mid latitude and wet tropical regions towards the end of this century. Confidence in 

these global projections is generally high for temperature projections, while significant 

uncertainty exists regarding future precipitation patterns. Future climate projections for 

Ireland also include a reduced number of frost days, a higher likelihood of extreme 

events increased rainfall events in winter (+20% in the midlands) and less frequent 

precipitation in summer (Fealy and Sweeney, 2007). Ireland’s future climate is 

projected to experience temperature increases of 1.4-1.8ºC by the 2050s, succeeded by 

larger increases (as high as 2.7ºC) during the 2080s (Fealy and Sweeney, 2008).  

 

1.5.1 Implications for agroecosystems 

As outlined above, differences exist in the climate currently experienced in different 

areas. Future projected changes in climate have similarly been postulated as spatially 

differentiable across a range of climate variables. For this reason, it is logical to expect 

that the magnitude of agricultural impacts as a result of the changing climate will differ 

from region to region. These differences can be partly attributed to whether the region 

of interest is limited by water or temperature. For example, temperature increases in 

Ireland (a mid-latitude country) could shift biological development rates in plants closer 

towards their thermal optimum, while simultaneously reducing the number of frost days 

experienced and lengthening the growing season for agricultural crops. In contrast, 

agricultural regions which are already operating at or near their optimal temperature 

limits may experience crop losses owing to increased heat stress in plants, moisture 

deficits and decreases in crop development. If the compounding impacts of agricultural 
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pests are taken into account for both of the aforementioned examples, the outcome has 

the potential to be altered. In the temperate case, an increase in ambient temperature 

would serve to release many insect pests from current temperature limitations, 

increasing winter survival, facilitating faster rates of development and increasing pest 

biomass. This potential increase in pest pressure could serve to negate any potential 

benefits conferred by increased temperature-mediated crop development rates. 

Conversely, those areas experiencing supraoptimal temperature regimes could redress 

crop losses, owing to decreases in pest pressure as a result of lethal or sub-lethal effects 

of temperatures in excess of the pest species thermal optimum.  

 

Due to the relationship that exists between most pest groups and climate, it is expected 

that many species will expand further northwards as areas fall into the climatic envelope 

of the species (with temperature increase) and consequently contract from regions 

which have become climatically unsuitable (Parmesan et al., 1999). Temperate pests in 

particular are expected to extend their ranges to higher latitudes and altitudes in 

response to changing temperature regimes (Bale et al., 2002). Conversely, species 

which are currently found over a wide range of latitudes are considered to be pre-

adapted to temperature changes and should remain relatively unaffected. These 

distributional effects have the potential to facilitate the introduction of new invasive 

species into areas they were hitherto absent. Introductions such as these may confer 

some positive benefits (i.e. biological control or pollination), however negative impacts 

as a result of their activity is as likely. The latent pest potential of non-native species is 

highlighted when one considers the UK example, where 30% of all insect and mite pests 

have been introduced, and 62% of forestry pests are recorded as non-native (Ward and 

Masters, 2007).  

 

1.6 Rationale for the current research 

1.6.1 Global food security 

Projected changes in future climate will be contributed to by an increasing global 

population. According to the Food and Agriculture Organisation of the United Nations 

(FAO), the world’s population is projected to increase to approximately 8920 million by 

the 2050s (FAO, 2006). This, in conjunction with a changing climate could threaten 
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global food stability through both direct impacts at the crop level and indirectly via 

pest-mediated losses. The tendency towards monocropping, characteristic of modern 

day food production means that large-scale pest epidemics are more likely than in 

natural, genetically diverse ecosystems. Currently, only fourteen staple crop types 

provide the majority of food for human consumption worldwide and this global reliance 

on a fixed number of species highlights the importance of understanding ‘production-

limiting’ factors such as pest activity (Strange and Scott, 2005). Modern agriculture is 

also typically characterised by high inputs, including fertilisers, quality seed, fungicides 

and pesticides in an effort to maximise outputs: the intensive use of which imparts both 

economic and environmental pressure on systems which are now tasked with increasing 

output under a changing climate and pest regime.  

 

Rapid food-price increases following extreme climate events in ‘key producing regions’ 

were highlighted in the IPCCs most recent report (Porter et al., 2014) , emphasising the 

sensitivity of market prices to climate events. The report also stated that with or without 

adaptation, the negative effects of climate change on crop yields become ‘likely’ from 

the 2030s onwards. However, this finding was arrived at utilising models that did not 

incorporate pest activities, which suggests that potential yield losses referred to may 

actually be more extreme than those reported once pest dynamics are considered. 

 

1.6.2 Sensitivity in Irish agriculture 

Negative climate-mediated changes such as these could have significant impacts within 

the agricultural sector in Ireland, considering that primary agriculture accounts for 

approximately 2.5% of GDP (CSO, 2014a), while the agri-food sector accounts for a 

further 4.5%. This sector provides 7.7% of national employment, as well as accounting 

for 10% of Irish exports (Teagasc, 2010). Akin to the global situation, Ireland’s 

agricultural sector is a high-input, high-productivity system, that has been charged with 

increasing output across all areas by 2020 in the National Food Harvest report (DAFM, 

2010). Climate-mediated impacts within the sector are complicated by the 

implementation of two pieces of legislation pertaining to agricultural pesticides in 

Ireland: Firstly, at an EU level, the regulation of Plant Protection Products (PPPs) 

(European parliament and council of the European Union, 2012) and secondly, the 

sustainable use of pesticides directive (SUD, Directive 2009/128/EC), both of which 
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were transposed into Irish law in 2012 (the term pesticides and PPPs will be treated 

interchangeably here). These pieces of legislation aim to encourage the rational and 

responsible use of pesticides (and their placement on the market), while also ‘improving 

the behaviour of pesticide users’ (DAFM, 2013:8). Ultimately, this legislation (if 

successful in its undertaking) utilises a risk-based approach, placing the onus on the 

user (the farmer) to justify the use of chemical intervention, as opposed to 

prophylactically applying chemical controls. The Food Harvest 2020 (DAFM, 2010:50) 

highlighted the necessity for the cereals sector in Ireland to ‘urgently prepare’ for the 

impacts of these new pieces of legislation, if the sustainability of crop production was to 

be ensured in Ireland. These changes, in combination with emerging chemical resistance 

in agricultural pests internationally (HGCA, 2013; Matson et al., 1997; Sarfraz et al., 

2006); further complicates the challenge of achieving yield increases in the presence of 

changing pest profiles  due to climate change.  

 

1.6.3 Pest-mediated yield losses 

Accurate estimates of pest-mediated agricultural losses in Ireland are not accounted for 

over the entirety of agricultural products produced; however, the use of PPPs as a proxy 

for the importance of pests in Ireland reports that approximately €60 million on average 

is spent annually on these products (CSO, 2013). Of course, this amount does not take 

into account the actual produce losses despite the use of PPPs, nor the cost of the 

potential environmental degradation incurred as a result of their use. This is not 

surprising however, as there are few governments whom systematically monitor and 

evaluate loss in agricultural production due to pest activity and Ireland is not an 

exception. Oerke and Dehne (2004) attempted to provide a proximate guide regarding 

the importance of different pest guilds in relation to global agricultural losses, by 

estimating both the potential losses (losses in the absence of crop protection) as a result 

of pest incidence; as well as the actual losses (the percentage of the loss potential 

prevented) (Table 1.1). It is clear from the output from their analysis that pest-mediated 

losses occur, despite the use of chemical interventions. Assuming that these findings are 

applicable to the Irish situation; coupled with the new regulations regarding PPP’s 

above, equates to a situation wherein adaptation is required on behalf of policy-makers 

and agricultural practitioners in response to the changing production status quo in 

Ireland. A recent economic analysis of the potential vulnerabilities of the Irish 
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agricultural sector to climate change ranked pests and diseases as the number one 

climate-related impact in the Irish arable sector (Flood, 2013). This study used Oerke 

and Dehne's (2004) findings to provide indicative economic costs related to climate 

impacts for the Irish agricultural sector. Costs of ≥ €200 million per annum to the arable 

sector due to pest and disease activity were estimated, while simultaneously 

highlighting the likelihood and urgency of this risk as ‘high’ (Flood, 2013). 

 

 Fungi and 
bacteria 

 
Viruses 

 
Animal pests 

 
Weeds 

 
Total 

Loss potential (%)* 14.9 3.1 17.6 31.8 67.4 

Actual losses (%)* 9.9 2.7 10.1 9.4 32 
 

* As percentage of attainable yields 

‘Loss potential’ incorporates losses that could occur in the absence of crop protection intervention. 

‘Actual losses’ are losses that occur despite physical, biological or chemical crop protection. 

Table 1.1 Summary of the potential and  actual losses due to fungal and bacterial pathogens, 
viruses, animal pests and weeds in wheat, rice, maize, barley, potatoes, soybean, sugarbeet and 

cotton in 1996-1998 (after Oerke and Dehne, 2004). 

 

1.7 The knowledge gap 

Globally, the agricultural community are faced with a significant challenge: to increase 

food production under the direct and indirect impacts of a changing climate. In Ireland, 

pest-mediated responses to climate change in the agricultural sector remain largely 

unknown due to their explicit exclusion from previous modelling studies. An increased 

understanding of the pest population dynamics responsible for losses at present could 

enhance the sectors ability to project potential occurrences and potentially ameliorate 

yield losses in the future. This premise is explicitly outlined in Annexe III of the SUD 

(European parliament and council of the European Union, 2012), wherein the 

monitoring of pest organisms is advocated for the purpose of informing forecasting 

systems and decision support systems (DSS) regarding PPP application. In the context 

of climate change, this approach is equally viable, in that long term pest modelling 

studies could facilitate the modification of future crop projections in line with the 

outcome of the pest models. The production of future crop yield scenarios which 

encompass as many facets of the system as possible, will serve to reduce some of the 

uncertainties associated with the outcome, facilitating the formulation of more focused 

robust adaptation policies for the future (Ingram et al., 2008). To date, Ireland’s 
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agricultural sector has operated in the absence of these holistic modelling approaches, 

and as a result remains vulnerable to the potential impacts of climate change on pest-

mediated agricultural production.  

 

1.8 Single species approach 

In order to address the aforementioned knowledge gap in a comprehensive and 

meaningful way, the need for a focused approach in the current research was 

paramount. For this reason, only one pest species was chosen for analysis: the grain 

aphid, Sitobion avenae, a pest of cereal crops in Ireland. The reduction of the analysis to 

just one species was in recognition of the fact that an all-encompassing analysis of 

every pest guild within Irish agriculture was untenable. Ultimately, the use of one 

‘model’ species for analysis could serve to act as an initial indicator of the potential 

directionality and magnitude of response in agricultural pest dynamics in Ireland under 

a changing climate. S. avenae was chosen for analysis for a number of reasons, not least 

of which was its prevalence in cereal crops on a global scale. This species pervasiveness 

increased the probability of data availability pertaining to the species biology, as well as 

its population dynamics, absent in an Irish context. The aphids as a group exhibit 

multiple life-cycle strategies which enable them to overwinter in different forms, 

ultimately serving to increase their adaptability to changing conditions. S. avenae itself 

was chosen for the final analysis due to its identification as one of the most proliferous 

aphid species in Irish wheat and barley (Kennedy and Connery, 2001; Kennedy and 

Connery, 2005), as well its ability to vector the highly damaging cereal disease, Barley 

Yellow Dwarf Virus (BYDV). 

 

1.9 Research aims  

This research takes cognisance of the existing knowledge and data gaps and proposes a 

novel ‘first step’ for Ireland in the context of pest biology, by asking the question: how 

will the agricultural pest S. avenae respond to future climate change? The aim of the 

current work is to assess the potential for either positive or negative impacts on this 

aphid pest’s dynamics in response to climate change in an Irish context. Secondary aims 

seek to address the pursuant questions: can one climate variable be identified as more 

appropriate than others for use in pest modelling studies? Can the relationship between 
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climate and pests be quantified for the Irish domain, in order to provide an initial risk 

assessment tool for potential changes in aphid pest dynamics under a changing climate? 

And finally, how can the agricultural sector bolster its resilience to potential negative 

effects of pest-mediated impacts in the future? This research will address these 

questions through the systematic analysis of climate-driven modelled population 

dynamics of S. avenae applied in an Irish context. 

 

1.10 Research outline 

The relationship between climate and insect population dynamics will be developed 

throughout this work, in order to provide a modelling framework to address the aims 

outlined above. Temperature will be highlighted as the most influential climate variable 

in relation to insect population development, and this relationship will be exploited in 

order to quantitatively describe the progression of model populations of S. avenae in 

response to future plausible temperature projections for Ireland. The description of the 

population dynamics is implemented through the formalisation of numerous 

mathematical functions within a simulation model developed and coded in Matlab. The 

model, named SAV4 (Sitobion avenae mark 4) is comprised of numerous separate (but 

integrated) model components (Figure 1.6) each of which describe a facet of the aphids 

life cycle as modified by temperature. Downscaled temperature projections for Ireland 

provide the driving variable required to model S. avenae population changes over 

progressive thirty year periods in the future (2020s, 2050s and 2080s). The results will 

be analysed as a preliminary assessment of the potential vulnerability of Irish 

agriculture to pest-mediated climate change impacts. Thus far, this approach has not 

been utilised in the Irish domain.  

 

 



  

 

 

1.11 Thesis structure

Chapter 1 has provided a general overview of the area of climate change, current trends 

as well as potential future impacts. An overview of the work to be carried out was 

presented, as well as an outline of how this research will be implemented.

 

Chapter 2 will provide a

documented pest and crop

in key climate variables is 

implementation in climate impact studies such as this.

analysing ecological systems is highlighted, while the applicability of current findings is 

assessed in the context of the work presented here.

 

Chapter 3 addresses the issue of s

utilisation of large scale GCM data to drive 

through the lens of ecological theory. The necessity to account for these issues of scale 

facilitates the identification of a hierarchical ‘systems’ framework within which to base 
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Figure 1.6 Simplified model structure 

structure 

has provided a general overview of the area of climate change, current trends 

as well as potential future impacts. An overview of the work to be carried out was 

presented, as well as an outline of how this research will be implemented.

will provide a summary of global climate trends to date, as well as 

and crop responses to changing trends. A review of future projections 

in key climate variables is also presented, as well as some brief examples of 

ntation in climate impact studies such as this. The complexity involved when 

analysing ecological systems is highlighted, while the applicability of current findings is 

assessed in the context of the work presented here. 

addresses the issue of scale in the context of climate 

utilisation of large scale GCM data to drive small-scale population dynamics is assessed

through the lens of ecological theory. The necessity to account for these issues of scale 

facilitates the identification of a hierarchical ‘systems’ framework within which to base 

 

has provided a general overview of the area of climate change, current trends 

as well as potential future impacts. An overview of the work to be carried out was 

presented, as well as an outline of how this research will be implemented. 

global climate trends to date, as well as 

A review of future projections 

some brief examples of their 

The complexity involved when 

analysing ecological systems is highlighted, while the applicability of current findings is 

cale in the context of climate impact studies. The 

population dynamics is assessed 

through the lens of ecological theory. The necessity to account for these issues of scale 

facilitates the identification of a hierarchical ‘systems’ framework within which to base 



  

21 
 

the current research. This framework espouses the use of mechanistic simulation models 

to overcome some of the scale-issues highlighted. The chapter concludes with examples 

of past applications of simulation models in aphid modelling studies. 

 

Chapter 4 outlines the selection process of S. avenae, as well as the biological data 

utilised in the formulation of the developmental core of SAV4. The ultimate climate 

projection data to be used in the final model runs are summarised briefly. The life cycle 

history of S. avenae is described, as well as the data derived from Rothamsted Research 

to describe the daily catches of S. avenae in SAV4. 

 

Chapter 5 provides an overview of the evidence linking temperature and insect 

development. A number of nonlinear functions are put forward as potential models to 

describe the development in S. avenae in response to temperature. A criteria-based 

approach is outlined and applied in order to select the ‘best’ nonlinear function to utilise 

as the core developmental model in the final simulation model, SAV4. The Lactin 

model is selected and parameterised using the biological data available for S. avenae. 

 

Chapter 6 describes SAV4 in detail. Each of the submodels comprising the simulation 

model are outlined, as well as the assumptions inherent to each. 

 

Chapter 7 describes the validation procedure and sensitivity analysis for SAV4. The 

model is compared against observations from the UK, as well as with previous S. 

avenae models in order to justify that it is ‘fit-for-purpose’. 

 

Chapter 8 presents the results from the analysis. Changes in modelled aphid metrics in 

response to temperature projections are displayed for three future time periods (2020s, 

2050s and 2080s) across eleven synoptic stations around Ireland.  

 

Chapter 9 is comprised of the discussion and conclusions for this work. The results are 

analysed and their meaning distilled in the context of Irish agriculture. 

Recommendations are put forward regarding the most efficient way to utilise the 

knowledge aggregated in this work. 
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1.12 Conclusions 

Agricultural practices that incorporate high levels of input and monocultures favour the 

proliferation of pest populations, and these types of systems are common in Ireland. 

Agriculture has been highlighted as a sensitive sector to changes in climate, and impacts 

realised as a result of climate change have the potential to range from extremely 

negative to positive, depending on whether the region of interest is water-limited or 

temperature-limited (Fuhrer, 2006). Potential outcomes are further complicated by the 

simultaneous climate-impact on the population dynamics of corollary pest species and 

their activities within cultivated crops. Previous climate impact studies have failed to 

consider the modifying effects of pests in the ecosystem of interest, and as a result have 

potentially underestimated likely future agricultural losses in response to climate 

change. Increased consideration of pest dynamics in crop models would facilitate the 

production of more realistic yield scenarios, which in turn would aid in the formulation 

of more robust climate adaptation policies for the agricultural sector. The next chapter 

will provide a general overview of reported impacts of climate on crops and pests at 

present. Literature corroborating the modifying effect of climate on pest-mediated crop 

yields will be highlighted as evidence for the hypothesis that Ireland too will experience 

climate-driven impacts. Projected future changes in climate will be outlined, as well as 

how these projections have thus far been utilised in climate impact studies pertaining to 

agricultural production. 
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CHAPTER 2  

CLIMATE CHANGE AND PEST-MEDIATED CROP 

PRODUCTION 

 

2.1 Introduction 

Numerous studies have addressed the potential repercussions of changes in temperature 

and precipitation for agroecosystems (e.g. Fuhrer, 2003; Rosenzweig and Parry, 1994; 

Tubiello et al., 2007) and crop yields (e.g. Long et al., 2006; Schimel, 2006). However, 

virtually all of this work failed to factor potential pest and disease impacts into the 

equation in any meaningful way. Their exclusion from many studies has facilitated the 

production of highly variable results, ranging from positive temperature (Nicholls, 

1997) and CO2 effects (Goudriaan and Zadoks, 1995), to negative temperature-induced 

impacts (You et al., 2009). Due to the inherent relationship between insect herbivores 

and their autotrophic hosts, any climate effect on crops will inevitably have 

consequences for the former, and vice versa. Consequently, this area has been 

highlighted as constituting a ‘knowledge gap’ regarding ‘the combined effects of 

elevated CO2 and climate change on pests’ (Easterling et al., 2007:285). This chapter 

will assess the impacts of climate change on pest mediated crop production in two parts: 

(i) current observations and (ii) future projections. Firstly, a review of the current 

observational trends reported in climate will be provided and evidence highlighting the 

impacts of current climate trends on both crop and pest physiology will be reviewed. 

Secondly, global climate projections will be described for key climate variables, and a 

number of modelling studies will be reviewed in order to provide a theoretical basis for 

how impacts may manifest in the future under further climate changes. The information 

reviewed here will serve to guide the current work, by highlighting the climate variables 

which are currently driving the most change in pest dynamics (and by proxy crop yield), 

as well as how these variables have been employed in modelling studies thus far to 

inform risk assessments under future climate change. 
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2.2 Observed changes in climate 

Climate is generally described in terms of the key parameters including temperature, 

precipitation and wind over a predetermined period of time (Le Treut et al., 2007). Of 

these, changes in global temperature have been at the epicentre of climate change 

analysis, offering the strongest evidence in support of the theory of anthropogenic 

climate change. According to the IPCC (2013) each of the past three decades has been 

warmer than any of the preceding decades in the instrumental record (Figure 2.1). The 

linear trend in global averaged land and ocean surface temperature combined, indicates 

a warming of 0.85°C over the period 1880-2012, with the majority of this warming 

(0.72°C) occurring during the period 1951-2012. With the exception of 1998, ten of the 

warmest years on record since 1880 (when reliable records began), have been reported 

post-2000 (GISS, 2014). These temperature changes have also been noted in other 

components of the climate such as the lower/mid troposphere and oceanic bodies, where 

comparable temperature increases to the surface-temperature data were evidenced for 

the former and a general increasing trend for the latter (IPCC, 2013). Extreme 

temperature trends have also been identified, such as the tendency for hotter days/nights 

and heatwaves to become more common. Examples include the European heatwaves of 

2003, 2006, as well as the summer of 2010 in Russia; which resulted in widespread crop 

failure and forest fires (Barriopedro et al., 2011). Other trends identified include a 

decrease in the frequency of colder days, colder nights and frosts.  
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Figure 2.1 Observed global mean combined land and ocean surface temperature anomalies, from 
1850 to 2012 from three data sets. Top panel: annual mean values. Bottom panel: decadal mean 
values including the estimate of uncertainty for one dataset (black). Anomalies are relative to the 

mean of 1961−1990 (IPCC, 2013). 

 

Figure 2.2 illustrates global mean combined land and ocean surface temperature 

anomalies for the last four decades using the baseline 1951-1980 (Hansen et al., 2010). 

Interdecadal warming on average between each of these decades is 0.17°C relative to 

the baseline. Warming is predominantly more pronounced over terrestrial surfaces, 

owing to thermal inertia within oceanic bodies. The spatial disparity in the distribution 

of this warming is apparent, with the greatest warming occurring in the Northern 

hemisphere at high latitudes, as well as in areas which are remote from human influence 

(GISS, 2013). The increase in surface temperatures in the northern hemisphere has been 

accompanied by a reduction in Arctic sea ice extent, ice sheet extent in Greenland and 

the Antarctic, as well as concomitant sea level rise (IPCC, 2013). Temporally, the 

greatest warming within the northern hemisphere is occurring during the spring and 

winter.  
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Figure 2.2 Decadal surface temperature anomalies relative to 1951-1980 base period. (Hansen et al., 
2010) 

 

The AR5 states that it is likely that anthropogenic influences have impacted the global 

water cycle since 1960. Increasing temperatures and the associated increase in 

atmospheric water vapour has led to changes in the global hydrological system, with 

altered precipitation patterns occurring over land areas, with increased precipitation 

events over areas where data is sufficient (IPCC, 2013). Precipitation varies 

considerably over both time and space, translating to instances illustrating both 

extremes of the water availability spectrum with increased frequencies of droughts and 

extreme precipitation events being reported globally. In a warming climate, atmospheric 

moisture is expected to increase (Trenberth, 2011) resulting in a 7% change in moisture 

holding capacity for every 1°C increase (Hartmann et al., 2013). Consistent with this 

finding, the IPCC stated that is was likely that there are ‘more land regions where the 

number of heavy precipitation events has increased than where it has decreased’ (IPCC, 

2013:5). Interestingly, increased observations of heavy precipitation events and flooding 

have not only been recorded for regions where total precipitation has increased, but also 

for areas where a decrease in rainfall has occurred (Trenberth et al, 2007). Trends 

reported in the AR4 (IPCC, 2007) have been recently updated with the publication of 

AR5 (Hartmann et al., 2013) indicating that increases in globally averaged precipitation 
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are more uncertain than previously thought. The statistical spread of the exhibited 

increases reported in AR5 has indicated low confidence in the findings, generally as a 

result of poor data coverage. Precipitation has been reported to be increasing in tropical 

areas (30°S-30°N), serving to reverse the drying trend reported for tropical areas in the 

AR4. Within the mid-latitudes, statistically significant increases are predominant from 

1901-2008. General global precipitation trends indicate a likely increase in precipitation 

when it is averaged over the land areas of the northern hemisphere. These increases are 

reported with medium confidence since 1901, but with high confidence after 1951 

(Hartmann et al., 2013). Trend analysis from other zones however has yielded low 

confidence in the characterisation of long-term precipitation trends. According to the 

Global Precipitation Climatology Project (GPCP), the quantifiable changes in 

precipitation amounts are negligible on a global scale, however the variability 

associated with these receipts are high (Gu et al., 2007).  

 

2.3 European trends 

Temperature increases recorded for the twentieth century in the northern hemisphere 

suggest that the 30 year period from 1983-2012 was likely the warmest in the previous 

1400 years (IPCC, 2013). The warming trend in Europe has been shown to be 

increasing relative to trends from the early twentieth century (Alcamo et al., 2007). 

Within the last decade, Europe has experienced record-breaking summer temperatures; 

the most publicised of which were the summers of 2003 (Beniston and Diaz, 2004) and 

2010 (Barriopedro et al., 2011). The former extreme temperature event reportedly 

contributed to the deaths of 70,000 people (Elguindi et al., 2012), mostly within 

Western Europe, while the latter recorded crop failures of ~25% in Russia. Increases in 

seasonal temperatures are not confined only to the summer months, with the autumn 

and winter seasons of 2006 exhibiting the warmest records in 500 years (Elguindi et al., 

2012). In relation to precipitation, the aforementioned increase in atmospheric water 

vapour as a consequence of warming has resulted in higher mean precipitation over 

Northern Europe (IPCC, 2014a), with likely increases in heavy precipitation events 

reported for more regions than decreases. 
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2.4 Effects of climate on plants 

2.4.1 Temperature 

Climate and agriculture have an intricate relationship; which is constantly subject to 

change (Müller, 2011). Direct effects at the plant level can be induced by temperature 

changes and the reciprocal responses can vary throughout different times of the year 

(depending on whether the plant is under heat stress or water-stress at the time). 

Temperature is an extremely important agri-climatic factor which can have profound 

effects on crop yields. Warmer temperatures experienced during hotter parts of the year 

can induce heat stress in plants eliciting features such as wilting, burning and 

abscission, while conversely during colder seasons, an increase in temperature can 

relieve stress (Garrett et al., 2006).  

 

Numerous studies have looked at the effects of increased temperature on crop yields 

through both direct (Peng et al., 2004; You et al., 2009) and indirect methods (Kalra et 

al., 2008). Using climate and crop data from 1979-2000 for 22 wheat producing regions 

in China, You et al. (2009) reported reductions in wheat yields of 3-10% for every 1ºC 

increase during the growing season in China. This trend was reinforced by another 

study in the Philippines where climate and rice yield data were analysed between 1979 

and 2003 (Peng et al., 2004). This work reported a reduction in rice yields of 10% for 

every 1ºC minimum temperature increment experienced. Increases in temperature have 

also been accredited with altering the phenology of crop stages to varying degrees by 

facilitating modifications in the rate of change from one ontogenetic stage to the next. 

Menzel et al. (2006:1974) analysed a dataset comprised of more than 100,000 

phenological time series (predominantly plant species) and found that the ‘temperature 

response of spring phenology was unquestionable’.  

 

Crops have also been shown to be differentially affected by temperature increases 

depending on their current growth stage, resulting in offsets in productivity (both 

positive and negative) between different crop species. Wang et al. (2008) illustrated 

how increases in minimum temperatures positively impacted the vegetative growth 

stage in both cotton and winter wheat in China, while warmer temperatures towards the 

later developmental stages produced reductions in wheat yield and increases in cotton. 

This suggests that the impacts of climate change on field crops could be highly 
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dependent on the species, as well as the developmental stage of the crop species under 

study. This is especially the case when key phenological stages in crop development or 

Thermo-Sensitive Periods (TSP) are considered in relation to temperature extremes 

(Duncan et al., 2014).  

 

In cereals, these stages include anthesis and grain-filling periods, which can be highly 

sensitive to temperature extremes. At present, the occurrence of TSP’s correspond with 

the timing of the maximum temperature annually across the world’s major wheat-

growing areas (Duncan et al., 2014). This suggests that any potential increases in 

average maximum temperatures during this time period could have the potential to put 

these food crops under heat stress (Teixeira et al., 2013).  Extreme events (including 

temperature and precipitation extremes) can be extremely injurious to agricultural crops 

by putting extra stress on systems that may have already reached their climate-mediated 

limits. Drought events have been shown to have significant impacts on plant 

physiology, by inhibiting leaf growth and inducing stomatal (pores on a leaf surface 

facilitating the movement of gases into and out of the leaf) closure (Chaves et al., 

2003). Conversely, extreme precipitation events can have significant impacts on crop 

productivity as a result of water logging in-field and reduced trafficability. This can 

considerably reduce crop yields by inhibiting the application of fungicides/insecticides 

as well as impeding the ‘lifting’ or harvesting of mature crops. Changes in crop 

resistance have also been reported in response to extreme events. In barley, a reduction 

in resistance to mildew has been documented in response to the restoration of water 

supply following water stress (Newton and Young, 1996). The expression of a 

particular gene (‘mlo’ which conveys mildew resistance) was shown to be interrupted as 

a result of rapid expansion of cells in response to water stress alleviation. 

 

The potential for other direct physiological changes within plants due to changes in 

temperature have also been documented, including the alteration of plant volatile 

organic compounds (VOCs). VOCs are informative compounds released by plants 

which serve to facilitate numerous ecological interactions, including pollinator 

attraction, plant-plant communication, plant-pathogen interaction, reactive oxygen 

species removal, thermotolerance and other environmental reactions (Yuan, 2009). The 

emission rates of plant VOCs depend on temperature (Niinemets, 2004), so 
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consequently have the potential to indirectly impact the development and survival of 

plant species via the alteration of the interactions described above. 

 

2.4.2 CO2  concentrations 

To date, numerous studies assessing the effects of changing CO2 concentrations ([CO2]) 

on host plants have been performed. Physiological effects suggested as a result of 

increases in this variable have included lower total plant nitrogen and as a result, higher 

C:N plant ratios (e.g. Coviella and Trumble, 1999; Hughes and Bazzazz, 2001; Hunter, 

2001; Zvereva and Kozlov, 2006), as well as augmentation of plant biomass. The effect 

of increasing atmospheric CO2 on agricultural crops is one of the few areas that has been 

extensively explored (Hughes and Bazzaz, 2001; Fuhrer, 2003; Newman et al., 2003; 

Zvereva and Kozlov, 2006). Increases in atmospheric [CO2] have been shown to alter 

plant phenotypes due to increased photosynthesis and accumulation of biomass as a 

result of changes in plant metabolism. This fertilisation effect has garnered a lot of 

attention, with findings suggesting photosynthetic increases of 30-50% in C3 plant 

species (Tubiello et al., 2007). In an agricultural context, crop yields have been shown 

to increase at 550 ppm [CO2] by approximately 10-20% for C3 plants and 0-10% for C4 

species, owing to differences in their respective photosynthetic pathways.  

 

Various authors have expressed doubt regarding the aforementioned results and have 

suggested that increases in photosynthetic rates and biomass production due to CO2 

increases have been grossly overestimated (Long et al., 2005, Leakey et al., 2009). 

Long et al. (2005) purported that yield increases reported from numerous enclosure 

studies (controlled environment chambers or field enclosures) were much higher than 

those reported from Free Air Concentration Enrichment (FACE) studies (by almost 

50%). FACE studies release CO2 upwind of the crop surface which is monitored and 

controlled by a ‘fast-feedback’ computer. [CO2] are maintained within the plot to within 

±10% of the specified level for ~90% of the time. This type of experimental design is 

intended to simulate realistic growing conditions under increased atmospheric [CO2] in 

order to test whether closed chamber results can be replicated under ‘in-field’ 

conditions. Long et al. (2005, 2006) suggest multiple confounding factors within the 

system which could be responsible for yield discrepancies between field and chamber 

studies. The effects of growing test plants within pots (a widely utilised practice in open 
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top chamber (OTC) experiments) has been shown to induce a ‘barrier’ response of plant 

roots resulting in a loss of response to [CO2]. Temperature offsets have also been noted 

between OTC experiments and outside conditions which could potentially alter results. 

These complexities highlight the need for further research in order to remove such 

experimental bias and draw meaningful conclusions with regards to CO2 effects on 

plant productivity.  

 

Germplasm studies in chamber experiments have indicated that the yield increases 

theorised are in fact possible, if the factors impeding the realisation of these yields can 

be identified and overcome (Leaky et al., 2009).  Suggestions have been made that 

physiological crop responses observed under experimental conditions at plot or field 

level are far too simplified to infer any concrete effects and it is imperative that this be 

considered when attempting to draw conclusions regarding the future of crop response 

to climate change (Tubiello et al., 2007). While chamber studies have facilitated a 

general understanding of many of the mechanisms that take place under elevated [CO2], 

less limited and more realistic experiments such as FACE offers improved conditions 

under which to fully test theories of physiological effects of increasing atmospheric 

[CO2] on plant systems. Increases in atmospheric [CO2] and documented concurrent 

photosynthetic increases have also been purported to be responsible for higher 

carbohydrate levels (Long et al., 2004), enhanced leaf area and thickness, as well as 

increased diameter of stems and branches (Garrett et al., 2006). Decreases in plant 

stomatal conductance as a result of increases in [CO2] with concomitant water use 

efficiency and higher soil water availability are other widely accepted experimental 

results, although the causal mechanisms behind such established phenomena has yet to 

be elucidated (Garrett et al., 2006; Leakey et al., 2009; Long et al., 2006). Reduced 

evapotranspiration (ET) and decreased water use by plant species is particularly 

interesting in the case of agricultural production, as it could provide an offset against  

some of the potential negative impacts on crop yields reported under future elevated 

[CO2] (Conley et al., 2001; Drake & Gonzàlez-Meler, 1997; Leakey et al., 2009). 

 

Despite the variability of these findings, the observed changes thus far indicate negative 

impacts, with global yield losses of 3.8% and 5.5% recorded in maize and wheat 

respectively since the 1980s in response to changes that have occurred in the climate 

system over this period (Lobell et al., 2011). Reports on other crops such as soybeans 
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and rice displayed fairly stable yield outputs once the consideration of net losses and 

gains (in response to technological innovation and CO2 fertilisation) were taken into 

account.  

 

2.5 Effects of climate change on insect pests 

2.5.1 Temperature and CO2 

In conjunction with the direct impacts of increasing CO2 and temperature on host plants, 

the potential for agricultural pests to experience concurrent changes in development and 

phenology has been widely reported. According to Sala et al. (2000), climate change is 

expected to be the second most significant driver of biodiversity change after land use 

change. Current climate models suggest that the greatest warming is projected for the 

northern hemisphere, including the Arctic and Boreal regions, where many arthropods 

ranges are thermally restricted (Hodkinson, 1999; Meehl et al., 2007; Sala et al., 2000). 

Although the most significant thermal changes have been projected for these regions, 

the potential for changes to invertebrate dynamics will also be realised for temperate 

zones. A growing body of work pertaining to the effects of climate variables on 

invertebrates has facilitated the formulation of some general statements regarding the 

potential future fate of agricultural pest species. As with crop response, much of the 

research to date has involved the manipulation of single variables or parameters 

(primarily temperature), owing to the complexity encountered when the impacts of 

multiple drivers and their interactions need to be accounted for. 

 

The literature to date has predominantly concluded that insect pests will become more 

abundant with climate change through a number of processes mediated by changes in 

temperature, CO2 and precipitation. In temperate zones, the distribution and survival of 

many invertebrates are restricted by low temperatures, particularly during the winter 

seasons (Bale et al., 2002; Cammell and Knight, 1992) and the majority of development 

occurs during the summer season. This is due to the fact that insects are poikilothermic, 

facilitating a strong temperature-response. Poikilothermy is the state of exhibiting a 

variable internal temperature that generally fluctuates with that of the environment (as 

opposed to homeothermy in which organisms regulate their own internal temperature). 

As a result, warmer projected temperatures may allow for alterations to invertebrate 
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dynamics when temperature is considered in isolation of other variables. Alterations 

may include range expansion of particular pest species into areas as they become 

suitably warm, changes in phenology in response to elevated temperatures or an 

increase in abundance of existing pests as the duration of developmental stages 

shortens, allowing for the production of additional generations (Cammel and Knight, 

1992). Akin to crop research, temperature and CO2 have been the most studied abiotic 

drivers of biological change in invertebrates (e.g. Cammell and Knight, 1992; Cannon, 

1998; Bale et al., 2002; Newman, 2005 and Menéndez, 2007), although precipitation 

has also been shown to affect invertebrate population dynamics by acting as a mortality 

factor through drowning (Talekar and Shelton, 1993) and as a flight-inhibitor in aphid 

species (Harrington et al., 2007). 

 

Not surprisingly, aphids have emerged as one of the best studied groups in relation to 

environmental change owing to their importance as agricultural pests. There are more 

than 4000 known species of aphids and of these, 250 are known to feed on agricultural 

crops (Harrington et al., 2007). Many experiments have examined the impacts of 

changing CO2 levels on the population dynamics of aphid species heralding a range of 

responses alternating between population increase, decrease and no change. Bezemer et 

al. (1999) found that experimental outcomes changed depending on the aphid/host plant 

combination chosen, as well as the duration of the experiment. This led to the 

conclusion that population responses could not be generalised in response to elevated 

[CO2]. This conclusion has been reiterated in the literature by Hughes and Bazzazz 

(2001) for the aphididae, as well as for a wider subsample of invertebrates (Bezemer 

and Jones, 1998; Coviella and Trumble, 1998). Newman et al. (2003) attempted to 

qualify the ‘generality’ of aphid response by suggesting a method by which the highly 

variable responses might be explained. They rationalised the array of results by 

attributing density dependence and species-specific nitrogen requirements to the 

inconsistent responses. Their findings suggested that those species that exhibit lower 

nitrogen requirements coupled with insensitivity to population density would be 

positively affected (ie. increase) by elevated [CO2]. However, by their own admission, 

the identification of these two variables is not practically useful, owing to the lack of 

understanding/data relating to aphid nitrogen requirements and density dependence. In 

essence, the variation of host-herbivore responses to changes in [CO2] may be 

attributable to a whole host of factors, not least of which includes the variability of 
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responses within the host plant, or within the herbivore group, or potentially a mixture 

of the two. 

 

The ability of insect pests to complete their lifecycle and reproduce depends not only on 

the environmental conditions experienced, but also their interaction with their host 

plant. Temperature, as a measure of available thermal energy, is an extremely important 

climatic factor affecting insect development. However, the examination of a single 

variable in isolation fails to account for the potential combined effects of other factors 

on host-herbivore interactions. Zvereva and Kozlov (2006) recognised the importance 

of this, and investigated the effects of CO2 and temperature (both individually and in 

concert) on plant-herbivore interactions. A meta-analysis of published results were 

assessed in order to discern potential generalities in the interactions between plant hosts 

and their associated herbivores under simultaneous elevation of temperature and [CO2]. 

Responses found under elevated [CO2] at ambient temperatures mirrored the 

conclusions represented in much of the literature (e.g. Bezemer and Jones, 1998; 

Coviella and Trumble, 1998; Hunter, 2001) indicating reduced herbivore fitness and 

increased herbivory. In contrast, herbivore performance has been shown to significantly 

improve under elevated temperature in isolation of other variables (at temperatures 

below lethal limits), a response which is also widely accepted in the literature (Bale et 

al., 2002; Cannon, 1998). Zvereva and Kozlov (2006) suggest that the potential 

negative effects of elevated [CO2] on insect herbivore performance could be offset, by 

the benefits of increasing temperatures. The variation in invertebrate response between 

different herbivore feeding guilds (Bezemer and Jones, 1998) in response to 

simultaneous elevation of [CO2] and temperature further emphasises the potential risk 

posed to agri-sectors under a changing climate.  

 

2.5.2 Diapause 

Diapause (an insect’s physiological dormancy mechanism) may also be impacted in as a 

result of climate change (Bale and Hayward, 2010). In temperate countries, diapause is 

required for many insects to survive the winter. In most diapausing species, a 

developmental stage sensitive to day-length cues initiates the diapause response; 

however diapause incidence has been shown to decrease under warm conditions as a 

result of faster development rates (i.e. fewer diapause inducing cues are experienced 
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during the sensitive stage). Some species are capable of averting diapause under the 

photoperiodic cue if temperatures remain suitable for development. This can have 

negative effects for species if temperatures do not allow for an entire generation to 

develop until the next sensitive stage is reached, resulting in increased risk of mortality 

(Bale and Hayward, 2010). The disturbance of diapause has the potential to negatively 

affect pest species, which may be of benefit to the agricultural sector. In the absence of 

diverted diapause, warmer autumn and winter temperatures could negatively impact 

insect pest survival, through attenuation of their cold stress tolerance in response to 

warmer autumnal and winter temperatures (Tomčala et al., 2006). These alterations to 

pest overwintering capacities have the potential to modify the interactive properties of 

pest population dynamics discussed previously.  

 

2.5.3 Range Expansion 

Numerous authors have suggested that changes in arthropod pest dynamics are already 

occurring as a consequence of recent changes in climate (e.g. Bebber et al., 2013; 

Hickling et al., 2006; Menéndez, 2007; Purse et al., 2006; Thomas et al., 2001) and one 

of the most frequently documented biological responses to climate change is geographic 

range shifts (Parmesan and Yohe, 2003). Evidence corroborating arthropod dependence 

on climate (and in particular temperature) and their associated distributional shifts 

abound within the scientific literature (e.g. Hickling et al., 2006; Hill et al., 2002; 

Parmesan et al., 1999; Parmesan and Yohe, 2003), particularly in the case of the 

Lepidoptera. Latitudinal shifts in distribution can have particular significance in limiting 

agricultural production; as pest organisms can act as both disease vectors and direct 

herbivores within the system. Examples of range expansion in agricultural pests are not 

well documented however, with two exceptions: the first of which is of the bluetongue 

virus (BTV) vector Culicoides imicola (Purse et al., 2006). BTV is a disease of 

ruminants, including (but not limited to) cattle and sheep. Prior to 1998 the disease was 

thought to be restricted by the northern range of its main vector C. imicola (north 

Africa). Following 1998 however, this biting midge was found to be vectoring BTV in 

locations further north of its original range and a growing body of evidence exists 

linking the expansion of this species to increasing European temperatures (e.g. Purse et 

al., 2006; Tatem et al., 2003; Wilson and Mellor, 2008). The occurrence of this range 

expansion and associated BTV epidemic is complicated even further, by the apparent 
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involvement of native European midge vectors, belonging to the obseletus and pulicaris 

groups. These novel midge vectors have been implicated in the 2006 Northern European 

outbreak (Wilson and Mellor, 2008) in the absence of the primary vector, C. imicola. 

Reports have further suggested that the Culicoides midges vector disease much more 

efficiently under higher temperatures (Gale et al., 2009) which can have significant 

effects for disease epidemiology. This example is particularly suitable for highlighting 

the layers of complexity implicit to effects of environmental change. The impacts of a 

response to climate change can be conveyed through hierarchal and parallel trophic 

levels depending on the level of interaction that exists between species.  

 

The second example of pest range expansion is derived from a large scale study 

analysing the movement of 612 pests and pathogens spanning multiple taxonomic 

groups since 1960 (Bebber et al., 2013). This study reported an average poleward 

expansion of 2.7±0.8 km per year (with variability between groups).  Despite the 

general paucity of case studies illustrating range expansion of agricultural pests, the 

limited evidence outlined here, taken into account with the changing distribution of 

other insect species, is indicative of a general trend towards higher latitudes in response 

to warmer temperatures. The purposeful distribution of high-yielding economically 

desired plants and animals on a global scale has also served to facilitate the 

displacement of non-indigenous species, further complicating the establishment of 

invasive agricultural pests in new geographic areas. While the mode of establishment 

may vary (between climate-induced range expansion and via global trade-routes), 

further spread and biological success are largely climate-mediated (Ziska et al., 2010). 

 

2.5.4 Phenological changes  

It has been reported that changes in phenology are already occurring and this 

phenomenon is one of the best documented responses of organisms to recent climate 

change (e.g. Both et al., 2008; Harrington et al., 2007; Menzel et al., 2006; Parmesan, 

2006; Parmesan, 2007; Visser and Both, 2005). Phenological changes in the context of 

pests comprise of temporal changes in the emergence of species and flight periods, 

potentially resulting in an increased risk to host plants/crops from direct herbivory or 

disease transmission. Temperature increases permit invertebrates to pass through their 

larval stages at a faster rate and as a result, become adults earlier in the season. Menzel 
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et al. (2006) reported an average advance of spring/summer by 2.5 days per decade in 

Europe (1971-2000 period) and this has been supported by analogous pest studies 

illustrating earlier emergence as a result of milder winter temperatures (Harrington et 

al., 2001; Zhou et al., 1995). Low temperatures limit insect physiological processes 

such as larval development and generation time in temperate regions. As a result, 

increases in temperature could be expected to accelerate development (assuming an 

upper limit is not breached) resulting in shorter development time, increased 

generations, reduced mortality from abiotic factors as well as longer flight periods for 

migrating insects (Harrington et al., 2001; Menéndez, 2007).  

 

Both Walters and Dewar (1986) and Zhou et al. (1995) found that winter temperature is 

an extremely important factor in regulating aphid migration phenology. Walters and 

Dewar (1986) highlighted the latitudinal response of aphids to January/February 

temperatures in Britain, with S. avenae’s spring migration occurring earlier in response 

to mild winter temperatures in southern Britain. This relationship was attributed to their 

anholocyclic overwintering capacity, allowing them to respond instantaneously to 

temperatures once they became suitable for development and reproduction. Zhou et al. 

(1995) reported a migration advance of between 4 to 19 days (depending on the species) 

in response to a 1ºC increase in winter temperature (the study period ranged from 1964-

1991). Rainfall has also been shown to influence aphid dynamics, by negatively 

impacting aphid flight (Day et al., 2010; Harrington et al., 2007), which could have 

consequences for both the level of mechanical damage experienced, as well as virus 

incidence in crops (in the case of aphid vectors). Conversely, rainfall has also been 

shown to positively impact the level of BYDV in Western Australia (Knight and 

Thackray, 2007), by supporting the proliferation of alternate plant hosts on which 

aphids can multiply before colonising crop stands. In the absence of rainfall, aphids 

have no initial hosts in the period prior to crop planting, which results in much later 

arrival of aphid vectors to the crop and a reduced incidence of BYDV.  

 

Changes in phenology of both plant and pest species may result in a decoupling of 

synchrony between specific pests and their host plants. The extent to which these 

interaction mismatches will translate into altered risk of outbreaks will depend on the 

ability of the pest species in question to adapt to changes in its host plant and vice versa. 

Results in the literature have suggested that insects are capable of advancing their 
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phenology faster than their host plants (Menéndez, 2007) precipitating a misalignment 

of the relationship between pest species and their hosts. Numerous examples of these 

mismatches can be found in the literature (e.g. Both et al., 2009; Harrington et al., 1999; 

Visser and Both, 2005), highlighting instances of species emergence in the absence of 

its food source. This has been shown in some cases to result in reduced fitness and 

fecundity in insect pests which could prove to be highly beneficial for agri-production.  

 

2.5.5  Effects of climate change on trophic interactions 

Environmental changes associated with climate change can affect crops indirectly, by 

altering interactions with other species. This translates to a system wherein the effects of 

climate change on a plant community may be dependent on the presence or abundance 

of other species within the ecosystem and vice versa (such as an insect herbivore or 

pathogen). The modification of established interactions between pests and their hosts 

has the potential to significantly affect agricultural productivity both in Ireland and 

internationally. Decreases in plant Nitrogen (N) concentrations as a result of the CO2 

fertilisation effect has been demonstrated to affect herbivore feeding (to acquire 

adequate dietary N) and fecundity (Awmack and Leather, 2002) in both generalist and 

specialist arthropod species (Cannon, 1998). Significant increases in food consumption 

by crop pests in response to CO2-mediated plant quality changes (referred to as 

compensatory herbivory) have been recorded in conjunction with reduced growth 

rates/increased development rates in insect pests (Bezemer and Jones, 1998; Coviella 

and Trumble, 1999; Stiling and Cornelissen, 2007). This compensatory feeding has 

been shown to instigate the emission of Herbivore Induced Plant Volatiles (HIPV), that 

in turn could repel conspecific herbivores as well as attract natural enemies of the 

herbivore species (Holopainen, 2004). 

 

Compensatory herbivory in response to changing plant chemistry has been 

demonstrated to be highly specific for the species under study, as well as the insect-

plant system being analysed (Coviella and Trumble, 1998). This equates to a system 

where some feeding groups may perform better than others under similar degrees of 

change in the climate variable of interest. Phloem feeders have been shown to respond 

positively to increases in [CO2], with concomitant increases in abundance over multiple 

generations (Bezemer and Jones, 1998) as a consequence of a reduction in development 
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time. As a result, Bezemer and Jones (1998) purported that multi-voltine species such as 

the aphids may become more abundant in response to increasing atmospheric [CO2]. 

These findings do not take into account other documented responses to CO2 which 

could serve to modify the outcome, such as changes to the alarm pheromone response in 

aphids (Awmack et al., 1997). Awmack et al. (1997) reported that the potato aphid 

Aulacorthum solani exhibited an attenuated ability to perceive alarm pheromones 

produced by other aphids as a result of elevated [CO2].  This decrease in response has 

the potential to impact aphid populations by increasing their vulnerability to predators 

under increased atmospheric [CO2].  

 

The potential for adaptation within pest species populations in response to changes in 

climate is a further complicating factor in the context of interactive processes. If genetic 

variation exists within a population, then the potential for phenotype plasticity and even 

evolutionary processes is plausible. Adaptive responses such as phenotypic plasticity 

have been reported to be limited at longer time scales than just the life cycle of one 

plant (Jump and Peñuelas, 2005), however, plasticity is controlled by the genetics of the 

species, meaning that it (like any other trait) could come under selection pressure in the 

future. Responses such as these may also have significant repercussions for future food 

web dynamics. Just as the effects of climate variables are interactive, so too are the 

responses induced within different trophic levels in food webs (Harmon et al., 2009). 

Differing species sensitivity/tolerance levels to climate variables have the potential to 

alter the competitive balance between species within a food web. This alteration in turn 

could modify selection pressures within the system affecting evolutionary processes and 

potentially further alter interpopulation dynamics. Processes such as this are iterative 

and cumulative, altering the potential outcomes of species dynamics with each 

preceding change. Potential interactions such as these serve to highlight some of the 

additional complexities that are encountered when attempting to generalise potential 

future population dynamics of invertebrate pests.  
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2.6 Future climate projections 

The relationship between climate variables, pests and crops has been exposed as a 

highly complex dynamic, exhibiting a myriad of biological responses. While these 

responses appear to be highly variable, the potential for change in both host crops and 

their associated invertebrate pests and diseases is indisputable (Fuhrer, 2006). The 

current state of knowledge regarding the area of agricultural pests and climate change 

has been critically reviewed here. Consequently, it is reasonable to hypothesise that the 

reported effects of climate on crop pests could serve as an initial indication tool for the 

latent potential of ecological changes in the future under a changing climate. 

Considering the evidence for climate-mediated changes in pest dynamics outlined here, 

it is reasonable to assert that projected changes in key climate variables in the future 

could precipitate further changes similar to those described here. The next section will 

provide an outline of future climate projections for a range of spatial scales in an effort 

to summarise the extent of change expected throughout the next century.  

 

2.6.1 Global and European projections 

As a result of the implication of anthropogenic GHGs in the climate trends outlined 

here, it stands to reason that if GHG levels increase in line with any of the SRES 

projections, further changes in climatic variables will be experienced into the future 

(Table 2.1). Projections outlined here are based on an amalgam of hierarchical models 

including Atmosphere Ocean General Circulation Models (AOGCMs), Earth System 

Models of Intermediate Complexity (EMICs) and Simple Climate Models (SCMs), each 

with their own degree of complexity and process integration. Findings indicate that even 

if GHGs and aerosol concentrations were restricted to current levels; warming would 

continue nonetheless (albeit at a more ‘modest’ decadal rate of 0.1°C, as opposed to 

0.2°C) (IPCC, 2013). Generally, results from all of the ‘non-mitigated’ SRES model 

projections (B1, A1B and A2) is that of temperature-increase into the future. Early 21st 

century temperatures have been modelled using the aforementioned SRES driven 

models and have indicated that the magnitude of temperature response becomes more 

dependent on the scenario chosen once the middle of the century has been surpassed. 

Up until that point (2046-2065), the three scenarios mentioned produce close (ranges of 

0.05°C ) model averages of surface air temperature (Meehl et al., 2007). Only after this 
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point, do the model ranges begin to diverge. The spatial and temporal patterns of 

warming on a global level are illustrated in Figure 2.3. 

 

 
 

Case 

 
Temperature change 

(˚C at 2090-2099 relative to 1980-1999) 
Best estimate                         Likely range 

Constant Year 2000 
concentration 

(derived fromAOGCMs only) 

 
0.6 

 
0.3-0.9 

B1 scenario 1.8 1.1-2.9 

A1T scenario 2.4 1.4-3.8 

B2 scenario 2.4 1.4-3.8 

A1B 2.8 1.7-4.4 

A2 3.4 2.0-5.4 

A1FI 4 2.4-6.4 

Table 2.1 Projected global average surface warming at the end of the 21st century (These estimates 
are assessed from a hierarchy of models that encompass a simple climate model, severaL ESMICS 

and a large number of AOGCMs (IPCC, 2007). 

 

 

 

Figure 2.3 Multi-model mean of annual mean surface warming (surface air temperature change, 
°C) for the scenarios B1 (top), A1B (middle) and A2 (bottom), and three time periods, 2011 to 2030 
(left), 2046 to 2065 (middle) and 2080 to 2099 (right). Anomalies are relative to the average of the 

period 1980-1999 (Meehl et al., 2007). 
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Globally, a general decrease in cold episodes and frost days are projected along with 

concurrent increases in daily temperatures (owing predominantly to increases in the 

minimum daily temperature) (IPCC, 2013). Extreme hot events are also expected in 

increase in both frequency and intensity (Christensen et al., 2007). Intensification of the 

global hydrological cycle is set to increase mean precipitation at high latitudes, while 

the opposite is the case for the subtropics/mid latitude regions. Overall, global mean 

precipitation is expected to increase; however, even in areas where rain receipt is 

projected to decrease, the overall intensity is expected to increase with longer interims 

between events. Generally, reported confidence in long term temperature simulations is 

higher than for precipitation, which is ‘hampered by observational uncertainties’ (IPCC, 

2013:15). Figure 2.4 illustrates this uncertainty, displaying model outputs from a 

number of different GCMs and scenario combinations for Northern Europe, which 

differ not only in magnitude, but also in directionality. This is in contrast to 

temperature, which consistently displays a trend of increase across all models. The use 

of multiple GCMs serves to highlight the uncertainty associated with the individual 

models themselves, as well as emissions scenarios utilised. The deviation from the use 

of a single GCM is extremely important in the context of uncertainty reduction in 

climate impact studies, as different models, or emissions scenarios can produce highly 

significant differences in climate projections (Figure 2.4). This practice also serves to 

highlight agreement amongst models, as is the case for temperature here.  
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Figure 2.4 Temperature and precipitation projections from a range of GCMs and scenario 
combination for summer in Northern Europe (Carter and Fronzek, 2008). 

 

While AOGCMs are appropriate for simulations on a global scale, they are limited in 

their application at finer resolution, as they are not capable of providing projected data 

at smaller scales than their computational grid size (~200km). This is due to the fact that 

important processes taking place at a sub-grid scale are not accounted for by these large 

scale models, which could tend to oversimplify an otherwise complex and varied system 

(eg. local orography).  As a result, dynamical models, which are adjusted to run at finer 

scales, along with empirical statistical downscaling (SD) are used to resolve this issue 

of scale and ‘bridge the gap’ in order to facilitate the production of regional projections. 

These types of approaches have been fundamental to the formulation of climate 

projections on a European and national scale (Christensen and Christensen, 2007; 

Christensen et al., 2007; Fealy and Sweeney, 2008; Seneviratne et al., 2006) such as 

those outlined here. Christensen et al. (2007) state that mean European temperatures 

will increase to a greater extent than the global average. In Europe, research suggests 

that anthropogenic influences have more than doubled the probability of another very 

hot European summer like that of 2003 (Hegerl et al, 2007). Spatially, future 

temperature increases in Northern Europe are likely to be greater during the winter, 
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while southern Europe will experience the greatest warming during the summer. 

Similarly, increases in precipitation across northern Europe during the winter are 

expected, while decreases are projected to become the norm in summer in Southern 

Europe (ENSEMBLES, 2009). 

 

2.6.2 Future projected impacts 

2.6.2.1 Crop projections 

Climate projections such as those described above have found widespread application in 

the area of climate risk and adaptation studies. Despite the uncertainty associated with 

the application of certain climate variables (e.g. precipitation), the use of GCM 

projections as drivers for impact studies remains the most widely used tool to support 

long-term risk assessments in relation to climate change. The application of climate 

projections such as these to impact studies has facilitated the formulation of potential 

trajectories in future crop yields and their corollary insect pest dynamics, based on 

previously described relationships. This section will outline a number of examples of 

these applications, in order to draw conclusions regarding current assessments of 

projected impacts of climate change on pest-mediated crop production.  

 

Teixeira et al. (2013) applied GCM projections using the A1B scenario to global 

agroecological zones in order to assess heat stress in four major crops (maize, wheat, 

rice and soybean). Their findings suggested that global food supplies will be affected by 

heat-stress in both subtropical and temperate regions towards the end of this century 

(2071 onwards). European agroclimatic zones have also been highlighted as generally 

‘deteriorating’ in response to future climate projections spanning three GCMs (Trnka et 

al., 2011), as a result of increasing drought conditions and reduction in growing season 

length owing to heat stress. Pertinently, the agroclimatic zone to which Ireland and the 

UK belong (Atlantic Central zone) performed variably across the agricultural indices 

used in the study. For example, the ‘Frost free period’ and ‘suitability for sowing’ 

indices improved for this zone, while the ‘number of days with water deficits’ index 

displayed an increase for this region. Rosenzweig et al. (2014) utilised a range of crop 

models, along with five GCMs/RCP combinations in an effort to account for uncertainty 

by removing over-reliance on just one model output. Output from this study suggested 
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strong multimodel agreement towards negative effects of climate change. Even this 

study however, one of the most comprehensive assessments of potential future impacts 

of climate change on crop production to date, omitted the effects of pests (although they 

explicitly state the importance of their inclusion in future work). Considering the 

agreement across the plethora of models used in the work of Rosenzweig et al. (2014) 

regarding the negative impacts projected, the importance of consideration of potential 

pest exacerbation is further  impressed. 

 

2.6.2.2 Pest projections 

Akin to what is proposed in this work, GCM climate projections have also been used to 

assess the risk of changes to insect species in response to changes in climate. Alterations 

to the voltinism (number of generations achieved) of 13 insect pest species in California 

was assessed using temperature data derived from three GCMs (Ziter et al., 2012). In 

this case, the actual GCM outputs were utilised to drive insect models, as opposed to 

Regional Climate Models (RCMs) or downscaled data (justified by the fact that data at 

specific local scales are rarely available for multiple GCMs). Their findings indicated 

that increases in the number of generations across all of the species analysed were 

likely, increasing pest risk for crop protection in the future. 

 

Harrington et al. (2007) utilised relationships derived between aphid flight times, 

climate and land-use variables, with output from just one GCM in conjunction with the 

A1FI scenario in order to provide a ‘worst case scenario’ assessment of phenological 

changes in European aphids in response to climate change. They reported both earlier 

adult emergence (by a mean of 8 days by 2057) as well as an advance in the arrival of 

migratory aphid species using data from the European suction trap network coordinated 

by the European Union-funded thematic network EXAMINE (EXAMINE, 2000). Data 

from 15 sites in 15 different countries were used and the average advance in aphid flight 

across all species and sites equated to 1 day advance every 6.25 years. In relation to 

abundance, Newman (2005) reported declines of 92% under the same GCM high 

emissions scenario for the 2080s in southern Britain for a generic group of ‘cereal 

aphids’ (predominantly due to changing temperature and precipitation). This highlights 

the potential for counterintuitive outcomes regarding aphid dynamics in the future, 
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wherein an earlier migration of aphids could lead to detrimental impacts in the 

population on a year to year basis.  

 

GCM projections have also found merit in inferring the potential space for range 

expansion/contraction of species in the future. Biogeographical range shifts were 

analysed for a number of important agricultural pests including two aphid species (S. 

avenae, Rhopalosiphum padi (bird-cherry oat aphid)) and the European corn borer 

(Ostrinia nubilalis) over the European domain using the climate output from a range of 

five GCMs for both the A1 and B2 SRES (Svobodová et al., 2014). For all of the 

species examined, the study depicted an expansion in the pest’s northern limits of 

occurrence to higher altitudes and latitudes, along with increased numbers of 

generations by the 2050s. Simultaneously, contractions were noted in both SRES 

scenarios utilised for southern portions of Europe as species upper temperature limits 

were presumably breached. 

 

2.7 Implications of international research for Ireland 

To date, research in Ireland regarding the potential impacts of climate change on pest-

mediated crop yields has been virtually non-existent. Limited modelling work akin to 

the studies outlined above have been implemented (excluding pest activity) for a small 

number of crops including barley, potatoes, maize and soybean (Holden and Brereton, 

2010; Holden et al., 2003). Of these investigations, both positive and negative impacts 

on yield were reported in the absence of consideration of pest effects, with temperature 

increases imparting a positive impact on the development of maize, while decreases in 

summer rainfall increase the potential for water stress. According to Holden et al. 

(2003) grain yield in Irish spring barley is projected to increase by 2050 as a result of 

climate change. These projected increases were primarily attributed to rainfall, 

suggesting that wetter sites will produce higher yields than drier sites in the future.  

However, the omission of the moderating effects of pests from the analysis could be 

obscuring the details of these results. In the case of maize, disregard for the potential 

impacts of pests such as the O. nubilalis, which is not currently a problem in Ireland 

(widespread in Europe, the U.S. and Asia) could alter future yield potential in Irish 

maize if it were inadvertently introduced (the larvae of which cost in excess of $1 

billion dollars annually in damage in the US). A warming temperature regime, in 



  

47 
 

conjunction with increasing host plant prevalence in the future, could allow for the 

expansion to and/or establishment of this pest in Ireland, potentially causing significant 

losses to Holden and Brereton’s (2003) projected yields.   

 

According to Holden et al. (2003), an increase in ‘chemical intervention’ will be 

necessitated in the future as pest and disease dynamics shift and change in response to 

environmental factors. However, aforementioned changes to European Union (EU) 

pesticide legislation which govern the way in which plant protection products are 

produced and licensed will mean that certain ‘active substances’ will be lost from the 

inventory of current chemicals in use. Simultaneously, the transposition of the 

Sustainable Use of pesticides Directive (SUD) into Irish law in 2012 (Directive 

2009/128/EC) now explicitly mandates the consideration of knowledge-based decision-

making regarding the application of chemical controls. These changes confound any 

statements regarding the use of chemical controls as a panacea to agricultural pest and 

disease activity under climate change. Furthermore, they serve to place the current work 

in context: the loss of certain pesticides from the current PPP inventory, places an onus 

on the development of knowledge-based approaches such as the work proposed here in 

order to ensure the sustainability of crop production under future climate change. The 

potential for inferences regarding the future status of pests in Ireland is facilitated by the 

international findings discussed here, which highlight the potential for negative impacts 

of pests in the future under a changing climate. For this reason, a climate impact study 

relating to Irish pests is merited, for the purpose of providing an assessment of future 

risk to the agricultural section. 

 

2.8  Conclusion 

The global agricultural community is facing challenges in the future and while 

temperate countries such as Ireland may not experience the extent of climate variations 

as other more vulnerable geographic locations, the evidence outlined in this chapter 

suggests that agricultural systems are sensitive to both direct and indirect (pest 

mediated) impacts of climate change. The question now remains, how can this area of 

research move forward? While this review highlighted the merits of utilising multiple 

climate variables when assessing climate-mediate impacts, the complexity of the system 

in question has resulted in the majority of research being carried out using only one 
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driving variable at a time, e.g. temperature or CO2. This type of approach is not wholly 

surprising, when the complex interactive nature of the system under study is considered, 

(along the concurrent methodological problems encountered as a result). Indeed, 

considering the dearth of research in this area in an Irish context, the employment of a 

single driving variable in this modelling work could serve to provide the ‘first steps’ 

towards providing an initial indication of risk for the Irish agricultural sector under 

climate change.  

 

Similar to the modelling examples highlighted above, the research proposed here 

requires climate input.  The data utilised tend to be modelled climate data for the region 

of interest, incorporating future time periods, typically covering a much larger spatial 

area than the region of interest. This scale is in contrast to the work proposed here, 

which is primarily concerned with the population dynamics of a pest that operates at 

field and plant-scale. These changes in scale are compounded further when one 

considers the range of temporal scales to be incorporated in the analysis. This mismatch 

of scale is addressed in the next chapter, and a modelling framework is proposed that 

takes cognisance of the complexities involved when scaling the impacts of climate 

change to a region of interest. A review of the use of simulation models within the area 

of aphid population ecology will also be broached, in order to serve as an appraisal of 

the level of detail generally employed within a simulation approach. Previous work 

describing the dynamics of S. avenae from different geographic locales will also be 

described in order to provide a baseline stucture against which SAV4 (developed as part 

of this research) can be compared. 
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CHAPTER 3  

MODELLING AND ISSUES OF SCALE 

 

‘all models are wrong, but some are useful’  

(Box and Draper, 1987:424) 

3.1 Introduction 

Explaining the processes which drive pest population dynamics though the use of 

models is one of the central tenets of pest management. As ecosystems and their 

composite parts adapt in response to anthropogenically-induced climate change, 

scientists are faced with the challenge of informing risk-assessments and ultimately 

reporting to policy makers as to the most appropriate adaptive measures to be taken to 

ensure future resilience. The need for sustainable solutions to environmental and 

ecological problems in response to climate change has prompted the development of 

various modelling techniques attempting to ‘predict’ the outcome of differing climate 

and/or management scenarios. The concept of ‘prediction’ is to be dealt with here in its 

most indeterminate form, as it is recognised that no model is capable of predicting the 

precise outcome of a variable of interest within a system. Nonetheless, models are 

particularly useful where long term field studies or laboratory experimentation are not 

feasible due to monetary constraints or other limiting factors. In cases such as these, 

representative models can aid in elucidating certain processes or dynamics within the 

system of interest, or identifying areas which require further research due to lack of data 

or general understanding.  

 

This chapter will outline some of the basic principles behind model construction, while 

also raising some important issues pertaining to scale in the area of pest modelling. 

Consideration is given to the potential impacts of using large scale climatic variables to 

drive models informed by small-scale ecological studies (Figure 3.1). The challenge of 

using such models based on short-term laboratory-derived data, to inform future 

dynamics at larger spatial or temporal scales will also be discussed. With these issues 

considered, the conceptual framework for this research will be outlined taking into 

account both ecological theory and data availability within the field. In cognisance of 
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the proposed framework, mechanistic simulation modelling will be identified as the 

most appropriate approach to modelling the population dynamics of S. avenae in a data-

sparse environment. Past applications of these types of models in the aphid-modelling 

area will be briefly reviewed in order to provide an indication of the extent to which 

these models have been utilised in this area to date. 

 

 

 

Figure 3.1 Schematic illustrating the directionality of scale changes in the current work 

 

3.2 What is a model? 

A model can be defined as any abstraction or simplification of a system. The system 

contained is a collection of two or more separable components, between which some 

interaction takes place. Modelling techniques vary in both the ecological and climate 

sciences from analytical and statistical models, to complex dynamic simulation models 

based on the modellers understanding of the system of interest. The latter is distinct 

from the former types, in that variables perceived to be the principle drivers of a cause-

and-effect relationship are built directly into a dynamic model (such as the model 

described later in this thesis). This is not the case with statistical models, wherein 

correlation does not necessarily imply causation; and the presence of a relationship does 

not implicitly identify the driver of that relationship. Regardless of the type of model 
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used however, it is imperative that the model is viewed only as a crude abstraction of 

the complexity of the system concerned. That is not to negate the utility of models in 

policy formulation and/or adaptation, but rather to act as a caveat against potential 

misuse of their output.  

 

The aspirations for any model should ideally fall between two opposing suppositions: 

firstly, the view that all models are useless, and secondly, the contrasting view which 

places unrealistic confidence in the information that the model is capable of providing. 

Whether a simple conceptual model or a more detailed reality-based approach is 

required, it is apposite to define specific criteria for assessing the most appropriate type 

of model for the task at hand. The trade-off between depth and breadth required for 

most models raises further questions regarding how best to assess a models ability to 

simulate the behaviour of the system of interest, which will be discussed later in this 

thesis. According to Holling (1964), there are essential trade-offs which must be made 

between three fundamental criteria: 

 

• Realism (simulating the behaviour of a system in a qualitatively realistic way) 

• Precision (simulating the behaviour of a system in a quantitatively precise way) 

• Generality (capable of representing numerous facets of  the systems behaviour 

with the same model) (Costanza et al.,1998a) 

 

In reality, it is not possible to maximise all three of these goals simultaneously, so the 

choice of which criteria are to be emphasised (and to what extent) is at the discretion of 

the researcher (based on the questions they are seeking to answer).  The decision to 

consider one or more of the above criteria in detail facilitates the use of models in three 

different ways: understanding, assessing and optimising (Costanza et al.,1998b). For 

example, a conceptual understanding of a system may be adequate for some purposes 

and provide an overall schematic of the coarse processes within a system. In a case such 

as this, precision is discounted in favour of a basic level of realism and generality. At 

higher levels, assumptions about the system of interest can be tested and conditions 

which lead to an optimum outcome can be assessed. Prefacing these decisions with a 

basic understanding of what a model is, as well as the corollary limitations it entails is 

crucial in the first steps towards using, designing or building a model. 



  

 

3.3 Basic model-building

Models are used incognisantly

models abstracting the world around them, to facilitate decision making processes 

ranging from how someone will react to bad news, to crossing the street. Mental models 

are informed by knowledge that a per

past experiences or observations. This knowledge is then applied under varying 

circumstances/conditions in order to produce an outcome or range of possible outcomes. 

These mental models enable a person to ide

cause and effect of a relationship within a system and react accordingly. This approach 

is not dissimilar to the premise and construction of more complex dynamic models of 

ecological and/or climate systems, the 

Figure 3.2. 

 

Figure 3

Akin to the mental model outlined above, the process of building a model to describe a 

system of interest can be broken down into four key stages:

 

• The conceptual stage

• The diagrammatic stage

• The equations stage

• The formalisation stage
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building 

Models are used incognisantly by people every day. Individuals construct mental 

models abstracting the world around them, to facilitate decision making processes 

ranging from how someone will react to bad news, to crossing the street. Mental models 

are informed by knowledge that a person has gained about the model

past experiences or observations. This knowledge is then applied under varying 

circumstances/conditions in order to produce an outcome or range of possible outcomes. 

These mental models enable a person to identify (or at the very least hypothesise) the 

cause and effect of a relationship within a system and react accordingly. This approach 

is not dissimilar to the premise and construction of more complex dynamic models of 

ecological and/or climate systems, the basic framework of which can be 

3.2 Framework for general procedures of model construction

 

Akin to the mental model outlined above, the process of building a model to describe a 

system of interest can be broken down into four key stages: 

The conceptual stage 

The diagrammatic stage 

ations stage 

The formalisation stage 

by people every day. Individuals construct mental 

models abstracting the world around them, to facilitate decision making processes 

ranging from how someone will react to bad news, to crossing the street. Mental models 

son has gained about the model-subject based on 

past experiences or observations. This knowledge is then applied under varying 

circumstances/conditions in order to produce an outcome or range of possible outcomes. 

ntify (or at the very least hypothesise) the 

cause and effect of a relationship within a system and react accordingly. This approach 

is not dissimilar to the premise and construction of more complex dynamic models of 

basic framework of which can be viewed in 

 

Framework for general procedures of model construction 

Akin to the mental model outlined above, the process of building a model to describe a 
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The conceptual stage is similar to the construction of the mental model, in that the main 

components of the system are identified, as well as the important regulating forces. As 

with the mental model, this stage is informed from past experiences and observations. In 

the context of this research, these ‘past experiences’ are comprised of the ‘state of 

knowledge’ described in the previous chapter. The second or diagrammatic stage allows 

for the formulation of diagrammatic representations of the system. This allows a more 

holistic understanding of the relationships of interest as well as the direction(s) in which 

the output is flowing. The equations stage involves the identification of mathematical 

and statistical approaches which describe the relationships within the system (visited in 

Chapter 5). Finally, formalisation entails the actual construction of the model (Chapter 

6). Each of these stages will be visited throughout the course of the current work, in 

order to produce the final model. 

 

3.4 The importance of scale 

Issues of scale pervade every area of ecological investigation and ‘compromise every 

form of ecological application’ (Wiens, 2001). The idea of scale has been pondered 

within the scientific community for some time (Allen and Starr, 1982), however 

recognition of its importance in ecological research has occurred only within the last 

three decades (Wiens, 2001). The advent of anthropogenic climate change has forced 

ecologists to reconsider the spatial boundaries of their research and to incorporate a 

more holistic understanding of field scale ecology within a landscape ecology 

framework. The landscape considered can vary from a hillside, to continental, to the 

global landscape, all of which are mediated by climate. This is equally the case for 

managed agricultural landscapes and the ecosystems contained within. Temporal scale 

is also a complicating factor in research such as this, as projections of future pests will 

be produced for time scales much longer than that of typical experimental studies. In 

environmental science and particularly in ecology, the processes studied occur at a 

variety of spatial and temporal scales over a heterogeneous landscape. The hierarchical 

nature of ecosystems incorporates numerous feedforward and feedback mechanisms 

between these scales, which complicates the simple extrapolation of findings (Bugmann 

et al., 2000).  
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Levin (1992:1943) stated that ‘there is no single natural scale at which ecological 

phenomena should be studied’ and that the observer creates a filter or lens, through 

which the system of interest is viewed. Levin’s (1992) opinion is mirrored in the case of 

this research, in that no single scale is adequate to capture the myriad of processes and 

responses entailed in both the agroecological and climate systems. Despite this 

actuality, the acceptance of the need for modelling across multiple scales involves a 

number of assumptions that must be made, as well as uncertainties which must be 

addressed in order to identify a level at which all the processes of interest are accounted 

for in the system being studied. This approach is ultimately justified when we consider 

that our ability to scale findings at smaller scales, will hinge on our understanding of the 

mechanisms which govern the patterns and processes that we are interested in.  

 

3.5 Issues of scale 

Models have permeated almost every facet of scientific research and have become 

extremely prominent within the pest management area of agricultural research 

(Goudriaan and Zadoks, 1995; Graux and Tubiello, 2010; Hansen, 2006; Yamamura et 

al., 2005; Zalom et al., 1983). The challenge of building ecologically realistic and 

scientifically valid models to adequately represent the population dynamics of 

agricultural pests has led international research to a wide range of modelling avenues 

including dynamic (Pinnschmidt and Batchelor, 1995), simulation (Carter, 1985), 

biophysical (Wagner et al., 1984) and empirical / statistical  (Brière et al., 1999; Lactin 

et al., 1995). The necessity for models which adequately address ‘real-world’ 

management problems (be it pest or resource) is irrefutable, however issues have been 

highlighted in the past (e.g. Conroy et al., 1995) concerning the lack of scalability and 

transferability of such models.   

 

The processes which govern crop yields (indirectly impacting pests) and population 

dynamics of pest species, occur at smaller spatial scales than that of global atmospheric 

processes which can obscure the translation of cause and effect between scales (Oettli et 

al., 2011). For example, GCM outputs are typically of a coarse resolution (hundreds of 

kilometres) which necessitates the scaling of this data to a level that is more readily 

accessible by ecological impact models (typically via downscaling). Identification of the 

sensitivities of agroecological-model-systems to climate model uncertainties can aid in 
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gaining a more holistic understanding of how climate model outputs and agricultural 

models can coexist and produce meaningful results. Without this recognition of how 

higher levels of model uncertainty cascade to smaller scale field studies, the production 

of climate-driven pest models could ultimately be futile. The a priori choice of a single 

meteorological variable of interest (such as temperature or CO2) can reduce the sheer 

volume of uncertainty to be addressed, however this approach does not account for the 

differences of scale that exist between atmospheric processes and smaller scale 

pest/crop models. As a result, it would be prudent to incorporate consideration for the 

potential effects of differences in model scale, as well as the impact of scaling on model 

uncertainty if a comprehensive approach towards projecting aphid pest dynamics is to 

be achieved for Ireland. 

 

3.6 Ecology and scale 

In ecology, it is accepted that relationships can change quantitatively in conjunction 

with changes in scale and this has given rise to many instances where models are 

rendered scale-specific (Bugmann et al., 2000; Gardner et al., 2001; Heuvelink, 1998). 

Heuvelink (1998) argues that there are multiple primary reasons why this specificity of 

scale occurs, two of which are particularly pertinent: Firstly, that ‘different processes 

are important at different levels’. In the case of modelling pests (or any variable for that 

matter), usually only the dominant processes which impact the subject of interest are 

considered (Heuvelink, 1998:256). These dominant processes and the patterns observed, 

can change, depending on the resolution utilised by the observer. These changes imply 

‘scale-dependence’ of the properties in question and can be manifested quantitatively in 

measurements of mean and variance. As an example, certain population-scale effects 

can be the result of population density, which can dramatically alter the performance of 

the study population depending on the size of the population considered. For example, 

at high densities per tiller (a plant shoot), aphids tend to produce alate morphs (winged 

individuals) which leave the colonised plant (Awmack and Leather, 2007) due to 

intraspecific competition for resources. This situation can be changed entirely if the 

appropriate unit of scale (i.e. tiller) upon which the relationship was derived is not 

utilised; potentially obscuring the alate-inducing signal and altering the population 

structure by permitting feeding/parthenogenetic reproduction to continue without 

dispersal from the host plant.  
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Heuvelink’s (1998) second point relates to the reduction in availability of input data at 

larger scales. Data at larger scales tends to be less available than that of data from many 

stereotypically small-scale ecological measurements. In these cases, inputs have to be 

derived from other more general information sources, such as soil maps or agricultural 

statistics. The availability of data will be dependent on the type of data that is required, 

which will change depending on the lens through which the study area is viewed. In the 

case of the grain aphid S. avenae, small-scale empirically derived temperature-

development data (Dean 1974; Kieckhefer et al., 1989) can theoretically be used to 

simulate daily or hourly development of this species using temperature data (available at 

local, regional and national scales) in conjunction with degree days or rate summation 

models (discussed in detail in the next chapter). This type of approach could provide an 

exemption to Heuvelink’s (1998) aforementioned ‘large-scale-data problem’, as a result 

of the availability of national temperature data on a daily basis, which facilitates the 

transformation of small-scale laboratory-derived development-data to quantifiable local-

scale insect development-data. This allows a modeller to ‘bridge the gap’ between 

scales working on the assumption that temperature is the dominant abiotic factor and 

that the data available is representative of the temperature in-field. This concept is in 

keeping with the aforementioned tendency of modellers to include only the dominant 

processes within their representations of reality. The influence of this driving variable 

across scales from plant level to agro-ecosystem to region will serve as the ‘link’ 

between each of these scales, under the assumption that other acting processes on the 

overall dynamics of the population are less important. Evidence for the validity of this 

assumption and the influence of temperature in the context of aphid modelling will be 

provided in detail in Chapter 5. 

 

3.7 Modelling framework: A theoretical approach 

The analysis of ecological systems and the subsequent development of models to 

represent those systems, are based on the assumption that the system can be 

quantitatively expressed at a chosen point in time and space. However, there has been 

virtually no explicit focus to date in the literature relating issues of scale to agricultural 

pests. Conversely, or perhaps concurrently, much has been explored regarding scale in 

ecological terms in natural ecosystems. It must be noted however, that agroecosystems 

are some of the most highly managed, open systems in the world and that ecological 
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interactions are modified at all steps of agricultural production via the use of chemical 

intervention, mechanical modification and inputs of normally limiting elements such as 

nitrogen.  Due to these reasons, the idealised method of scaling pest responses to 

climate changes would incorporate the dynamics of said pests, in conjunction with the 

development of the specific crop cultivar, as well as the management practices utilised 

on site. In reality however, no model could ever achieve an entirely holistic 

representation of a biological system (although some have attempted to incorporate as 

many of these factors as possible, i.e. DSSAT (Hoogenboom et al., 2004)). This is due 

to the fact that the data requirements for this type of analysis are rarely met, as well as 

the complexity of the interactions involved when moving from direct effects of climate 

variables, to indirect effects at alternating trophic levels. 

 

The recognition of the existence of multiple scales within a single research area 

necessitates the formulation of a working framework through which the translation of 

effects across scales is accounted for. A potential framework for approaching the issue 

of pests under climate change is the recognition of the agroecosystem as a hierarchy of 

factors operating at different scales. Hierarchy theory was formally introduced by Allen 

and Starr (1982) and provided a new perspective on issues of scale within ecology in the 

1980s. Hierarchy theory can be viewed as a derivative of Bertalanffys (1968) ‘general 

systems theory’, wherein the main premise states that a system can only be understood 

by considering all of the systems elements, as opposed to a single component of 

interest. This approach has been utilised widely under a general ‘systems ecology’ 

umbrella, which seeks to provide a holistic view of ecosystems through the analysis of 

their interacting components (typically mediated by humankind). Hierarchy theory 

offers an almost intuitive approach to ecology, in that spatio-temporal processes can be 

described at different levels within a hierarchical system. However, Allen and Starr 

(1982) propose that this approach; in conjunction with models that explicitly 

incorporate processes at several hierarchical levels, are too complex and not suitable for 

long term simulations. Conversely, it can be argued that the hierarchical nature of 

agroecosystems actually facilitates the iterative modelling of the system, as processes 

can be compartmentalised and modelled as sub-modules within an overall mechanistic 

model.  
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Despite the immediate logic of hierarchy theory, a paradigm shift within the field of 

ecological modelling has highlighted other possible routes, such as Individual Based 

Models (IBM) (Huston et al., 1988). These types of models facilitate the investigation 

of the effect of individual variation on aggregated results, whilst maintaining a distinctly 

‘bottom-up’ mechanism. The directionality of this type of approach is suitable in the 

context of aphid pests and their host plants, in that the growth stage of the cereal host 

will have a profound impact on the physiology of the individuals in a population. 

However, not all of the processes at work within the aphid population model utilised 

here will maintain a strictly bottom-up approach. In fact, it could be argued that the 

principle driver (climate) of both the individuals in the population and the population as 

a whole is a perceptibly top-down mechanism, resulting from the large scale climate 

(either observed or modelled). Furthermore, the simple fact that raw laboratory data 

replicates are required to infer individual survival and development in the individual-

based approach renders this framework unfeasible in this context, owing to the sparsity 

of data pertaining to S. avenae  nationally.  

 

The necessity for a framework to account for some of the difficulties encountered when 

scaling information within ecosystems cannot be denied. If hierarchy theory is to be 

considered (in some guise) as a potential framework for the modelling approach 

utilised, it is useful to conceptualise agroecosystems as open systems nested within a 

hierarchy (Figure 3.3), each with their own characteristic feedback and feedforward 

mechanisms (all of which contribute to the overall behaviour of interest). The utility of 

models which attempt to describe these mechanisms is highlighted when the 

‘aggregation problem’ is considered (Reynolds et al., 1993). This issue refers to the 

potential for lower level effects to be precipitated to higher levels within a hierarchy and 

vice versa; without consideration for the interactive effects at the lower level. As an 

example, consider the effects of increased atmospheric [CO2] on pests of agricultural 

crops discussed in chapter 2. While much work has been carried out on the direct effects 

of rising CO2 on plants, many of the indirect effects of CO2 are poorly understood. 

Increased [CO2] have been shown to alter the C:N (Carbon: Nitrogen) ratio within 

plants, causing a concomitant increase in herbivory in an effort for the pest in question 

to acquire adequate amounts of N (Coviella and Trumble, 1999; Hughes and Bazzazz, 

2001; Zvereva and Kozlov, 2006). This in turn could impact the photosynthetic capacity 

of the leaf, or promote the emission of herbivore induced plant volatiles (HIPV), 
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potentially repelling other herbivores and attracting natural enemies of those herbivores 

(Holopainen, 2004). Conversely, decreased stomatal conductance as a result of 

increased [CO2] has been shown to improve water-use efficiency in plants, initially 

giving rise to positive impacts on plant development at higher levels of the hierarchy 

(Garrett et al., 2006), but potentially altering other interacting variables in the system.  

 

This aggregation-effect of interactions spanning multiple trophic levels further 

emphasises the need for modelling capabilities which can simulate outcomes at the scale 

of interest, while simultaneously avoiding the errors from directly scaling up over too 

large a range (e.g. from leaf to ecosystem). This ‘direct scaling’, referred to as 

‘transposition of scale’ by O’Neill (1988) is considered particularly error-prone, if the 

interactions between the lower level components are not considered in advance of 

scaling up the findings to a higher level. 

 

 

Figure 3.3 A conceptual model illustrating the open nature of agroecosystems within a systems-
hierarchy, all of which are contained within a closed global system (modified from Dalgaard et al., 

2003). 

 

The problem of aggregation at a hierarchy of scales can be addressed through the use of 

what Reynolds (1993) describes as ‘mechanistic descriptions’ of the study system. 

Mechanistic models according to Reynolds (1993) partition component parts of a 

system and describe the system as a whole through the dynamic interaction of the 

composite parts: echoing the ‘systems’ approach referred to earlier, but refining the 
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next step in modelling a sub level of an ecosystem, in that it permits a higher level of 

understanding of the processes which take place, as opposed to using 

analysis (which is mainly concerned with describing a relationship, as opposed to 

understanding it). It stands to reason, that an approach which incorporates as many 

facets of the system as possible, without be

to the scale of operation, would provide a more holistic understanding of the potential 

interactive outcomes that are possible. This type of model relies heavily on a ‘bottom 

up’ approach, owing to its ability to simulate underlying processes in a system to 

produce the overall behaviour of interest (in this case, the population dynamics of 

avenae); while simultaneously facilitating the incorporation of the ‘top

the driving variable (

numerous titles within the modelling community, so for the purposes of clarity, will be 

referred to as ‘simulation models’ for the remainder of this work.

 

Figure 3.4 Spatially overlapping (red area) outputs from ecological ‘bottom up’ approaches with 
temperature driven ‘top down’ approaches within a hierarchical system (modified from Dalgaard 
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nomenclature to more general modelling terms. The use of mechanistic models takes the 

odelling a sub level of an ecosystem, in that it permits a higher level of 

understanding of the processes which take place, as opposed to using 

analysis (which is mainly concerned with describing a relationship, as opposed to 

g it). It stands to reason, that an approach which incorporates as many 

facets of the system as possible, without being overly-complex and

to the scale of operation, would provide a more holistic understanding of the potential 

ive outcomes that are possible. This type of model relies heavily on a ‘bottom 

up’ approach, owing to its ability to simulate underlying processes in a system to 

produce the overall behaviour of interest (in this case, the population dynamics of 

; while simultaneously facilitating the incorporation of the ‘top

the driving variable (temperature) (Figure 3.4) . This type of model

numerous titles within the modelling community, so for the purposes of clarity, will be 

referred to as ‘simulation models’ for the remainder of this work. 

Spatially overlapping (red area) outputs from ecological ‘bottom up’ approaches with 
temperature driven ‘top down’ approaches within a hierarchical system (modified from Dalgaard 

et al., 2003). 

The use of mechanistic models takes the 

odelling a sub level of an ecosystem, in that it permits a higher level of 

understanding of the processes which take place, as opposed to using linear regression 

analysis (which is mainly concerned with describing a relationship, as opposed to 

g it). It stands to reason, that an approach which incorporates as many 

complex and potentially unsuited 

to the scale of operation, would provide a more holistic understanding of the potential 

ive outcomes that are possible. This type of model relies heavily on a ‘bottom 

up’ approach, owing to its ability to simulate underlying processes in a system to 

produce the overall behaviour of interest (in this case, the population dynamics of S. 

; while simultaneously facilitating the incorporation of the ‘top-down’ effect of 

This type of model is referred to by 

numerous titles within the modelling community, so for the purposes of clarity, will be 

 

 

Spatially overlapping (red area) outputs from ecological ‘bottom up’ approaches with 
temperature driven ‘top down’ approaches within a hierarchical system (modified from Dalgaard 
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By applying hierarchy theory to this research, one can visualise the system of interest 

(aphid population dynamics) as ‘level 0’ within a hierarchy (Figure 3.5), with the 

driving variable (temperature) at a higher level (Level 1). Level 0 can then be described 

by dividing the lower level (Level -1) into various components which together interact 

to produce the phenomena of interest at level 0 (Figure 3.5). By utilising this type of 

mechanistic approach, the assumption is made that the phenomenon of interest is a 

consequence of the interactions of the lower level components. Focusing on a single 

scale of resolution (that of seasonal aphid dynamics at level 0) facilitates the 

simplification of this complex system, and allows for the use of higher and lower levels 

within the ecosystem to ‘explain’ the changing dynamics at the level of interest. The 

single scale in question can be visualised in the red area of overlap illustrated in Figure 

3.4. 

 

 

 

Figure 3.5 The hierarchical nature of the current research system 

 

Long-term ecological trends like those we refer to as a result of climate change, are 

rarely measured at the scales normally utilised in ecology, which can complicate the 

long-term validation of models designed for shorter temporal trends. It is important to 

bear in mind however, that the ultimate goal of a model such as the one described in this 

work, is to provide an indication of the potential risk of infestation throughout a season 

in response to a changing climate. For this reason, it is practical to suggest that the small 

(spatial and temporal) scale proposed here is entirely appropriate for longer-scale 
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exploratory risk-assessment; assuming that the relationship between the driving variable 

(temperature) at level 1 and aphid dynamic components (level -1) remains static (Figure 

3.5). The fact that both temperature and agroecosystems are generally homogeneous 

(owing to the trend towards monocultures); reduces the uncertainty usually associated 

with describing highly heterogeneous (natural) ecosystems, lending weight to the 

assumption that the temperature-population-dynamics relationship can be transferable 

across similar spatial scales. The simulation approach suggested here attempts to exploit 

this presumably stable relationship between temperature and population dynamics and 

ultimately render the final model applicable at different regional and temporal scales 

owing to the dominant role of temperature in each of the component parts (level -1).  

 

3.8 Application of simulation models 

While the ecological nomenclature (hierarchy theory and systems theory) used to 

describe the framework chosen here is not widely utilised in climate impact studies, the 

actual approach that it facilitates (the use of simulation models) is well established 

within ecological modelling. Simulation models have been widely used to describe 

different facets of ecological phenomena, allowing scientists to analyse and experiment 

with systems of interest. This type of analysis assists researchers in furthering their 

understanding of the complexity of the biological relationships involved (Pinnschmidt 

and Batchelor, 1995; Reji, 2008; Ruesink, 1976). This approach has also found 

application within aphid population models, serving to utilise the breadth of 

accumulated scientific knowledge available, as well as facilitating interdisciplinary 

understanding. Three of the most economically important aphid pest species have been 

the subject of such models (Gosselke et al., 2001) including Metopolophium dirhodum 

(the rose-grain aphid) (Zhou et al., 1989), R. padi (Morgan, 2000), S. avenae (Carter, 

1985; Carter et al., 1982; Plantegenest et al., 2001; Rabbinge et al., 1979; Skirvin, 

1995), as well as the concomitant barley yellow dwarf virus vectored by the two latter 

species (Kendall et al., 1992; Morgan, 1996; Thackray et al., 2009). To date, these 

models have been developed over a wide range of countries including the UK, 

Germany, France and the Netherlands with varying degrees of success. 
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3.8.1 M. dirhodum 

Zhou et al. (1989) utilised a systems approach to model the rose grain aphid, 

Metopolophium dirhodum wherein the life history processes believed to impact the 

population dynamics of M. dirhodum were incorporated into a simulation model 

(immigration, development, survival, reproduction, morph determination). Their model 

was validated with three years of data, accurately producing both the size and timing of 

the observed maximum aphid density in-field in one of the model years. The model 

predictions for the remaining two years overestimated the peak density, while the timing 

of the peak was accurate only for one. Zhou et al. (1989) hypothesised that numerous 

factors were responsible for the divergence between modelled and observed, ranging 

from the potential effects of natural enemies, to inaccurate assumptions regarding the 

proportion of immigrating aphids. The proportion of immigrant aphids was calculated 

based on the current crop Growth Stage (GS), however this method may not have 

accurately produced spring/summer immigrants; but rather aphids which are emigrating 

out of the crop. Aphids were also reported in the crop before the first catch in the 

suction trap, leading the authors to suggest that the suction trap data was potentially not 

reliable at very low densities of aerial aphids. This was not proven however, and in 

general evidence suggests that the numbers in field can be adequately represented by 

those caught in the suction traps (Harrington and Woiwod, 2007). 

 

3.8.2 R. padi 

Morgan (2000) used a deterministic model to simulate the population dynamics of R. 

padi in barley over the autumn and winter months. Once again, a systems approach was 

adopted wherein algorithms describing various facets of the species physiology 

(immigration, development, fecundity and survival) were incorporated. The effect of 

crop growth stage on morph determination was excluded however, owing to the fact 

that the stages which impact this part of R. padi’s lifecycle did not occur during the 

winter months. The model used female migrant catches in conjunction with a 

colonisation ‘constant’ (Carter, 1985) to infer the number of aphids per plant at the 

beginning of the model. Both peak aphid abundance (within 20% of the observations); 

as well as the timing of the predicted peak (within two weeks of the actual peak) were 

successfully simulated on all but one occasion. Morgan (2000) found that the model 
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was most sensitive to levels of mortality, as well as temperature. These findings are not 

entirely surprising, as mortality will have a direct impact on the number of reproducing 

aphids, which in turn reduces the number of nymphs produced. In addition, the well 

established relationship between development and temperature referred to in previous 

chapters (as well as its explicit incorporation into development models discussed) 

renders the importance of temperature undeniably evident.  

 

3.8.3 S. avenae  

Plantegenest et al. (2001) utilised a similar approach to Morgan (2000) in order to 

simulate the population dynamics of S. avenae in winter wheat in France. The ultimate 

goal of this model however, was to highlight the importance (or lack thereof) of natural 

enemies in relation to the aphid’s population dynamics. This was attempted by 

comparing the output from the simulation model in the absence of natural enemies, with 

field data collected from 1976-1986, and attributing any differences to natural enemy 

activity. The field data were comprised of numbers of aphids per tiller; as well as aphid 

mummies and cadavers as a proxy for natural enemy activity. The model itself 

incorporated the main required modules for a population model, including development, 

fecundity, moulting, morph determination and death rates. The data used to 

parameterise the development equations were derived from two different sources (Dean, 

1974a; Kieckhefer et al., 1989), originating from two extremely different geographic 

regions (UK and South Dakota respectively). The potential for clonal adaptation to the 

local environment in each of these experimental results could in theory, skew the 

relationship between temperature and development used in the model. Overall, the 

authors found that entomopthoralean fungi were largely responsible for limiting the 

population dynamics of S. avenae, however; they conceded that this type of analysis 

provides correlation only, and not causation. Ultimately, this type of approach could be 

used as a tool towards integrated pest management; however the model would have to 

be updated with the inclusion of the fungi in order to account and test for their impact. 

The impact of different natural enemies on cereal aphids is likely to vary geographically 

with changes in climate and cereal phenology (Plantegenest et al., 2001); which would 

suggest that the data used to derive both the aphid and enemy models, should originate 

from proximate geographic areas. 
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Both Carter (1985) and Rabbinge et al. (1979) developed population simulation models 

for S. avenae for Britain and the Netherlands respectively, in an effort to produce a 

short-term (3-5 weeks) forecasting system. Both of these models incorporated the effect 

of the host plant GS on the aphid pest, as well as the effects of natural enemies. The 

actual quantification of the impacts of natural enemies is complex however, due to the 

plethora of species that predate on aphids, in conjunction with the limited data available 

regarding numbers of aphids consumed. Both models were found to be reasonably 

accurate at simulating the population development of the aphid during outbreak years; 

however population numbers were overestimated when aphid numbers were sparse. 

Carter's (1985) original ‘SAM7’ model was the basis for one of the first simulation 

models (Skirvin, 1995) to explicitly incorporate climate change as an external factor in 

the long-term population fluxes of aphid dynamics. The model categorised mean 

temperatures for each year across the aphid season into three regimes (cold, moderate 

and hot), and utilised analogous temperature regimes to describe future years. Skirvin's 

(1995) premise that ‘unusually warm’ years under current conditions, would become the 

norm under future climate change facilitated the partitioning of each of the years of data 

into distinct temperature regimes. Skirvin (1995) had one season of data against which 

to validate his model, comprised of aphid and coccinellid field numbers in two plots. 

Half of the season’s aphid data was not usable due to misclassification. However, the 

remaining data provided information around the time of the peak population of S. 

avenae. The model predicted ‘nearly two orders of magnitude’ more aphids at the peak 

than was actually observed in both sites (Skirvin, 1995:85). The timing of the peak was 

also predicted earlier than the observations in both field plots; which was attributed to 

the presence of other natural enemies not accounted for in the model 

(syrphids/parasitoids). This led Skirvin (1995) to conclude that coccinellids were not 

always the instrument within the model which maintained the aphid populace below an 

economically important threshold, a finding iterated previously by Vorley and Wratten 

(1985). While numerous models such as this have incorporated the effects of single 

natural enemies on aphid populations; it is generally accepted that any potential 

modifying effects on aphid population dynamics are a result of the activities of the 

entire guild of enemies (Carter, 1994). With the inclusion of the stochastically generated 

immigrants per regime; the ‘moderate’ regime appeared to produce the most favourable 

conditions for aphids, resulting in the largest ‘maximum number’ at the peak. This 
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finding suggests that increasing temperatures as a result of climate change may impart a 

negative effect on the dynamics of S. avenae.  

 

3.9 Conclusions 

This section outlined some of the basic tenets of model construction, from the initial 

conceptualisation of a problem, to the formalisation of the final model. Issues in relation 

to transferring information across multiple scales were considered, in an effort to 

identify a framework around which the model utilised in this study could be based. 

Consideration was given to the potential for error as a result of direct ‘scaling’ of 

information; as well as the directionality of the processes at work within 

agroecosystems. A hierarchical systems approach was highlighted as an appropriate 

framework to base the model structure in the current research. The use of simulation 

models which utilise submodels or components applicable to their own specific scale 

and processes, provide the most comprehensive and assumption-light methods to 

account for differences in scale in ecological modelling. The recognition of the 

interactive nature of the components at different scales facilitates the formulation of a 

mechanistic approach to describe the individual elements within that system (as well as 

the processes they precipitate due to their interaction with one another). By facilitating 

the simulation of dynamic interactions between hierarchical scales, these types of 

models provide the most powerful tool for robustly modelling aphid dynamics in 

recognition of the scale-differences involved.  

 

The compartmentalisation of the aphid model provides the added benefit of facilitating 

empirical experimentation and analysis, which ultimately serves to increase the 

modellers understanding of the system as a whole.  Finally, a blend of both ‘bottom-up’ 

and ‘top down’ approaches have been identified as appropriate within a hierarchy 

framework to minimise some of the uncertainties typically encountered when operating 

over a range of ecosystem scales. A review of previously applied aphid simulation 

models has provided indication of the extent of their utilisation within the aphid 

community, as well as their potential for forecasting population dynamics. The 

prevalence of their application within the modelling community, as well as their ability 

to provide reasonable model outputs, further bolsters their utility as a modelling 

approach and the viability of their use in impact studies. Having highlighted simulation 



  

67 
 

models as the most parsimonious approach to describe the population dynamics of S. 

avenae, the next step in the analysis is to outline the data sources utilised in the final 

model. The next chapter will provide an overview of both the selection process and life 

cycle history of S. avenae relevant to the model development, as well as its role as an 

agricultural pest in Ireland. The climate and biological data employed in the 

formalisation and construction of SAV4 will also be outlined. 
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CHAPTER 4  

SPECIES SELECTION, BIOLOGY AND MODEL DATA 

 

4.1 Introduction 

Previous chapters have outlined the current state of scientific knowledge in relation to 

climate change on a global, regional and national scale, along with the documented 

impacts that changes to date have been shown to impart on agriculturally limiting pests. 

In recognition of the fact that an all-encompassing risk-assessment for every agricultural 

pest in Ireland was beyond the scope of this research, the analysis focused on a single 

economically important pest of interest: The grain aphid, S. avenae. This chapter will 

briefly describe the rationale in selecting this species for analysis based on a number of 

criteria including current economic importance and data availability. A description of 

the data sources utilised in the final model will be provided, along with justification for 

their inclusion where necessary. The biology of this aphid species, as well as its 

seasonal relationship with agricultural crops is critical to the formulation of SAV4. For 

this reason, the relevance of S. avenae within the agricultural sector will be outlined, 

along with its primary modes of damage induction. A description of its life cycle history 

will be provided, focusing on the aspects of the species biology which directly influence 

its role as an agricultural pest.  

 

4.2 Selection of S. avenae  

As a first step, current economic importance was introduced into the selection criteria. 

This ‘importance’ or ‘relevance’ of specific pests was assessed according to whether 

chemicals were currently being produced to control the organism in question. Secondly, 

the extent to which the host crop was cultivated in Ireland (amount of hectarage) was 

also considered in the process of identifying the final species for analysis. Potentially 

complicating factors were also considered, such as the risk of the pest in question 

developing resistance to current agrochemicals in use (based on evidence to date); as 

well as the extent to which control of the species would be affected by recent changes to 

EU PPP legislation. Cereal production (winter and spring varieties) and horticultural 
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production were identified as areas for further attention, owing to their significant 

economic contribution to employment, domestic and foreign markets.  In particular, 

spring barley emerged as the most widely planted cereal crop in Ireland (Table 4.1). 

 

 Crop  Statistic   2008 2009 2010 2011 2012 

Winter wheat Area under Crops (000 Hectares) 87.5 64.3 59.8 77.7 84.6 

  Crop Yield per Hectare (Tonnes) 9.6 8.6 8.9 10.2 7.4 

  Crop Production (000 Tonnes) 839.9 552.7 532 792.9 625.7 

Spring wheat Area under Crops (000 Hectares) 23.2 20.2 18 16.4 13.5 

  Crop Yield per Hectare (Tonnes) 6.6 6.8 7.6 8.3 6.1 

  Crop Production (000 Tonnes) 153 137.4 137.2 136.4 82.2 

Winter oats Area under Crops (000 Hectares) 18.7 9.1 10.3 9 9.9 

  Crop Yield per Hectare (Tonnes) 7.9 7.8 7.8 7.8 6.9 

  Crop Production (000 Tonnes) 147.9 71.3 80.5 70.5 68.2 

Spring oats Area under Crops (000 Hectares) 4.2 11.3 9.4 12.4 13.8 

  Crop Yield per Hectare (Tonnes) 6.3 6.6 7.2 7.9 6.4 

  Crop Production (000 Tonnes) 26.4 74.4 67.6 97.6 88.4 

Winter barley Area under Crops (000 Hectares) 21.1 19.3 28.8 35.9 41 

  Crop Yield per Hectare (Tonnes) 8.6 8.5 8.5 9.1 7.8 

  Crop Production (000 Tonnes) 181.8 164.2 245.1 326.3 319.8 

Spring barley Area under Crops (000 Hectares) 166 174.3 146 144.8 151.8 

  Crop Yield per Hectare (Tonnes) 6.7 6.1 6.7 7.5 6.2 

  Crop Production (000 Tonnes) 1112.4 1063.1 977.9 1085.8 940.9 

Table 4.1 Crop yield and production by type of crop, statistical indicator and year (CSO, 2014b) 

 

The selection process, while concerned with the economic status of the crop impacted, 

was not intended to simply identify the most important pest or disease at present in Irish 

agriculture. Indeed, this type of exercise may only accomplish identifying a pest which 

is currently operating in its optimal thermal regime, but cease to be important in the 

future under a different climate regime. Rather, the species selection was progressed in 

an effort to identify an organism which could adapt in the future despite changes in 

climate, or experience a negative or positive impact directly modifying their economic 

impact nationally. The aphids were chosen owing partly to their ubiquity on agricultural 

crops on a worldwide basis. Their utilisation of different life-cycle strategies between 
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species, along with their wide range of plant hosts on a global level suggests that this 

group is highly adaptable. Their adaptability was highlighted recently in the UK, where 

pyrethroid-resistant clones of S. avenae were identified, resulting in failure to control 

the aphid in 2011 and 2012 in some locations. The extent of this resistance was 

quantified by testing aphids across the UK for the genes that conferred resistance to the 

insecticide, resulting in 35-50% of the sample testing positive in 2012/2013 (Dewar, 

2014).  This adaptability, as well as the ability produce multiple overlapping 

generations justified their selection as a group. In Ireland, the most common aphids 

found on winter and spring barley crops are S. avenae, R. padi and M. dirhodum 

(Kennedy and Connery, 2001; Kennedy and Connery, 2005). These species of cereal 

aphids are also the most common found throughout the UK and have been reported to 

cause losses there of £100 million per annum (Skirvin, 1995).  The specific aphid 

species was chosen due to its identification as the most abundant aphid species on Irish 

wheat and barley by Kennedy and Connery (2001, 2005), as well as its role in vectoring 

BYDV in Irish cereals. BYDV is a virus of grain crops, which is transmitted via aphid 

feeding on the plant phloem. Initially, virus symptoms manifest as yellow upper leaves 

in individual plants. As the virus spreads however, larger swathes of crop exhibit yellow 

patches and stunted growth. Later sowing of autumn crops, along with earlier sowing of 

spring crops reduce the risk of BYDV, due to reduction in aphid numbers at these times. 

In Ireland, yield losses attributable to feeding damage by S. avenae in spring barley 

have been estimated as 0.71 tonnes per hectare (t/ha) and 0.83 t/ha in seasons where the 

aphid was plentiful. Further losses resulting from BYDV infection in April sown crops 

have been reported in the range of 1.1 t/ha (20%) to 0.36 t/ha (7%) (Kennedy and 

Connery, 2005). Considering the number of hectares planted with spring barley every 

year (Table 4.1) the losses can be significant. The recent increase in the frequency of 

milder winters in the UK has been implicated in a surge of BYDV prevalence, due to 

aphid activity facilitated by the warmer conditions. The damage caused by the virus is 

dependent on a number of different factors, including the crop species/cultivar in 

question, as well as the virus/isolate present. Of particular importance however, is the 

proportion of plants infected, as well as the GS at which inoculation takes place. 

Generally speaking, the younger a plant is when it is infected, the higher the yield loss 

will be (Fabre et al., 2003). Lastly, the availability of data necessitated consideration 

before the species selection could be finalised. This will be discussed in Section 4.3.2. 
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4.3 Data availability 

4.3.1 Climate data 

As this research is primarily concerned with the impacts of climate change, the 

necessity for the incorporation of at least one climate variable in the analysis was 

implicit. Chapter 2 highlighted the importance of three separate climate variables acting 

as drivers of change in agricultural pest dynamics: CO2, temperature and precipitation. 

Despite the potential for indirect impacts of changing CO2 levels on agricultural pests, 

the absence of this type of data on a regional scale, (as well as the costly nature of 

attaining such data) rendered the incorporation of this variable in the final analysis 

untenable. The remaining two variables however, (temperature and precipitation) have 

been consistently monitored within the Irish synoptic station network (most of which 

have daily data availability from the 1940-50s). Furthermore, available national 

projections include daily projections for both of these variables for fourteen stations 

ranging from 1961 to 2099 (Fealy and Sweeney, 2008). Due to the aforementioned 

uncertainty associated with the magnitude and directionality of response of future 

precipitation projections for Ireland, the potential for increasing uncertainty in model 

output as a result of this data’s utilisation was given consideration. This uncertainty 

would be compounded by the complexity associated with disentangling the interactive 

effects of using both precipitation and temperature as driving variables referred to in 

Chapter 1. For these reasons, it was ultimately decided to omit precipitation as a driving 

variable from the analysis and to concentrate solely on the relationship between S. 

avenae and temperature. Regionally downscaled temperature for a number of GCMs 

and two SRES scenarios (A2 and B2) were obtained (Fealy and Sweeney, 2008) for 

fourteen synoptic stations in Ireland, representing both coastal and inland sites from: (1) 

the Canadian centre for climate modelling and analysis Coupled Global Climate Model 

(CGCM2), (2) the Commonwealth Scientific and Industrial Research Organisation, 

Mark 2 (CSIRO (Mk2)) (referred to hereafter as CSIRO), (3) the Hadley Centre 

(HadCM3) model, as well as (4) a multi-model weighted ensemble mean. The data was 

of daily resolution and incorporated measures of both the maximum and minimum 

temperature from 1961-2099. The utilisation of the data will be discussed in greater 

detail in Section 8.3. 
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4.3.2 Pest data 

The presence of the S. avenae in other countries/geographic locations was particularly 

pertinent in the final species selection, due to the fact that observational and/or 

laboratory data in an Irish context was either extremely limited or non-existent. Despite 

the importance of aphids in relation to cereal crops in Ireland the overall research focus 

thus far has primarily been concerned with the efficacy of chemical controls (e.g. 

Kennedy and Connery, 2001; Kennedy and Connery, 2005), as opposed to an analysis 

of their biology or population dynamics. As a result of this dearth of knowledge on a 

national basis, the availability of data derived from geographically proximate regions 

was assessed, under the assumption that the species biology would be generally 

comparable between geographically similar regions (such as the UK) due to the 

similarity in climate. This assumption of similarity is bolstered by an environmental 

stratification study of Europe, that groups the UK and Ireland to the ‘Atlantic Central’ 

agroclimatic zone based on Principal Components Analysis (PCA) of climatic and 

environmental variables (Metzger et al., 2005).  

 

 

Figure 4.1 Environmental stratification of Europe based on AgroEcological climatic zones (Metzger 
et al., 2005) 



  

73 
 

Empirical data relating temperature to development in S. avenae was available from 

three different sources (Dean, 1974a; Kieckhefer et al., 1989; Lykouressis, 1985), 

representing locations in the UK and South Dakota (USA), as well as temperature 

threshold data from Vancouver and Canada (Campbell et al., 1974). In consideration of 

the fact that geographical differences have been shown to exist in relation to species 

responses to temperature (Campbell et al., 1974; Honek, 1996), it was deemed 

inappropriate to use data derived from lower latitudinal areas, owing to the reported 

decrease in critical temperature thresholds for species development with increasing 

latitude. As a result, only Dean's (1974a) UK data was considered suitable for use in the 

current analysis, owing to its derivation within the UK, Ireland’s closest neighbour and 

most proximate latitude to Ireland.  

 

Dean's (1974a) data was ultimately used as the core dataset to relate temperature effects 

to changes in the developmental rate and population dynamics of S. avenae. This data 

was identified as the most suitable option for two reasons: Firstly, the data was gathered 

at much shorter time intervals (hourly) than other studies (daily or at irregular intervals) 

and also had the largest number of replicates. Secondly, the data was gathered from 

aphid clones collected from a geographical region (UK) sharing the same 

‘Environmental Zone’ classification (Metzger et al., 2005) as Ireland; as opposed to 

South Dakota (Kieckhefer et al., 1989) or an unspecified source area (Lykouressis, 

1985). The data is based on hourly temperature responses of S. avenae reared on leaf 

discs of barley (cultivar (cv) Proctor) under different constant temperatures (Table 4.2). 

The substrate utilised in Dean's (1973) study also served to inform the final decision 

regarding which crop to incorporate in the current analysis, as the data would be most 

representative of the aphid species’ temperature-response if the same host plant was 

utilised in the analysis. The selection of this crop as the modelling substrate was 

reinforced by the fact that barley (in particular the spring variety) consistently accounts 

for the highest ‘area under crops’ in the Irish domain.  
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Temperature (°C) 1st Instar 2nd Instar 3rd Instar 4th Instar 
10.0 98.5 (± 4.7) 82.2 (± 1.7) 91.9 (± 1.9) 98.2 (± 1.1) 
12.5 85.7 (± 1.4) 75.1 (± 1.3) 70.2 (± 1.4) 74.9 (± 1.0) 
15.0 62.6 (± 2.4) 62.9 (± 1.5) 57.9 (± 2.0) 66.2 (± 1.0) 
17.5 53.9 (± 0.7) 51.6 (± 0.8) 52.8 (± 1.3) 65.2 (± 0.9) 
20.0 51.9 (± 0.9) 45.5 (± 0.7) 42.6 (± 0.8) 54.0 (± 0.8) 
22.5 46.0 (± 1.5) 43.9 (± 2.1) 43.8 (± 1.6) 49.7 (± 0.9) 
25.0 41.9 (± 0.8) 41.0 (± 1.1) 38.7 (± 1.1) 48.4 (± 1.2) 
27.5 50.4 (± 1.2) 48.0 (± 1.3) 47.8 (± 1.4) 56.4 (± 1.0) 

Table 4.2 Duration (hours) of temperature-dependent development in S. avenae with associated 
errors in brackets (Dean, 1974a). 

 

Additional data utilised to improve the reproductive component of SAV4 was derived 

from Wratten's (1977) work concerning alate reproductive rates. Data describing the 

reproductive rate over a period of twenty days was derived and utilised in the final 

model to ensure that the well documented reduced-reproductive capacity of alates was 

accounted for in the final model. The application of which is described in later chapters. 

Auxiliary data describing the daily aerial dynamics of S. avenae in various UK sites 

representing a latitudinal transect was also attained (courtesy of Rothamsted research). 

This data was derived from the Rothamsted insect survey (Harrington and Woiwod, 

2007): a collection of fifteen suction traps that primarily samples aphids and has been 

running since 1964 (Figure 4.2). Aphids are trapped daily in the 12.2 metre suction 

traps, which use a nine inch diameter fan to draw air down to a gauze, which filters 

flying insects out of the airstream. The insects are preserved at the base of the trap and 

collected and identified on a daily basis.  
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Figure 4.2 Location of suction traps throughout the UK, along with a photograph of a suction trap 
(Rothamsted is denoted by the red marker) 

 

4.4 S. avenae as an agricultural pest in Ireland 

At high densities, aphids can cause significant yield losses in cereals (Rautapaa, 1966; 

Vickerman and Wratten, 1979). These losses are caused via four different routes of 

aphid damage: (1) Important plant nutrients are extracted by the phloem-feeding insects 

which serve to weaken the host plant, by depriving the plant of nutrients required for 

growth and propagation. (2) During this feeding, aphids also inject saliva into the plant 

which has been demonstrated to exhibit phytotoxic qualities. (3) Exudates produced by 

aphids during feeding provide suitable substrate for the growth of sooty moulds 

(Dedryver et al., 2010), while simultaneously blocking plant stomata (Dixon, 1987). 

The moulds themselves do not directly damage the host plant; however they can act to 

reduce photosynthesis which is detrimental to the host.  Finally, (4) their role as vectors 

of plant viruses is extremely pertinent: of the approximate 700 plant viruses recognised, 

almost 50% of the insect-borne viruses are vectored by aphid species and many of these 

viruses are responsible for diseases in economically important crops (Katis et al., 2007). 

In Ireland, the predominant strain of BYDV found is the MAV (vectored by 

(Macrosiphum (Sitobion) avenae) strain (Kennedy and Connery, 2005; 2012). Due to 

the sheer size of aphid populations, as well as the number of generations produced on a 

yearly basis, genetic mutations occur at a much more accelerated pace than in long-lived 
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animals (Dixon, 1987). Their ability to reproduce parthenogenetically (asexual 

reproduction without the requirement for fertilisation) serves to ensure that any 

mutations which are advantageous will be propagated quickly within the population, 

potentially giving rise to increasingly damaging or pesticide-resistant genotypes. This 

ability to adapt has been evidenced not only in the UK, but also recently in Ireland 

where grain aphids with the heterozygous kdr mutation (potentially conferring some 

resistance to pyrethroids) have been recorded in 2013 and 2014 (Gaffney, Personal 

communication). Current chemical control measures are often based on a calendrical 

system and evidence of any aphids in-crop, as opposed to economic thresholds dictating 

the density at which spraying should occur.  

 

4.5 Biology of S. avenae   

4.5.1 Life cycle type 

As a group, aphids display a highly varied range of lifecycles, which can have 

implications for the extent to which they can impact crops. Each lifecycle type can 

produce various morphs, each with specific functions in relation to their population 

dynamics, including reproduction, survival and dispersal. Two principal types of life 

cycles exist which are based on how the aphid utilises its plant host: heteroecious 

(alternates between hosts) and monoecious (non-host alternating). The former inhabit 

one host during the winter and then migrate to an unrelated plant species in summer, 

while the latter remains on one host, or moves between closely related species during 

the year. S. avenae is monoecious on species of Gramineae (cereals and grasses). 

Further divisions exist within these life cycle types in relation to the 

reproductive/overwintering strategy used, facilitating the production of different aphid 

clones: holocyclic, anholocyclic, androcyclic and intermediate (Reimer, 2004). 

Holocyclic clones give rise to sexual morphs which produce overwintering eggs. 

Following egg hatch and migration to a host, these individuals utilise parthenogenetic 

reproduction. Anholocyclic clones are incapable of producing sexual morphs, and 

persistently reproduce parthenogenetically throughout the winter. Androcyclic clones 

produce males during autumn, which can mate with the females produced by holocyclic 

clones. Finally, intermediate clones can produce both sexual and parthenogenetic 

clones. S. avenae exhibits all of these reproductive strategies, although anholocyclic 
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modes are believed to be more common in areas where winters are mild (Carter et al., 

1982; Dewar and Carter, 1984; Hand, 1989; Walters and Dewar, 1986; Williams and 

Wratten, 1987). This type of overwintering capacity allows the winter survivors to 

respond immediately to increasing temperatures in the spring, facilitating maturation 

and reproduction as soon as temperatures are adequate (Bale, 1989). This moderating 

effect of winter climate has also been confirmed for other species of aphid in France 

(Gilabert et al., 2009). 

 

Research has highlighted the existence of latitude-dependent reproductive modes in S. 

avenae, with holocycly increasing in occurrence towards the north, while anholocycly 

decreases (Llewellyn et al., 2003; Walters and Dewar, 1986).  This clinal polyphenism 

is believed to be the result of the survival advantage which is conferred via the 

production of a cold hardy egg, over active forms in areas where the winter is severe. 

The work of Clark et al. (1992) bolstered this belief by identifying the existence to two 

separate ‘components’ in relation to the entire flight phenology of S. avenae on either 

side of latitude 54°N, however the reason for the  separate components was not 

definitively identified and they suggested that further analysis was needed incorporating 

more species/life cycle strategies before the patterns could be interpreted. Clark et al. 

(1992) conceded however, the evident importance of winter temperatures in relation to 

the timing of the first catch in aphid species which are anholocyclic (Harrington et al., 

1990; Turl, 1980). Field observations from Rothamsted have indicated that a high 

proportion of S. avenae populations are anholocyclic. This fact, in conjunction with the 

negative relationship that has been found to exist between winter temperatures 

(Harrington et al., 1990; Walters and Dewar, 1986) and time of first catch in southern 

populations of S. avenae bolster the argument that S. avenae is mostly anholocyclic 

south of Scotland in response to temperature. Furthermore, genetic analysis of S. avenae  

across a latitudinal transect in the UK identified very low levels of genetic diversity 

within this species between different locations, supporting the comparability of 

populations despite their geographic origins (Llewellyn et al., 2003). Establishing the 

predominant mode of overwintering in S. avenae is extremely important, as it directly 

influences both the timing of first flight as well as the potential numbers within the 

spring migration. These two factors are particularly pertinent to the current study due to 

their influence on the resulting summer population dynamics of S. avenae. In Ireland, 
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this aphid species has also been reported to overwinter anholocyclically (Kennedy and 

Connery, 2000). 

 

4.5.2 Polymorphism 

S. avenae can be found as one of four morphs throughout the year, two of which are 

pertinent to this research: alate morphs or ‘winged’ individuals and apterous morphs or 

‘unwinged’ individuals. Differences exist between these two morphs in relation to 

various aspects of their life cycles, in particular, reproduction and development. Size 

and fecundity differences between the two morphs have been reported (Watt, 1984; 

Wratten, 1977), with apterae being the larger and more fecund of the two. While size 

alone has been demonstrated to influence fecundity, Wratten (1977) suggested that the 

development and maintenance of wing muscles in alates diverts physiological resources 

from embryogenesis, resulting in a lower reproductive rate. In evolutionary terms, the 

higher reproductive rate characteristic of apterous morphs facilitates the maximisation 

of plant resource exploitation upon initial immigration into a crop (in comparison with 

an entirely alate population). Differences between both morphs have also been 

suggested in relation to development time, particularly regarding the development time 

of the fourth instar (juvenile developmental stage) (Carter et al., 1982). The proposal 

that the fourth alate instar takes longer to develop than the apterous fourth has been 

further evidenced in other temperature-development studies for this species 

(Lykouressis, 1985; Williams and Wratten, 1987). Both morphs experience four 

separate developmental stages (instars) before adulthood, however only the apterous 

morph passes through a ‘pre-reproductive’ phase before becoming reproductively 

capable (Dean, 1974a).  

 

4.5.3 Generalised life cycle 

Figure 4.3 illustrates both the holocycle and anholocycle in aphids. Within the 

holocyclic lifecycle, the egg laid by the oviparae in winter hatches out in spring to 

produce fundatrices (the first parthenogenetic generation). Following the production of 

a number of parthenogenetic generations, alates are produced which emigrate and 

colonise cereal crops. Parthenogenetic reproduction takes place until the late 

summer/autumn  when winged forms are produced, usually in response to declining 
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food quality and/or increased crowding on the host plant (Watt 

Within these winged forms are the males and the gynoparae (sexual females) who will 

ultimately produce the apterous oviparae (egg-producing morph) who give rise to the 

overwintering egg. By contrast, the anholocyclic life cycle involves overwintering in 

in the active form either as nymphs or apterae. The ability to rapidly 

cold harden (RCH) enable active overwintering stages of S. avenae

(Powell and Bale, 2004; Powell and Bale, 2005)

exhibits supercooling abilities to temperatures below -20°C, although mortality has been 

shown to occur in advance of this threshold (Knight, 1987).   

Generalised lifecycle of holocyclic and anholocyclic clones of 

Following immigration into the host crop, alate immigrants alight and produce apterous 

offspring, which are ultimately the driving force behind the seasons population build

parthenogenetic reproduction. S. avenae tends to infest the leaves of young tillers 

until the beginning of heading (Zadoks growth stage (ZGS) 50), when they are found 

(Dean, 1974b). Production of asexual morphs continues until late 

n changes in the host plant and/or aphid density induce the production of 

winged forms. These alatae then migrate either within the crop or to other Gramineae 

where they can overwinter parthenogenetically (Carter et al., 1982)

(Watt and Dixon, 1981). 

Within these winged forms are the males and the gynoparae (sexual females) who will 

producing morph) who give rise to the 

overwintering egg. By contrast, the anholocyclic life cycle involves overwintering in 

in the active form either as nymphs or apterae. The ability to rapidly 

S. avenae to survive low 

Bale, 2005). This species also 

20°C, although mortality has been 

 

Generalised lifecycle of holocyclic and anholocyclic clones of S. avenae  

Following immigration into the host crop, alate immigrants alight and produce apterous 

offspring, which are ultimately the driving force behind the seasons population build-up 

tends to infest the leaves of young tillers 

50), when they are found 

. Production of asexual morphs continues until late 

n changes in the host plant and/or aphid density induce the production of 

winged forms. These alatae then migrate either within the crop or to other Gramineae 

., 1982). General in-field 
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dynamics that have been reported in the UK include an increase in the population to a 

peak during the summer, after which a rapid decline takes place over a week or so 

(Karley et al., 2004). Following this decline, aphids reappear in newly sown winter 

crops or other Gramineae. Earlier sowing of winter crops and concomitant earlier 

emergence of plants can facilitate sizable infestations in the autumn, allowing for 

overwintering within these crops as well as the spread of BYDV within the immature 

crop (Poehling et al., 2007). 

 

4.5.4 Host plant influence and crowding 

The specific stage of growth of the host plant has been shown to influence both the 

reproductive rate and survivorship in S. avenae as a result of the declining nutritional 

quality of the plant (Watt, 1979; Watt and Dixon, 1981). From an adaptive standpoint, 

this ability to respond to inadequate food quality has the potential to confer significant 

population benefits. Watt (1979) monitored the reproductive rate, weight and 

developmental time for S. avenae at different stages of wheat growth in the field and 

found significant differences between the various stages. The reproductive rate of S. 

avenae was found to be much higher on the ears of cereals than on the leaves.  This 

species colonises cereals ears as soon as they appear, which facilitates a more rapid rate 

of increase due to the difference in reproductive potential. This ability means that even 

if aphids colonise a cereal stand as late as ear emergence, they still have the potential to 

rapidly increase in population size. Both adult and nymphal survival were also shown to 

be impacted by the developing host plant, with nymphal survival dropping dramatically 

around the milk development period (~ZGS 73), and adult survival dropping by about 

30%. Despite these conditioning changes to the population dynamics of S. avenae, Watt 

(1979) reported a ‘crash’ in nearby crops, while aphids were still perceived to be 

reproducing. This led Watt (1979) to suggest that another factor must be prompting the 

population decline, either alone or in conjunction with the aforementioned findings.  

 

Watt and Dixon (1981) tested this theory in cognisance of the fact that crowding has 

been illustrated to impart an alate-inducing effect in aphid populations (Lees, 1967).  

They monitored the number of apteriform and alatiform individuals in relation to the 

corollary ZGS for two years in field wheat, as well as the impacts of crowding in 

laboratory experiments. They found that alate production increased when the ZGS was 



  

81 
 

kept stable and density was increased, but also when density was maintained and the 

ZGS increased. These findings highlighted the importance of both plant growth stage 

and crowding (separately) in the induction of alates in S. avenae, in addition to the 

enhancing synchronous effect of ZGS on density-dependent alate production. These 

effects ultimately translate to a situation wherein aphid populations are self-regulated, 

determining their own population ‘crash’ in response to the changing extrinsic and 

intrinsic factors they experience. 

 

Dixon (1998) further highlighted the potential importance of the host crop in relation to 

the final summer abundance of cereal aphids in winter crops. He suggested that the 

severity of the preceding winter can retard crop growth to varying extents, such that 

differing amounts of time remain before maturity is reached on an annual basis. This 

delay in crop maturity has been shown to confer beneficial effects to aphid populations, 

by providing a longer period of time for aphid development and reproduction. 

Following on from this finding, one could surmise that spring crops could confer the 

same type of effect depending on sowing date, or temperature conditions during the 

early crop developmental stages. 

 

4.5.5 Natural enemies 

Aphids have many natural enemies, including polyphagous predators, aphid-specific 

predators, fungal pathogens and parasitoids (referred to collectively here as natural 

enemies). Thus far the ability of individual groups of natural enemies to act as the 

primary regulatory biological control of S. avenae has not been conclusively 

established. The use of cages or other exclusion methods to omit predators from the 

aphids environment have provided results suggestive of a definitive negative impact of 

predators on aphid numbers (Elliott and Kieckhefer, 2000; Schmidt et al., 2003). 

However, Kindlmann and Dixon (2010) outlined the potential for exclusion chambers 

or cages to modify the immediate microclimate experienced by the aphids/predators or 

both. Changes in temperature would most certainly impact both the individual 

development within these chambers, as well as potential interactions between predators 

and aphids mediated by temperature. As a result, outcomes from experiments such as 

these should be treated with caution.  This caveat is further accentuated when the results 

of Holland et al. (1996) are considered. They utilised polythene exclusion chambers 
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which were 60cm high and buried 30cm deep, in an effort to prohibit the entry of 

predators while simultaneously maintaining an unchanged microclimate. Despite the 

reduction of predators by 85% within the exclusion plots, no difference was found 

between the numbers of aphids in the exclusion plots and the controls, suggesting a lack 

of impact on the aphid’s numbers due to predation. Kindlmann et al. (2005) attempted 

to elucidate the counterintuitive nature of the predator-prey relationship between beetles 

and aphids, by physically removing eggs and active individuals of two predatory species 

from shrubs infested with the aphid Aphis gossypii. Once again, aphid numbers were 

found not to have been negatively impacted by the presence of these predators. This is 

not to say that natural enemies have no effect at all on aphid abundance. To the 

contrary, in years when aphid numbers are low, natural enemy activity can be accredited 

with reducing initial population numbers (Poehling et al., 2007). This apparent 

discrepancy between findings is most likely attributable to the proclivity for research to 

focus on a single or select small number of predators, as opposed to an all-

encompassing guild of effects: (presumably due to the vast complexity involved). 

Assessing the efficacy of a single natural enemy on aphid populations, or indeed a 

group of natural enemies remains a difficult undertaking, owing to the interactive nature 

of the system involved, as well as the changeability of influence of natural enemies 

throughout different developmental stages of crop plants (Vorley and Wratten, 1985). 

While these findings generally dismiss the importance of single enemy species, 

typically it is accepted that any potential regulatory control which could be conveyed 

upon aphids would be by an entire guild of natural enemies, as opposed to a lone 

species (Carter, 1994). 

 

4.5.6 Aphid modelling 

In consideration of the physiology and life cycle characteristics of the chosen species 

above, it is apt to reflect upon what facets of the biology should be included within the 

final simulation model of its population dynamics (as well as what is feasible to 

include). As Kindlmann et al. (2007:316) suggest, if one is to accept that natural enemy 

activities do not regulate aphid population dynamics, then the modelling approach can 

be ‘greatly simplified’. Following on from that assumption, the model characteristics 

considered necessary for an initial modelling analysis of S. avenae in an Irish context 

include:  
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• Temperature is the driving variable of all physiological mechanisms within the 

model 

• The modelled population should illicit behaviour similar to reality, including an 

initial slow rise of population numbers, followed by a steep decline or ‘crash’ at 

some point each model year. 

• Migration is the most important factor driving population decline. 

• The population is self regulating, producing migratory morphs in response to 

density-dependent and host plant cues. 

 

4.6 Conclusions 

This chapter outlined the critical aspects of S. avenae biology to the current modelling 

study, while simultaneously justifying the selection of data sources for use as input into 

the final model SAV4. Thus far, the current modelling study is based on evidence which 

suggests that climate and pest dynamics are inextricably linked, and that this 

relationship will persist into the future. Future moderating effects of climate 

(specifically temperature) will be quantified within an overall simulation model to 

facilitate the formulation of aphid projections towards the end of this century. Before 

this model can be executed however, it is imperative that the relationship between aphid 

development and temperature be quantified in a real and utilisable fashion, to enable the 

application of the relationship within the final model. The next chapter will provide an 

in-depth review of the evidence for the aforementioned dominance of temperature over 

insect dynamics, as well as how that relationship can be harnessed to drive aphid 

development within the final simulation model. 
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CHAPTER 5  

NONLINEAR RESPONSE OF INSECTS TO TEMPERATURE: 

MODEL SELECTION 

 

5.1 Introduction 

Since Réaumurs quantitative work on the relationship between plants and temperature 

in the early eighteenth century (Réaumur, 1735), numerous attempts to quantify the 

impact of temperature on biological organisms have been carried out (e.g. Brière et al., 

1999; Campbell et al., 1974; Estay et al., 2009; Lactin et al., 1995; Pruess, 1983; 

Sharpe and DeMichele, 1977; Stinner et al., 1974). These models have been developed 

based on an original proposition by Candolle (1855); that organisms require a fixed 

amount of energy in the form of heat, in order to develop to the finale of a specific life 

cycle stage (known as ‘the law of total effective temperatures) (Damos and Savopoulou-

soultani, 2012). This ‘heat’ or temperature, controls the enzymatic activities within 

organisms and it is the action of these enzymes which regulate the physiological 

reactions that facilitate development. The quantification of the relationship that exists 

between development and temperature is of utmost importance in Integrated Pest 

Management (IPM) (a ecosystem-based strategy to control pests using a combination of 

various techniques), as it is this relationship which imparts the driving force on 

phenology and in turn, agricultural management strategies utilised on a national level.  

 

The ability to make forecasts regarding the timing of events in a pest population can 

impact the scale of both the timing and extent (and expense) to which chemical 

management is relied upon in an agronomical context. In order to attempt to simulate 

pest events, it is first necessary to identify the most limiting variable impacting the 

species development. In entomology, temperature is considered to be one of the most 

important factors limiting insect development; and it is on this premise that all 

modelling approaches since Réaumurs (1735) botanical observations have been based. 

This chapter will provide a synopsis of the most frequently used models in IPM to 

calculate the proportion and timing of development in poikilotherms, as well as their 
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species specific thermal requirements. A simple criterion-based framework for selecting 

an appropriate model for calculating species-specific temperature thresholds and 

development will be described. Finally, the selection process utilised in order to identify 

one model to describe the development of S. avenae in respect to temperature will be 

outlined. 

 

5.2 Insect developmental response to temperature 

Evolution has ensured that insects are well adapted to their local climate, with 

temperature exerting a limiting effect on their development, distribution (Bale, 2002; 

Parmesan et al., 1999) and abundance. Insect development is mediated by temperature 

via ‘control enzymes’ (Sharpe and DeMichele, 1977) which regulate an organisms 

metabolic process rates (which only occur within a defined temperature range). The 

term ‘control enzymes’ is a necessary simplification of the range of complex 

biochemical reactions which take place within an organism, in order to facilitate 

development.  At temperatures which are too low or too high for a specific species, the 

enzymatic activity is inhibited, thus curtailing the necessary mechanisms required for 

development at either low or high temperature extremes. As a result, a ‘sigmoid-shaped’ 

curve with a linear portion at intermediate temperatures is now a widely accepted form 

of the temperature-development relationship (Campbell et al., 1974; Wigglesworth, 

1965). This relationship can be illustrated by plotting the reciprocals of development 

time (developmental rate) for a specific insect development stage; and the distinctive ‘s-

shaped’ (Figure 5.1) or sigmoid curve is the result (exhibiting the points at which the 

control enzymes are inhibited or denatured in ranges A and C).  

 



  

 

Figure 5.1 The relationship between the rate of development and temperature illustrating both the 
non-linear (A and C) and linear portions used to calculate the lower threshold (LT) and thermal 
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The relationship between the rate of development and temperature illustrating both the 
linear (A and C) and linear portions used to calculate the lower threshold (LT) and thermal 

constant (K) (after Campbell et al., 1974). 
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generally empirically derived via the identification of (what is perceived to be) the most 

limiting factor (temperature), in order to demonstrate the dependence of development 

(the dependent variable) on the limiting factor (independent variable). Central to 

modelling the phenology of any pest is a thorough understanding of this relationship 

that exists between developmental ‘rates’ and temperature, and its role in relation to pest 

management (such as the timing of reproduction, development, population peaks or 

migration). 

 

5.3 Critical thresholds and degree days 

The definition of ‘critical thresholds’ are fundamental to any discussion regarding the 

effect of thermal energy on organismal development. As temperature increases above a 

base temperature within a particular species’ temperature range, their development 

increases up to an optimum point, hereafter referred to as Topt; after which further 

increases in temperature impart a negative impact on the rate of development. The ‘base 

temperature’ or temperature below which no measurable development occurs is referred 

to as the lower threshold (LT), while the temperature above which development ceases, 

is termed the lethal or upper threshold (UT). These ‘critical thresholds’ are commonly 

derived by utilising a preselected development model, in conjunction with laboratory 

data in which cohorts of organisms are kept at a variety of constant (more common) or 

fluctuating temperatures and their associated development times recorded.  

Insect development is dependent on time, but more pertinently, developmental rates are 

dependent on the climate to which the organisms are exposed during their life cycle 

(Campbell et al.,1974). As a result, the majority of models used to describe insect 

development and phenology are temperature-based which include some temporal 

element. According to Andrewartha and Birch (1954) the amount of accumulated heat 

required for an insect to complete a developmental stage is fixed and known as a 

‘thermal constant’ (Uvarov, 1931). The method most commonly used to measure the 

accumulation of heat is that of degree-days (DD) or ‘growing degree days’ (GDD) 

which facilitates the measurement of thermal energy above the LT (and sometimes 

below the UT) on a species-specific basis (Cesaraccio et al., 2001; Pruess, 1983; Zalom 

et al., 1983).  Most plant and insect developmental rates display a largely linear 

response over a range of temperatures (Campbell et al.,1974) within their thermal 
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window and the use of DD is based on this linear relationship. This assumption of 

linearity is based on the notion that insects are well adapted to their local climates, 

which suggests that exposure to extreme temperatures would be rare within their 

geographic region (Campbell et al., 1974). With this in mind, it is therefore logical to 

assume that the amount of development that takes place during a time period will be 

proportional to the length of time multiplied by the temperature above the LT.  

A degree-day can be defined as a measure of the amount of thermal energy accumulated 

above a specified LT (in degrees ˚C or ˚F) during a 24 hour period, during which a 

degree-day is accumulated for every degree the mean temperature remains above the 

LT. The relationship which exists between temperature and rate of development has 

proven to be an extremely useful methodology in ecological modelling and integrated 

pest management. For example, DD are a widely used tool to enable proximal 

indications of phenological events in agricultural and natural ecosystems by utilising the 

accumulation of DD units based on observed daily minimum and maximum 

temperatures (Faust and Weston, 2009; Pruess, 1983; Reji, 2008; Zalom et al., 1983).  

 

The rate of development is the reciprocal of development time and it is this rate, plotted 

against temperature which facilitates the calculation of the critical thresholds. This 

simplification of the relationship illustrates the linearity of the temperature/rate 

relationship over ‘Range B’ in Figure 5.1 while in ranges A and C; there is a distinct 

non-linear response to temperature. Methods for dealing with non-linearity in datasets 

will be discussed in more detail in the next section, however for the purposes of this 

initial discussion of development rates, the linear response of development to 

temperature has facilitated the derivation of LTs and ‘thermal constants’ for numerous 

species in the literature. The thermal constant (K) is defined as the number of DD above 

the LT required for a development stage or generation to complete its development. In 

the example of Campbell et al. (1974), the greater part of temperatures experienced in 

the field were found within the ranges A and B (Figure 5.1) which allows the majority 

of the rate/temperature relationship to be described by a straight line in the Range B. 

The extension of this line in Range A facilitates the derivation of the LT, using a 

straightforward regression of the form below (Equation 1) where a is the intercept and b 

is the slope in the regression: 

 



  

89 
 

 � = � + �� Equation 1 

 

which intersects the x axis at the LT (Equation 2), where: 

 

 �� = 	−�/� Equation 2 

 

In addition, K (Equation 3) can be calculated as the reciprocal of the slope of the line in 

Range B, where ‘b’ is the slope.  

 

 � = 1/� Equation 3 

 

However, the derivation of rates of development in Range A (Figure 5.1) employing 

this approach, were not considered ‘practical’ by Campbell et al. (1974) owing to the 

extremely low rates of development and high mortality which were likely to occur. 

These factors are important where all the critical thresholds are desired and will be 

discussed later in this chapter.  This ‘linear approximation’ method has been suggested 

to overestimate the LT (Zalom et al., 1983). Despite this, owing to the low 

aforementioned developmental rates reported for temperatures close to the LT, the 

difference between predicted (based on the linear approximation) and actual (based on 

laboratory data) is usually considered negligible. The derivation of thermal information 

such as the LT and K are central to the use of DD in Integrated Pest Management 

(IPM), as degree day units only have biological meaning when utilised in conjunction 

with these two variables. The utility of DD has enjoyed much success owing to its 

simplicity and predictive capacity within IPM (Pruess, 1983), facilitating the 

development of phenological models for numerous species based both solely and partly 

on the DD concept (Campbell et al., 1974; Faust and Weston, 2009; Pruess, 1983; Reji, 

2008). This type of methodology has also been made readily-available online for the 

general public in the form of ‘degree-day calculators’ (e.g. ISWS; UCDavis, 2012).  
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5.4 Degree day methods 

Understanding the thermal requirements of any pest is paramount to the formulation of 

degree-day models in pest management. Three main assumptions are made when 

utilising a DD approach: Firstly, that there is a base temperature (LT) below which no 

development occurs. Secondly, that the amount of energy in the system at a given time 

unit, is proportional to the amount of development that will occur for that unit-time. 

Finally, that the developmental stage will be completed when the predetermined number 

of DD (K) is reached. In Ireland, the subject area of DD in relation to IPM has been 

seldom broached in the scientific literature; however the studies which have utilised 

some form of DD methodology in a biological context, have used generic LTs for 

groups of organisms (Burke, 1968; Fealy and Fealy, 2008; McEntee, 2010) in an effort 

to generally quantify the thermal energy in the system of interest. The evaluation of DD 

methods has received considerable attention in the international literature to date, along 

with the argument for the use of hourly temperature data in preference to daily data. The 

most common DD methods include:  (i) averaging, (ii) single triangulation, (iii) double 

triangulation, (iv) single sine and (v) double sine method (a full description of each can 

be found in Zalom et al. (1983)). For each of these methods, the rate of development is 

assumed to be a function (ƒ) of temperature of the form: 

 

 
���� 	= �(�(��� Equation 4 

 

where x is developmental age and T(t) is the temperature at time t (Allen, 1976). This 

essentially means that each of these methods are considered to be entirely linear, owing 

to the assumption that a straight line directly relates temperature to rate of development. 

For each method, six possible scenarios can exist between the daily temperature cycle 

and the developmental thresholds: The temperature cycle can be (i) completely above 

both thresholds (ii) completely below both thresholds, (iii) completely between both 

thresholds, (iv) intercepted by the lower threshold, (v) intercepted by the upper 

threshold or (vi) intercepted by both thresholds (Zalom et al., 1983). Depending on the 

temperature regime, different equations can be used to calculate the DD for that day. 

Evaluations of these methods have highlighted the averaging method as the least 

accurate (Roltsch et al., 1999; Zalom et al., 1983) specifically in cases (iv),(v) or (vi) 
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where the temperature exceeded the UT or fell below the LT. This averaging method is 

calculated by: 

 

 
���	����������� + ���	�����������2 	− �� Equation 5 

 

This method has been shown to be uniquely impacted by minimum temperatures below 

the LT. For example, a LT of 5˚C would yield an incorrect DD total of zero if the daily 

temperature ranged from a minimum of 1˚C to a maximum of 9˚C (implying an average 

of 5˚C), when in fact there is energy available in the system once the LT is breached. In 

case (iii) above, any of the methods are adequate for purpose, however the single sine 

method (Baskerville and Emin, 1969) has emerged as one of the more widely used 

methods for estimating DD. This method takes advantage of the fact that a diurnal 

temperature curve closely approximates a trigonometric sine curve and uses daily 

minimum and maximum temperatures to produce the curve. DD are calculated from the 

area below the curve and above the LT. While the averaging method utilises only the 

LT, the single sine method requires an UT in order to calculate the DD for that unit 

time. However, this threshold can not be derived using the ‘linear approximation’ 

method discussed above due to the inherent linearity of the model. In order to derive a 

UT, alternative methods must be utilised which capture the nonlinear portion of 

development in the upper part of the curve allowing for the estimation of a UT. 

Nonlinear methods utilised for this purpose will be discussed in detail later in this 

chapter.  

 

5.4.1 Hourly versus daily temperature data 

Due to the dependency of development rate on temperature, the existence of diurnal 

variation in temperature over the daily time period should not be neglected.  Burke 

(1968) calculated degree day accumulations for a range of meteorological stations in 

Ireland using both hourly and daily temperature data. He found that while the utilisation 

of hourly data was preferable owing to its ability to realistically approximate the actual 

amount of heat being accumulated per day, the differences between the two different 

time steps were found to be ‘small’ from March to September, while the differences 

were slightly higher in the winter months. This finding has been echoed in a study by 
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Roltsch et al. (1999) in which a variety of DD methods were tested using hourly versus 

daily temperature data. They found that DD estimates from each of the methods used 

were more similar to one another during the spring and summer months than that of the 

winter months. The differences between the use of hourly and daily data can be related 

to the temperature regime experienced on a daily basis; as well as the relationship 

between the daily maximum/ minimum temperatures and the developmental thresholds. 

For example, a day in which the temperature remains around the LT for the majority of 

the day and suddenly increases for a short period of time, would produce a daily DD 

accumulation estimation in excess of the actual energy in the system for that day.  

 

Further error is induced in instances where the daily minimum temperature is below the 

LT, or in cases where unusually high maximum temperatures occur (Zalom et al., 

1983). These types of errors however, are closely associated with the specific choice of 

DD accumulation method as previously discussed. Despite the discrepancies related to 

the choice of degree day calculation method, the norm is to use daily minimum and 

maximum temperatures instead of hourly, due to the readily available nature of this data 

from most meteorological stations. It is important however to bear in mind, that the 

majority of experimentally derived developmental data has been reported using daily 

maximum/minimum temperature approximations which will incorporate any biases 

which are unique to the method and time unit of choice. This means that the use of 

‘degree hours’ based on daily laboratory-derived temperature data will still maintain a 

certain amount of error as a result of the source development data. As a result, the 

potential for hourly values to be ‘too accurate’ for our current knowledge of species 

development has been highlighted as a potential issue with this methodology (Zalom et 

al., 1983). 

 

5.5 Non linearity in response to temperature 

While the linear model (Equation 1) discussed above has been found to be sufficiently 

adequate over favourable temperature regimes, it necessarily simplifies the inherently 

nonlinear relationship between development rate and temperature in insects. The linear 

approach remains useful for estimating the LT and K (Campbell et al.,1974), however it 

does not facilitate the realistic extrapolation of laboratory data over a wider temperature 
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range where the relationship shifts to one of nonlinearity (Damos and Savopoulou-

soultani, 2012; Lactin et al., 1995). Attempting to use the linear model under nonlinear 

circumstances would simply lead to larger differences between observed and predicted 

development rates. Under controlled laboratory conditions, the relationship between 

temperature and development tends towards non-linearity over the full range of species-

specific non-lethal temperatures; and numerous attempts have been made in an effort to 

model the nonlinear portions of development within Ranges A and C (Figure 5.1) with 

varying results (Brière et al.,1999; Hilbert and Logan 1983; Lactin et al.,1995; Stinner 

et al.,1975). Nonlinear models can not estimate the thermal constant (as with the linear 

approximation method); however many facilitate the derivation of Topt, as well as the 

lethal or maximum temperature (UT) via simulation. These functions can also be used 

to accumulate the amount of development experienced by an organism in response to 

fluctuating temperature regimes (Liu et al., 1995), a process that will be discussed later 

in this chapter. 

 

There are a wide variety of nonlinear models available for use in critical threshold 

derivation, many of which have been assessed for their ability to realistically produce 

thresholds which facilitate the execution of developmental models (Damos and 

Savopoulou-soultani, 2012; Medeiros et al., 2004; Sanchez-Ramos et al., 2007). These 

models are designed in order to improve our ability to simulate development at the 

nonlinear portions of development near the species-of-interests’ thresholds. Nonlinear 

models delimit all of the factors which impact the system in question, to the most 

influential variable in an effort to identify the dependence of development on the 

limiting factor (ie. temperature). If successful, these models can be utilised to describe 

the behaviour of a system outside of the initial conditions of that system (ie. constant or 

fluctuating temperatures) (Damos and Saopoulou-soultani, 2012). In general, nonlinear 

models utilise either a sigmoid or exponential equation and vary in their degrees of 

complexity (Brière et al.,1999). These types of models generally provide a good fit to 

experimental data, and in some cases incorporate parameter estimates which can be 

interpreted biologically (Logan et al., 1976; Schoolfield et al., 1981; Wagner et al., 

1984). This section will review a number of the more common nonlinear models 

available (chosen as a result of the frequency of their use in the literature) and discuss 

model selection criteria. 
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5.5.1 Stinner Model 

The modified sigmoid function utilised by Stinner et al. (1974) facilitates the derivation 

of Topt, but not the LT or UT, owing to the fact that it is asymptotic to the x-axis at both 

low and high temperature extremes. Stinner et al. (1974) purport that the proposed 

model (hereto after referred to as the ‘Stinner model’) is an improvement on Janisch's 

(1932) model (hereto after referred to as the ‘Janisch model’), in that the lower end of 

the temperature range is better represented, while moderate and high temperatures are at 

least as accurate as the catenary Janisch model. The sigmoidal equation of the Stinner 

model assumes symmetry about the optimum (which is not biologically realistic) and 

some authors (Kontodimas et al., 2004; Logan et al., 1976; Wagner et al., 1984) have 

suggested that this model is inaccurate at high temperatures as a result of this symmetry. 

According to the Stinner model, the symmetry is considered negligible, owing to the 

rapid descent to zero development following temperatures above the optimum. The 

model itself is relatively simple, incorporating a sigmoid function with an inverted 

relationship when the temperature surpasses the optima and is of the form: 

 

 �(�� = 	 �(1 +	����� !′� Equation 6 

 

where T is the temperature, c, k1 and k2 are empirical constants, and T’ = T, where T < 

Tm and T’ = 2 * Topt – t, where T > Topt.  The model was found to be almost 30% more 

accurate than the linear approach for the cabbage looper, while comparisons between 

the catenary exponential approach (Janisch, 1932) and the Stinner model produced 

differences in error of 14.8-118.9% and 6% respectively. It is not entirely surprising that 

differences were found, particularly between the linear and Stinner model, if one 

considers the temperature range over which the linear model is capable of accurately 

reproducing rate data (ie. it fails in the nonlinear portions of development). The 

differences proclaimed by Stinner et al. (1974) between the Janisch model and their 

own model may simply be due to the different emphasis placed on explaining different 

parts of the curve by the authors (the emphasis in the Stinner model was on the low 

temperature portion of development, while the Janisch model concentrated 

preferentially on the upper portion). Alternatively, it could be argued that ‘curve-fitting’ 
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to a pre-existing function for developmental data will always have potential to be less 

accurate than a case-specific derived function for insect development. 

 

5.5.2 Logan Models 

The Logan model (Logan et al., 1976) is comprised of two asymptotic functions and has 

been reported to be more descriptive than the Stinner model (Wagner et al.,1984). This 

model has the added benefit of being capable of estimating the UT, although the 

calculation of a LT is still not possible. The first equation is concerned with the 

ascending sigmoidal portion of development as temperatures increase, and the second 

represents the descending part of development with increasing temperatures once the 

optima is surpassed. The two models are commonly referred to as the Logan-6 and the 

Logan-10 models. The Logan-6 model is defined by the equation: 

 

 �(�� = 	"(�#! − �#!$%(!$%!� &!'   Equation 7 

 

where T is the temperature, ψ is the maximum developmental rate, ρ is a constant which 

defines the rate at the Topt, Tm is the lethal upper temperature and ∆T is the temperature 

range over which physiological breakdown occurs. The Logan-10 model is defined as: 

 

 �(�� = 	( ) ����*+,- −	�!$%. &!' /  Equation 8 

 

Where α and k are empirical constants, and T, ρ, Tm and ∆T are as in Logan-6. 

 

5.5.3 Logan Type III Model 

It has been noted the above Logan models can overestimate growth at lower 

temperatures (Hilbert and Logan, 1983). As a result these equations were improved 

upon by Hilbert and Logan (1983) to facilitate the calculation of the LT. The 

mathematical equation for this model is: 
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 �(�� =	= 	 0" 1 (� − ��� (� − ��� − 2 3 − �4%!$%	(!%!5�&! 6	7 Equation 9 

 

where T is temperature, r(T)is the rate of development at temperature T, Tb is the LT, 

Tm is the lethal maximum temperature threshold (˚C above Tb), ∆T is the width of the 

high-temperature boundary area, and finally ψ and D are parameters. 

 

5.5.4 Lactin Model 

Lactin et al. (1995) modified the Logan-6 model of Logan et al. (1976) by removing a 

redundant parameter ψ and introducing an intercept parameter λ. The parameter λ 

allows the curve to intersect the abscissa at suboptimal temperatures, thus facilitating 

the estimation of a LT.  Lactin’s expression is: 

 

 �(�� = 	 �#. − �8#!$9:%(!$9:%!�& ; + < Equation 10 

 

where T is temperature, r(T) is the rate of development at temperature T, Tmax is the 

supraoptimal temperature at which r(T) = λ. ∆ and ρ are parameters to be estimated (the 

range of temperatures between Tmax and the temperature at which r(T) is maximum, 

and the acceleration of the function from the LT to the UT respectively). The Lactin 

model (Lactin et al., 1995) was tested against the original Logan model (Logan et al., 

1976) for six different insect species. Statistical analysis indicated that the inclusion of 

the parameter λ facilitated the best fit to observed data (Lactin et al., 1995), however the 

improvement was not found to be statistically significant. This does not however, 

negate the utility of the modification carried out for the Lactin model. The significance 

of the additive effect of λ was measured using a likelihood ratio test; which incorporates 

a measure of the residual sum of squares (RSS). The RSS is contributed to by the 

availability of data points, which is lower in the low temperature range for the tested 

models.  This point becomes more pertinent when one considers that both the Lactin 

and the original Logan model differ only in relation to the lower portion of the 

temperature range. As a result, the significance level of the improvement of the fit 

statistic in the Lactin model can be explained by the sparsity of data points about the 

lower temperature range. The Lactin model is capable of estimating all of the critical 
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thresholds and has been extensively used within modelling studies across a range of 

species (Golizadeh et al., 2007; Kontodimas et al., 2004; Roy et al., 2002; Sanchez-

Ramos et al., 2007) including a species of aphid (McCornack et al., 2004). The ability 

of the model to reflect the fact that development ceases at suboptimal temperatures is a 

realistic improvement on the original Logan model, while simultaneously providing a 

LT for use in further modelling studies. 

 

5.5.5 Brière Model 

Brière et al. (1999) developed a simplified model of development (Brière model) which 

incorporated the estimation of a smaller number of parameters than Lactin’s (1995) and 

is of the form:  

 

 �(�� = 	� ∗ � ∗ (� − ����� ∗ √�? − � Equation 11 

 

The Brière model was originally developed in an effort to improve on results using the 

model of Logan et al. (1976) for the grape berry moth (Lobesia botrana), by reducing 

the number of parameters used by Logan et al. (1976). Advantages of the Brière model 

include the explicit inclusion of the LT and UT within the equation, as well as a reduced 

number of parameters for estimation. The parameters in this model should not be 

construed as having any biochemical interpretation as such; however, their graphical 

representation can be interpreted in a biologically meaningful fashion. While this model 

is capable of estimating all of the critical thresholds, it has been shown to overestimate 

the UT on occasion (Jalali et al., 2010; Kontodimas et al., 2004). Despite this, the 

model has been found to perform well for a number of species within the literature (e.g. 

Golizadeh et al., 2007; Haghani et al., 2006; Kontodimas et al., 2004; Nielsen et al., 

2008).  The main strength of this model, according to Brière et al. (1999) lies in its 

simplicity, as well as its fulfillment of a priori-defined criteria: (1) estimation of LT and 

UT (2) asymmetry around Topt (3) presence of an inflection point and (4) a sharp decline 

in development at high temperatures. 
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5.5.6 The Sharpe and DeMichele Model  

The empirical models above describe part of the response curve to temperature and are 

only a small representation of the array of nonlinear models available in the literature. 

While many of the models available are based entirely in empiricism, some models 

contain parameters which can be interpreted biologically (e.g. ρ as a rate increase in 

Lactin). This can be construed as a major asset in model selection, as it not only 

describes, but also endeavours to explain the relationship between development and 

temperature in terms of the underlying physiological mechanisms (Walgama and 

Zalucki, 2006a). A departure from the empirical models is evident in the biophysical 

model of Sharpe and DeMichele (1977), which was modified by Schoolfield et al. 

(1981) (hereafter referred to as the Schoolfield model).  As the name suggests, 

biophysical models are based on the biophysics of reaction-rates in response to 

temperature. These types of models utilise the premise that development is simply a 

physical manifestation of the underlying enzymatic activity, within which, temperature 

promotes or inhibits catalysis at a molecular level. According to Wagner (1984, 1995), 

the use of models which are not based on biophysical laws are inferior to those based on 

true biological mechanisms, rendering their extrapolation to untested temperatures 

untenable. This biophysical approach to modelling development-temperature 

relationships attempts to describe the biological mechanisms controlling species 

development. The original Sharpe and DeMichele model (1977) was formulated as a 

complex biophysical model designed to describe the rate of development at both the 

nonlinear development extremes as well linear portion of development in-between.  The 

original model and it’s modification (the Schoolfield model) are modifications of the 

Arrhenius equation (Arrhenius, 1889) and assumes that the rate of development is 

controlled by a single enzyme which is reversibly denatured at extreme high and low 

temperatures. The modification is of the form:  

 

�(�� =
@AB C	 D �298.15I ��� JDAK@ IL 1298.15 − 1�MN1 + ��� )DAO@ I D 1�O − 1�I/ + ��� )DAP@ I D 1�P − 1�I/ 

Equation 12 
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where R is the universal gas constant, T is temperature, RHO25 is the developmental rate 

at 25°C, HA is the enthalpy of activation of the reaction which is catalysed by a rate-

controlling enzyme, Tl is the temperature (K) at which the enzyme is half low-

temperature inactive, TH is the temperature (K) at which the enzyme is half high-

temperature inactive, and HH is the change in enthalpy associated with high temperature 

inactivation of the enzyme. The Schoolfield model requires the estimation of the highest 

number (six) of coefficients of all the models. The modifications performed 

(Schoolfield et al., 1981) also facilitated more intuitive biological interpretation of new 

parameters, such as the role of the denominator in (Equation 12), which represents the 

fraction of rate-controlling enzyme that is in an active state.  Despite the realistic 

biological basis for this model, in its original form (Sharpe and DeMichele, 1977), it has 

been reported to overestimate insect development at low and high (near-lethal) 

temperatures (Hilbert and Logan, 1983). The high levels of correlation between the 

model parameters also render it poorly suited to nonlinear regression techniques (Brière 

et al., 1999; Wagner et al., 1984; Wang et al., 2004). The re-parameterisation by 

Schoolfield et al. (1981) served to improve the non-linear regression problem; however, 

its inability to estimate a LT due to the asymptotic nature of the function and its high 

number of fitted parameters decreases its utility in modelling studies. 

 

5.6 Evaluation of nonlinear models 

To date, no one model has emerged as superior to all others, but rather one model could 

be superior in relation to a specific species. Each of these models can be tested for their 

ability to simulate field/lab data for the species in question, using various approaches 

such as ordinary least squares regression (OLS) (which minimise the sum of square 

residuals for the regression function of interest) (Damos and Savopoulou-soultani, 

2012). The model can then be evaluated by assessing the residual sum of squares (SSE) 

or the adjusted coefficient of determination (R2
adj) which accounts for the amount of 

variance explained within the model in question. As an example, Sanchez-Ramos et al. 

(2007) evaluated a number of nonlinear models in an effort to identify the ‘best’ model 

to provide fit to their data for two different species of mites. Using the coefficient of 

determination as a fit statistic, they found that it was necessary to use both the Hilbert 

and Logan (1983) model and the Lactin (1995) model to describe the relationship 

between temperature and development for two species of mites. This type of finding is 
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iterated throughout the literature, with various models performing better for different 

species over a range of temperatures (e.g. Roy et al., 2002; Wang et al., 2004; Sanchez-

Ramos et al., 2007; Golizadeh et al., 2007) illustrating the point that some models 

perform better than others for different species. Some models simply out-perform others 

in their ability to estimate a greater number of desired critical thresholds. For example, 

the models of Sharpe and DeMichele (1977) and Logan et al. (1976) do not estimate the 

LT, while other models such as Lactin et al. (1995) and Brière (1999) estimate all three 

critical thresholds (Table 5.2). With these points in mind, a simple framework outlining 

a number of both a priori and a posteriori evaluation criteria can be utilised in an effort 

to inform final model choice (Table 5.1) for describing development. These criteria will 

be employed later in the chapter to aid in the final developmental model selection 

process for S. avenae. 

 

 
A priori 

 

 
A posteriori 

 

• Is the model capable of deriving 
the critical thresholds of interest 
(Table 5.2)? 

• Does the model incorporate 
parameters which are biologically 
realistic in terms of the concerned 
species’ biology 

 
• Does the model minimise the 

number of parameters to be 
estimated (Table 5.2)? 

• The estimated parameters must 
provide a good fit to the data  
according to the fit statistics chosen 

 
• Does the model include 

coefficients which can be 
interpreted biologically? 

Table 5.1 A priori and a posteriori evaluation criteria for nonlinear models 
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Model 

 
Number of 
parameters 

 
Calculates 

all 
thresholds 

 
 

Reference 

Linear  

Y = a + bt 
 
2 

 
No 

(Campbell 
et al.,1974) 

Stinner       r(T) =              c                                                                

                                  (1 + ek1 + k2T’) 
 
3 

 
No 

 
(Stinner et 
al.,1974) 

Logan 6 and 10 

r(T) = ψ(e(ρT) – e(ρTm-(Tm – T)/∆T)) 

r(T) = α((1/(1 + ke(-ρt))) – e(-(Tm-T)/∆T)) 

 
4 
5 

 
No 

 
(Logan et 
al., 1976) 

Logan III 

r(T) = [ψ(T – Tb)
2/(T – Tb)

2 + D2) – e-((Tm-(T-Tb))/∆T)]                           
 
5 

 
Yes 

(Hilbert 
and Logan, 
1983) 

Sharpe and DeMichele  

r(T) =   RHO25(T/298.15)exp((HA/R)(1/298.15-1/T)) 

       1+exp((HL/R)(1/TL-1/T))+exp((HH/R)(1/TH-1/T)) 

 
6 

 
No 

 
(Sharpe 
and 
DeMichele, 
1977) 

Lactin 

 r(T) = eρt – e[ρTmax-(Tmax-T)/∆] + λ                                      
 
4 

 
Yes 

 
(Lactin et 
al.,1995) 

Brière 

1/D = a x T x (T – Tmin) x √ Tl – T                                         
 
3 

 
Yes 

 
(Brière et 
al.,1999) 

Table 5.2 Available models for estimating critical thresholds in species development models 

 

5.7 Nonlinear models and the instantaneous fraction of development 

In an entomological context, it is critical that the temperature-response of the organism 

in question is obtainable over the entire temperature spectrum, if one is to succeed in 

accurately describing the developmental curve over a given time period. The universal 

application of a range of nonlinear models is made possible by Taylors’ (1981) 

observation that the nonlinear function which describes the temperature-development 

rate curve is proximately similar for most species. The utility of the nonlinear models 

described above can be extended past the derivation of thresholds, to simulating 

development in a fluctuating temperature regime. Development-rate models are 

particularly useful in this instance, as they utilise the assumption that development rate 

at a given temperature is independent of the overall thermal regime (Liu et al.,1995) and 

that the developmental rate is constant over the lifetime of an organism under constant 

temperature. As a result, development follows a defined function in respect to 

temperature and the amount of development achieved can be calculated by summing the 
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individual amounts of development per unit time. It is worth mentioning that this form 

of nonlinear modelling is deterministic, as it is solely concerned with the mean 

developmental rate for a specific temperature, as opposed to the variability around that 

mean. 

 

The instantaneous rate for a given temperature is calculated by dividing a ‘whole 

development unit’ (i.e. 1) by the number of time units it took to complete the stage at 

that temperature (Uvarov, 1931). This is the premise behind using the reciprocal of 

developmental time to explain the rate. This approach is termed ‘rate summation’ 

(Kaufmann, 1932) and facilitates the accumulation of ‘instantaneous fractions of 

development’ up to a total of one, when development for the mean of a predefined stage 

or generation is completed. The function is expressed as: 

 

 2 = Q�R�(��S�� Equation 13 

                                              

where D (development) is a function of temperature (T), which is in turn a function of 

time (t). The development rate (r) then adjusts instantaneously to changes in 

temperature (Liu et al.,1995). Development rate is the reciprocal of development time in 

time units and is represented by values between 0 and 1, which facilitates the utilisation 

of the integral of a function of development-rate through time, to simulate the response 

of an organism to changes in temperatures (Medeiros et al., 2004).  

 

5.8 Uncertainty regarding nonlinear models 

As is the case with all models, the rate summation approach utilising nonlinear 

functions is ultimately a simplification of reality and as a result, has imperfections. 

Differences between the rate of development at constant and fluctuating temperature 

regimes with the same mean temperature have been noted (Worner, 1992) and have 

been postulated to be a result of the inherent nonlinearity of development (Fantinou et 

al., 2003). When temperatures fluctuate outside of the linear portion of development; 

development will be retarded at high temperatures and accelerated at low temperatures 

in comparison to constant temperatures. This effect is known as the ‘Kauffman effect’ 

and the aforementioned differences can be partially accounted for as a result of this 



  

103 
 

phenomenon. According to Liu et al. (1995) Equation 13 above adequately takes this 

effect into account. Worner (1992) stated that if a nonlinear function is assumed correct, 

then an attempt to utilise a linear function for all temperatures would simply culminate 

in underestimation of development at low temperatures and an overestimation at high 

temperatures. The evidence for nonlinearity towards species-specific temperature 

extremes has been visited throughout this chapter and for that same reason, a linear 

approach is considered unsuitable. Bearing this fact in mind, as well as the concession 

that all models are inherently flawed, the nonlinear approach and corollary rate 

summation technique will be considered in detail in the next section. The potential for 

physiological mechanisms that act in conjunction with the Kaufmann effect have also 

been postulated by Worner (1992), however this assertion was not verified either by 

Worner (1992) or in follow-up work by Liu et al. (1995). 

 

5.9 Model evaluation 

Up to this point, this chapter has provided an overview of the biological basis for 

temperature-driven insect development models, as well as outlining what are considered 

to be the most skilful and/or most widely employed models in the area. While a number 

of flaws were highlighted across the range of models, they are nonetheless considered 

plausible depictions for systems which may never be fully described. As such, the 

approach taken here is one of pragmatism, in that each of the models described will be 

tested for their adherence to the predefined criteria in Table 5.1, in an effort to produce a 

small number of candidate models. This approach is a departure from hypothesis 

testing, which would culminate in the rejection of a null hypothesis in light of the 

observed data, and the acceptance of an alternative hypothesis (accepted only as a result 

of the rejection of the null). By contrast, this method of model selection facilitates a 

more robust approach to evaluating a model’s skill, by comparing a range of models 

against one another; as opposed to evaluating them individually against an arbitrary 

probability threshold (Johnson and Omland, 2004). The approach is utilised in order to 

identify the model which is ‘best supported by the data’; otherwise referred to as the 

‘best’ or most ‘skilful’ model. In the first instance, this approach requires the selection 

of reasonable working hypotheses (in this case that each of the nonlinear developmental 

models previously described maximise both the fit and predictive capacity for the 

species concerned). The remainder of this chapter will outline the selection process for 
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the most appropriate model to describe the development of S. avenae in response to 

temperature, which will ultimately serve as the development core within the final 

simulation model (described in detail in later chapters).  

 

5.9.1 Selection of models to test 

In order to adequately describe the thermal performance of S. avenae, one of the models 

discussed previously had to be chosen in order to optimise the curve ‘fit’ to the 

development rate data of Dean (1974) (Table 5.3), as well as fulfilling the rest of the 

criteria outlined (Table 5.1). According to the a priori criteria set out earlier in this 

chapter, three models are potential candidates for use in describing the temperature-

dependent development of the grain aphid, owing to their ability to simulate all the 

critical thresholds of interest: (1) the Hilbert and Logan model (Hilbert and Logan, 

1983), (2) the Lactin model and (3) the Brière model. In the context of this study, the 

development of the grain aphid is being modelled for a temperate climate, which 

increases the importance of a model that is capable of estimating the lower threshold. 

According to the second a priori criterion, the number of parameters to be estimated 

should be minimised. This selection process would rank the Hilbert and Logan model 

(1983) as the least desirable owing to its 5 estimable parameters, followed by the Lactin 

model (4 parameters) and finally the Brière model (3 parameters). The final criterion 

stipulated outlines the importance of biological interpretation of the coefficients, which 

is particularly useful in facilitating initial parameter estimations for the nonlinear 

regression procedure. Each of these models produce coefficients which have biological 

meaning, which means that only criterion number two (relating to the number of 

parameters) provides any real method of discerning between these three models. For 

that reason, the two models with the lowest number of estimable coefficients will be 

used to fit curves to the data of  Dean (1974) and then individually assessed according 

to the a posteriori criteria oulined in Table 5.1. 
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Temp 1st Instar 2nd Instar 3rd Instar 4th Instar 

10.0 0.010152 0.012165 0.010881 0.010183 

12.5 0.011669 0.013316 0.014245 0.013351 

15.0 0.015974 0.015898 0.017271 0.015106 

17.5 0.018553 0.01938 0.018939 0.015337 

20.0 0.019268 0.021978 0.023474 0.018519 

22.5 0.021739 0.022779 0.022831 0.020121 

25.0 0.023866 0.02439 0.02584 0.020661 

27.5 0.019841 0.020833 0.020921 0.01773 

Table 5.3 Development rate (per hour) of instars 1-4 of S. avenae under different constant 
temperatures. After Dean (1974). 

 

5.10 Model fitting  

Each of the curves were fitted by iterative nonlinear regression (Minitab version 16.1.1) 

based on the Marquardt algorithm (Minitab, 2010) which is informed by the partial 

derivatives of the dependent variable with respect to each parameter. The method 

combines the ‘steepest descent’ method, which is considered to be skillful during early 

iterations, with the ‘Gauss-Newton’ method which is better at subsequent iterations. 

This approach involves iterative alterations to the parameter values in an effort to 

reduce the sum of square errors between the data points and the function (ie. the 

algorithm converges on the set of parameters which minimise the sum of the square 

residuals). Convergence-failures can occur when using this analysis for a number of 

reasons, including (1) the data contains numbers that are too large or too small; (2) the 

selected model does not fit the data well; (3) the initial values are too far removed from 

the ideal parameter values; (4) the data points are incongruously distributed or finally 

(5) the calculations are not sufficiently precise to identify convergence at the correct 

instance. The data used here (Dean, 1974a) did not raise any of the aforementioned 

issues (specifically 1, 2 and 4). Issue 5 was dealt with by setting the convergence 

criterion to 0.00001 and the maximum number of iterations was set at 15000 (in an 

effort to minimise the liklihood  of convergence failures). Issue 3 required a more 

focused approach, as it was recognised that in order to achieve a satisfactory nonlinear 

analysis and to expediate convergence to the optimum parameter set, obtaining 

appropriate starting values for the model coefficients was critical.  
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Firstly, the behaviour of each of the functions in respect to their parameters was 

considered. As mentioned earlier, a number of the parameters within each of the 

nonlinear functions can be biologically interpreted. This facilitated an approximation of 

certain parameter starting values. These starting values were also compared with  

similar experiments and model fitting studies for other insect species (e.g. Jalali et al., 

2010; Kontodimas et al., 2004; Sanchez-Ramos et al., 2007; Walgama and Zalucki, 

2006b). Studies on different groups of insects further informed the initial parameter 

values, in respect to the sign (positive or negative) or magnitude of the coefficient. 

Convergence on a ‘local SSE minimum’ (a parameter set produced by nonlinear 

analysis when the SSE (sum of squares due to error) is no longer improving, but when 

there exists a different set of parameters which is further optimised) was tested for by 

running the same analysis with different starting values to ensure that the parameter 

estimates were consistent.  

 

5.11 Lactin and Brière Model fit 

Figure 5.2  and Figure 5.3 illustrate the best fit line to the observations using both the 

Lactin and Brière models respectively. On initial examination, both of the functions 

appear to describe the data quite well. In the case of Lactin, the LT and the UT are 

determined via simulation (Figure 5.2), which produces values for the LT ranging from 

-3.9°C to -0.2°C, while the UT varies between 29°C and 30.2°C across the instars. The 

SSE is consistently smaller across the instars using the Lactin model (Table 5.4 (i)). In 

reference to the Brière model, the thresholds can be read directly from the parameters 

(owing to their explicit inclusion) ‘Tmin’ and ‘Tl’ respectively (Table 5.4). Tmin in this 

case ranges from approximately -28°C to -10°C; while the lethal threshold (Tl) is 

estimated to be between 31°C and 32°C for instars 1-4. 
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Figure 5.2 Hourly temperature-dependent development rate for instars 1-4 of Sitobion avenae  
(observations = blue markers) fitted using the the parameterised Lactin model (Lactin et al., 1995). 

 

Figure 5.3 Hourly temperature-dependent development data for instars 1-4 of Sitobion avenae 
(observations = blue markers) fitted using the parameterised Brière model (Brière et al., 1999)
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(i) 

Parameter 

Lactin 

 

1st Instar 

 

2nd Instar 

 

3rd Instar 

 

4th Instar 

ρ 0.0010±0.00011 0.0010±0.00011 0.0011±0.00016 0.0008±0.000100 

Tmax 34.1615±4.28336 36.9594±3.88506 36.5455±4.83136 36.1135±4.81106 

∆ 1.3513±0.90177 1.9533±0.85221 1.9361±1.09978 1.6963±0.99479 

λ -0.9995±0.00171 -0.9983±0.00157 -0.9997±0.00242 -0.9969±0.00154 

SSE 0.0000036 0.0000022 0.0000053 0.0000024 

 

(ii) 

Parameter 

Brière 

 

1st Instar 

 

2nd Instar 

 

3rd Instar 

 

4th Instar 

A 1.0E-05±3.00E-06 9.0E-06±2.00E-06 1.1E-05±3.00E-06 6.0E-06±2.00E-06 

Tmin -10.3534±6.1563 -16.4083±7.945 -10.7054±6.1939 -28.349±17.9174 

Tl 31.2876±1.02317 31.5254±0.99066 30.8249±0.88012 32.05312±1.4686 

SSE 0.0000059 0.0000048 0.0000074 0.0000049 

Table 5.4 Values of the fitted coefficients, their associated Standard Errors (SE) and SSE using 
(i)  the Lactin model and (ii) the Brière model for describing the temperature-dependent 

development of the immature stages of S. avenae. 

 

5.12 Analysing the A posteriori evaluation  

In order to choose the ‘best’ model between the two, the a posteriori criteria outlined 

in Table 5.1 were applied. Firstly, each of the models were assessed for the level of 

biological realism in the estimated parameters; in particular, the LT and UT. In 

relation to the LT, significant disparities exist between the values across the instars 

within and between both of the models assessed. This is very useful in determining 

which of the models appears to be more skillful for two reasons. Firstly, the LTs 

provided by the Brière model are much lower than what would be realistically 

expected for S. avenae. As outlined in earlier chapters, this work is primarily 

concerned with the dynamics of anholocyclic clones of S. avenae, which have been 

found to be chill-susceptible, exhibiting high levels of mortality at very low 

temperatures (Powell and Bale, 2005).  
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Powell and Bale (2005) have previously found that clones of this species have the 

ability to rapdily cold-harden (RCH) when acclimatised to low-temperature regimes.  

RCH relates to an increase in survival of the species at ‘discriminating temperatures’ 

(defined as the temperature that results in approximately 20% survival after direct 

transfer from the rearing temperature to a sub-zero temperature for a period of 3 

hours). Despite this ability, the lowest discriminating temperature for nymphs cited 

by Powell and Bale (2005) was -11.5°C. Even though these temperatures did not 

induce 100% mortality in the aphid nymphs, the methodology employed required the 

aphids to be returned to an ambient temperature of 10°C before development could 

be observed. For this reason, it is highly unlikely that the LTs estimated by the 

Brière model are biologically realistic. Secondly, the Standard Errors (SE) associated 

with the Tmin coefficient for the Brière model are large relative to the size of the 

coefficient itself. When the other SE for this model are examined relative to their 

associated coefficients, it becomes apparent that the model is better at estimating the 

other two parameters within the function than ‘Tmin’. The Lactin model also 

constituted an improvement over the Brière model when it’s SE’s were assessed, as 

the SE’s associated with the estimated coefficients for the Lactin model were never 

as large relative to their associated coefficients. 

 

The second a posteriori criterion on which the models were assessed is based on the 

fit of the data to the newly parameterised function. The statistic chosen in order to 

assess the fit of the data to the model was the SSE. This statistic was chosen as it has 

been widely applied in regression analyses throughout the literature as a measure of 

discrepancy between observations and modelled data. The SSE was consistently 

smaller across all of the instars under the Lactin analysis (Table 5.4) which indicates 

that the distance between the observed data and the modelled data was minimised 

more efficiently than the Brière model. In summary, this section has used a criteria-

based approach in order to select the most appropriate nonlinear function for use as a 

development model for S. avenae in the final simulation model. Qualification of 

model skill was based on both the biological realism of the model parameters as well 

as how they performed statistically. This approach highlighted the Lactin model as 

the most suitable function for the analysis. 
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5.13 Conclusions 

Insect development and temperature are inextricably entwined. This chapter 

provided a summary of current knowledge regarding the relationship that exists 

between insect development and temperature; while also outlining a range of models 

available to simulate insect developmental response over a range of temperatures. 

The existence of a predominantly linear relationship was described, with the caveat 

that the relationship does not persist outside certain bounds or temperature 

thresholds. The descriptive capability of this relationship (based on enzymatic 

activity) facilitates the simulation of insect development under a fluctuating 

temperature regime and is at the core of all insect modelling studies.  The linear 

model has proven to be both reliable and accurate over the linear portion of 

development-related temperatures, however it does not account for the nonlinearity 

inherent to the majority of species’ development. Despite this limitation, historically, 

degree day methods are the most commonly utilised approach in phenological 

modelling. While this type of model is likely sufficient for those organisms whose 

development and reproduction are practically confined to temperatures within the 

linear portions of a development curve, for many species, the necessity to define 

what occurs outside of that region is evident (particularly in the case of economically 

important agricultural pests). For this reason, the nonlinear approach is justified for 

use in this study.  

 

The requirement to choose the most appropriate nonlinear model requires both a 

priori  and a posteriori decisions to be made. The criteria outlined in this chapter 

provided the necessary checklist of decisions to be performed when choosing a 

model to describe temperature-dependent development in poikilotherms. The 

number of critical thresholds required is paramount to the selection of a specific 

model, however once this has been fulfilled, the remaining decisions are assisted via 

the use of statistical tests, curve fitting and biological interpretation. The nonlinear 

development rate-tempertaure functions described here are typical of most insects 

(Briere and Pracros, 1998). As a result, there are a number of nonlinear functions or 

development rate models that could potenially have described the development of S. 

avenae, depending on the selection criteria utilised. However, following ‘model 

fitting’ and parameter assessment, the Lactin model was chosen to describe the 
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development-temperature relationship in S. avenae in order to provide the 

development-submodel required in the overall simulation model described in the 

next chapter. The use of the Lactin model will provide the mechanism to describe the 

core development of S. avenae, however additional facets of the species biology 

need to be incorporated into the final model if a realistic representation of population 

development are to be achieved. The next chapter will decribe each of these 

additional model components of the aphids biology in detail. 
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CHAPTER 6  

DESCRIPTION OF THE SIMULATION MODEL 

 

6.1 Introduction 

The previous chapter outlined a criteria-based selection process to identify an 

optimal nonlinear function capable of describing the instantaneous rate of 

development in S. avenae in response to temperature. The chosen parameterised 

model (Lactin model)  (Lactin et al., 1995) was utilised within the simulation model 

described here to quantify the rate of development in the spring/summer population 

dynamics of S. avenae. The Lactin model will account for the ‘development’ 

submodel within the overall simulation model, referred to as SAV4. The simulation 

model is comprised of numerous components, including immigration, morph 

determination, reproduction, mortality, temperature, prereproductive period and crop 

growth. Elements of the model are based on Carters (1978) original FORTRAN 

model (SAM7) and Skirvins (1995) modified version of the same model; however 

the core development submodel has been completely redesigned, and the equations 

used for the other model components have been updated/improved. The model has 

been programmed in Matlab and can be found in Appendix A and B. The previous 

models were developed in the UK and were designed to model the dynamics of S. 

avenae in conjunction with predator populations in wheat. The model outlined here 

utilises literature-derived data from UK sources and resulting empirical relationships 

to describe the dynamics of S. avenae in spring barley in the absence of biological 

control/predator factors, which will then be applied in an Irish context under climate 

change scenarios. 

 

6.2 SAV4 

SAV4 assumes that the entire population of S. avenae overwinters anholocyclically 

(in an active form). The use of a simulation model facilitates the simplification of 

various biological processes down to their component parts (as previously outlined 

in hierarchy theory), which can in turn be allowed to interact within a larger 
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‘systems’ framework (Figure 6.1). This simplification of reality facilitates the 

simulation of complicated aphid dynamics despite the absence of a stable age 

distribution and the existence of simultaneous overlapping generations. The 

framework (Figure 6.1) portrays the immigration of a stochastically simulated 

number of alate aphids daily, which are assumed to reproduce as soon as they alight 

in-field. Reproduction is dependent on temperature, morph and the crop growth 

stage. The newly born nymphs are firstly identified as either alate or apterous 

morphs depending on the crop growth stage (GS) and population density, and then 

begin development in response to modelled temperature on an hourly basis. The 

nymphs ‘age’ until they become adult and emigrate (in the case of alates) or they 

enter a pre-reproductive phase, before themselves becoming reproductively capable 

(in the case of apterous individuals) and producing new nymphs which will in turn 

age through the model. Each of the components of SAV4 are illustrated in Figure 6.1 

and will be outlined in detail in this chapter. 
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Figure 6.1 Process diagram illustrating the physical framework of SAV4 

 

6.2.1 Model Initiation: Determination of the ‘Start date’  

According to Klueken et al. (2009) the spring migration of anholocyclic aphids are 

particularly affected by both the abundance of graminaceous overwintering 

sites/plants; as well as the severity of the preceding winter. In this model, the impact 

of winter temperature is explicitly employed in the simulation of the ‘date of first 

catch’ of S. avenae; which is defined as the first Julian Day (JD) on which an aphid 

is caught on an annual basis. This metric has been found to be the most ‘consistent 

indicator’ of spring flight (Walters and Dewar, 1986) and will be utilised here as 

such. Walters and Dewar (1986) highlighted the strength of the relationship between 
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S. avenae’s phenology and temperature, by illustrating a strong positive correlation 

between first catch of the species and mean winter temperature, across three different 

traps within southern UK (Brooms barn, Rothamsted and Wye). They also tested for 

correlations between the same two variables across the same sites for Sitobion 

fragariae; a holocyclic aphid species. Walters and Dewar (1986) found no 

significant correlation between time of migration and winter temperatures at any of 

the sites for S. fragariae; while for S. avenae a significant relationship was evident in 

all but the most Northern UK sites. They posited that this relationship between 

winter temperature and first catch existed only in those species that exhibit an 

anholocyclic lifecycle strategy. As S. avenae is capable of overwintering both 

holocyclically and anholocyclically, they suggested that anholocycly predominated 

in areas where the temperature/first-flight relationship existed, while holocycly 

prevailed in regions where the relationship was tenuous (as with S. fragariae). 

 

Walters and Dewars (1986) findings, which point towards a latitudinal distribution 

of lifecycle types in the UK have been supported by others (Helden and Dixon, 

2002; Newton and Dixon, 1988); wherein samples from Scottish trap sites indicated 

that the majority of aphids were holocyclic (in comparison to mostly anholocyclic 

aphids from more southerly sites). For this reason it was assumed that aphids below 

the most southerly of Scottish latitudes (approximately 54° 38’N) would exhibit 

anholocycly as a lifecycle strategy (i.e. including Ireland). Walters and Dewar (1986) 

also noted that the relationship did not differ significantly between three of the most 

southerly suction trap sites: Brooms Barn, Rothamsted and Wye. Due to the 

similarity between these three sites; aphid catch data from just one of the sites 

(Rothamsted) was consequently employed to describe the relationship between first 

catch and winter temperatures. This relationship constitutes the submodel which 

describes the initialising JD for each annual iteration of SAV4. 

 

Data describing the daily catch numbers of S. avenae at Rothamsted from 1968 to 

2012 were obtained from Rothamsted Research in the UK. A script was written to 

identify the date of ‘first catch’ from the observations for each consecutive year from 

1968 to 2012. Meteorological data for Rothamsted was also obtained for the same 

period from Rothamsted research. Various combinations of months were tested for 

the strength of the correlation between the mean temperature and date of first catch. 
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In agreement with Harrington and Clark (2010) mean January/February temperature 

produced the strongest correlation with the date of first catch (JD). 2008 was 

identified as an outlier, owing to the magnitude of the residual associated with the 

data point. This year was removed from the dataset and a linear regression analysis 

was carried out on the remaining data (Figure 6.2). Further examination of 2008 

revealed very windy unsettled weather during February and March, while April was 

the coldest recorded since 2001; all of which could have contributed to the delay in 

first aphid catch and the subsequent atypical timing of the catch. The resulting 

regression equation was then incorporated into SAV4 to simulate the date of first 

catch based on the mean January/February temperatures of the temperature data and 

ultimately, ‘kickstart’ aphid immigration into the model. The coefficients of the 

regression analysis are presented in Table 6.1 and the equation is of the form: 

 

 � = 	TU +	T� ∗ � Equation 14 

 

where y = start day and x = temperature. 

 

β1 (Slope) β0 (Intercept) R2 

172.312 -10.639 63.7% 

Table 6.1 Linear regression coefficients  for simulating the model’s ‘Start day’ 
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Scatterplot of mean January/February temperatures at Rothamsted from 1968
versus date of first catch of S. avenae  

Model Initiation: Determination of the ‘End date’ 

(Skirvin, 1995) defined the end of migration in subjective terms using 

visual examination of the data: The end date was assumed to occur where periods of 

time (after the start date) longer than three days occurred wherein no aphids were 

caught, but which also subsequently rose to a peak of at least ten.  This approach for 

identifying the end of migration was tested with the addition of 19 extra years of 

catch data from Rothamsted. However; the method proved to be ineffective

the end date (in many cases) was identified as occurring in the autumn. 

aintain biological realism, the end date could not occur in autumn as this would 

include catch data belonging to an entirely separate migration (ie. aphids leaving the 

crop as opposed to entering it). As a result, less restrictive rules 

applied where certain conditions were met: a period of 

where the daily catch afterwards rose to a peak of more than ten individuals. When

these criteria could not be applied, a subjective decision was made as to when the 

 

ean January/February temperatures at Rothamsted from 1968-2012 

defined the end of migration in subjective terms using 

visual examination of the data: The end date was assumed to occur where periods of 

time (after the start date) longer than three days occurred wherein no aphids were 

y rose to a peak of at least ten.  This approach for 

identifying the end of migration was tested with the addition of 19 extra years of 

catch data from Rothamsted. However; the method proved to be ineffective; in that 

ified as occurring in the autumn. In order to 

the end date could not occur in autumn as this would 

(ie. aphids leaving the 

 to identify the end 

applied where certain conditions were met: a period of two/three days, 

a peak of more than ten individuals. When 

ctive decision was made as to when the 
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approximate ending of the small spring migration occurred (i.e. where a dip in the 

population occurred before the large summer peak). Despite the subjective nature of 

the ‘end-date-determination’, the regression analysis revealed that there was a 

statistically significant relationship between the start and end dates of migration for 

S. avenae using an alpha level of 0.05 (Figure 6.3). Two years of data were omitted 

due to their identification as outliers in relation to the analysis (1989 and 2002). The 

coefficients derived from this relationship are shown in Table 6.2 and are used to 

simulate the ‘end date’ of the migration based on the value of a known start day. 

 

Figure 6.3 Relationship between start and end dates of spring migration 

 

 

β1 (Slope) β0 (Intercept) R2 

0.542 92.319 57.2% 

Table 6.2 Linear regression coefficients for simulating the migration end day 



  

119 
 

6.2.3 Formulation of the temperature regimes 

The formulation of temperature regimes (cold, moderate and hot) was deemed 

necessary; due to the expectation that the immigration profile associated with each 

regime would differ between cold, moderate or hot spring/summers (discussed in 

section 6.2.4). The use of regimes also facilitated the partitioning of the data (Figure 

6.3) describing the relationship between start and end day of migration into three 

separate categories (i.e. one per regime) (Figure 6.4). This facilitated the simulation 

of the end date of migration in cognisance of the temperature conditions for that 

period. Analysis of the start and end dates from the Rothamsted observations from 

1968-2012 indicated that the end of the spring migration never surpassed the month 

of July. As a result; it was deemed inappropriate to utilise Skirvins approach (1995) 

which used August temperatures as a contributor to describing temperature regimes 

which are (for the purposes of the current model) linked to the spring migration. A 

different time period was selected as the baseline against which the temperature 

regimes would be designated. Owing to the assumption that the overwintering 

populations of S. avenae are entirely anholocyclic; the incorporation of temperatures 

preceding flight was considered apposite. This is owing to the role of temperature in 

population survivorship during the late winter months, as well as eventual build-up, 

flight and reproduction within that same populace. This approach assumes that any 

development which takes place prior to first flight will be directly linked to pre-flight 

temperatures and subsequent flight dynamics. Temperatures occurring during 

migration were also considered for incorporation into the delineation-of-regimes 

process; for the same reason as above.  

 

Various combinations of monthly temperatures were analysed; of which the period 

‘February 1st to July 18th’ was finally chosen (hereafter referred to as ‘Feb-Jul’). 

The date of July 18th may seem arbitrary at first glance; however it was chosen due 

to the fact that it is the latest recorded ‘end-day’ for the spring migration at 

Rothamsted within the data record. The analysis was carried out thus: Firstly, the 

mean temperature over the Feb-Jul period was calculated for each year using the 

daily minimum and maximum temperatures. Annual anomalies were calculated as 

follows: The mean Feb-Jul temperatures were calculated for the period 1968-2012 

and normalised against the overall mean for the period to provide temperature 
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anomalies per annum. This resulted in one standardised (temperature) difference 

between the overall mean and the annual mean for each year within the period of 

interest. The absolute value of this ‘standardised difference’ was then checked to see 

if it fell within one, two or three standard deviations (SDev) of the overall mean. 

This facilitated the grouping of years into temperature regimes: The years whose 

values were within one SDev of the overall mean; were categorised as a ‘moderate’ 

temperature regime. Those years whose ‘difference’ lay between one and two SDev, 

were allocated to either the cold or hot regime (depending on whether their mean lay 

below or above the overall mean). As previously mentioned, various periods were 

assessed for their suitability. The final choice of time period was based on the 

biological considerations outlined at the beginning of this section, as well as visual 

inspections of the resulting scatterplots (start day versus end day) for each regime. In 

some cases, the period of time selected produced regimes with as few as five data 

points; which was not considered statistically adequate for purpose. In addition, if 

any data points exerted an overly-influential effect on the underlying relationship 

between start and end dates ‘within-regime’, the time period was removed.  

 

Figure 6.4 Regression lines fitted to the ‘Feb-Jul’ regime-specific start and end dates (JD) 
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Upon visual inspection of the finalised regressions for each temperature regime, it 

was apparent that the moderate and hot regime did not appear to be overtly 

differently from one another (Figure 6.4). Each of the regimes were analysed to test 

for statistically significant differences between the slopes and intercepts, in order to 

justify their categorisation. The cold and moderate regime were found to be 

significantly different, however the coefficients of the moderate and hot regimes 

were not. Consequently, the slopes of the hot and moderate regime were set as equal 

in an effort to determine the impact of the intercept on the final output of the 

regression (i.e. the end date). This resulted in a difference of 5 days between the 

outputs of both regimes, which could potentially alter the final aphid population 

dynamics due to the additional time available for development and reproduction as a 

consequence of the amalgamation of regimes. Consequently, the maintenance of 

their partitioning into separate regimes was deemed biologically justifiable. The 

coefficients describing the relationship between start and end days within regimes 

are shown in (Table 6.3). 

 

Regime β0 β1 R2 N 
Cold 78.262 0.683 74% 7 

Moderate 101.81 0.449 44% 29 
Hot 115.09 0.3815 64% 8 

Table 6.3 Linear regression coefficients for simulating the regime-specific migration end day 

 

6.2.4 Stochastic simulation of the daily catches 

In cognisance of the absence of suction trap catches or field counts of S. avenae in 

the ultimate study area (Ireland); a method of simulating incoming aphid numbers 

for the model was required. This was achieved by randomly sampling from a 

negative binomial (nbin) distribution: the parameters of which differed per regime. 

This approach assumes that the distribution for each regime is not specific to 

Rothamsted; and is in fact transferable due to its dependency on temperature. The 

process firstly involves collating the Rothamsted catches that occurred between the 

start and the end date for each regime. Each of these datasets were visually inspected 

for any anomalies (i.e. any years within the dataset which did not approximate what 

was occurring in the rest of the dataset). One of the years was identified as 
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anomalous (1984) owing to the presence of large daily catch numbers within the 

spring immigration period. This particular year’s end date had been flagged as 

difficult to discern; owing to the absence of any ‘period-of-no-catches’ prior to the 

large summer migration. As a result, the year was excluded from the analysis owing 

to the inconsistent nature of the data within the regime. A negative binomial was 

fitted to each of the datasets and the parameters p (the probability of success) and r 

(the number of successes) were derived (specific to each regime). The parameters for 

the negative binomial distribution describing each regime are illustrated in Table 6.4; 

while the associated probability density functions (PDFs) can be seen in Figure 6.5. 

Depending on whether the mean temperature between JD 32 and 200 (Feb-Jul) are 

categorised as ‘cold’, ‘moderate’ or ‘hot’; the corresponding nbin parameters are 

utilised in the daily simulation submodel to randomly sample the ‘daily catches’ for 

the length of the migration period. 

 

The utilisation of different temperature regimes as an approach is substantiated when 

the simulated catch profiles are considered. Figure 6.6 depicts 10 migration 

simulations of 31 days each (mean length of spring migration) per regime, which 

suggest that the magnitude (number of aphids caught daily) can be quite different 

between temperature regimes. This difference, in conjunction with the earlier 

submodel illustrating how the migration period can be shifted earlier or later in the 

year in response to winter temperatures, provide different temperature-dependent 

‘initiation periods’ to the model. 

 

Regime r  p Mean Variance 
Cold 0.2716 0.3563 0.4907 1.3771 

Moderate 0.2646 0.1532 1.4625 9.5467 
Hot 0.6399 0.5163 0.5994 1.1609 

Table 6.4 Negative binomial parameters used in the simulation of daily aphid numbers 
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Figure 6.5 PDFs representing the catch numbers for each temperature regime (Hot, Moderate 
and Cold)  

 

Figure 6.6 Simulated daily aphid catches (results of ten runs) per regime 
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6.2.5 Immigration 

The aphid population is initiated using the simulated daily suction trap catches 

described above. This process incorporates the assumption that aphid numbers in the 

field can be calculated using suction trap catches; which is supported by field 

evidence from other aphid species (Harrington and Woiwod, 2007) and other 

geographic locations (Teulon et al., 2004). In particular, Leather and Walters (1984) 

found that suction trap data relating to S. avenae can be extremely useful in 

forecasting outbreaks/predicting colonisation. The immigration submodel utilised the 

simulated number of aphids caught in the suction trap to infer the number of aphids 

in-field, by multiplying the daily catch of S. avenae by two separate factors: a 

‘deposition factor’ and a ‘concentration factor’; consistent with Carter (1978). The 

former has been calculated based on the aphids mean flight time (Table 6.5) along a 

concentration gradient (Taylor and Palmer, 1972). In SAM7, the flight time was 

assumed to be 2h and the density-height gradient is -1; providing a total of 237 

aphids (asterisk in Table 6.5) per hectare for each aphid caught in the suction trap. In 

the absence of field count data for Ireland, it is assumed that this relationship is 

broadly similar in an Irish context, in order to facilitate the calculation of aphids in-

field and provide initial conditions for the model. The latter factor; refers to a 

phenomenon outlined by Carter (1985), wherein the deposition factor is found to 

underestimate the number of aphids in-field by a factor of 40. This concentration 

factor has been found to hold for various varieties of wheat and it is assumed for the 

purposes of this model, that the factor remains the same for barley crops.  

 

These daily numbers alighting in-field are used to ‘seed’ the model by providing the 

reproducing alate cohort. It is assumed that these individuals have recently moulted 

and will remain in the crop until they die. This number can then be divided by the 

number of tillers per hectare to get the number of aphids per tiller. The model does 

not incorporate topographic characteristics; which means that all fields are assumed 

to be the same. As a result, the aphid numbers are not modified to allow for field 

characteristics (slope, soil type, drainage etc). 
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Density 

Gradient 

Mean Flight Time (Hrs) 

0.5 1 2 4 8 12 24 

0 10315 5157 2579 1289 645 430 215 

-0.5 1660 830 415 207 104 69 35 

-1 948 474 *237 119 59 40 20 

-1.5 2016 1008 504 252 126 84 42 

-2 10315 5157 2579 1289 645 430 215 

Table 6.5 Number of aphids alighting in field (per hectare) per each individual aphid caught in 
a suction trap (Taylor and Palmer, 1972). 

 

6.2.6 Temperature 

For the purposes of this study, it was considered appropriate to model the hourly 

temperatures that drive development within the model for two reasons: Firstly, it was 

deemed necessary to model development at an hourly timestep; owing to the 

instantaneous rate at which aphids have been shown to respond to temperature 

(Rabbinge et al., 1979). Secondly, as the data used to train the model was based on 

hourly data (Dean, 1974a), it seemed apt to maintain the same timestep in order to 

avoid rounding errors when converting hourly data to daily. The current study 

utilised a ‘WAVE’ model after Hoogenboom and Huck (1986); which can be found 

in its entirety in Reicosky et al. (1989). The day is split into two portions: the first 

half of the day is modelled using the minimum temperature (Tmin) and the 

maximum temperature (Tmax) from that day; while the second segment uses the 

Tmax of the same day in conjunction with the Tmin of the following day. The 

‘suncycle’ function (Begler, 2008) was used in order to simulate the time of sunrise, 

based on the Julian date and the latitude of the model location. The daily Tmin is 

then set at the simulated time of sunrise, while the Tmax is set at 2pm daily. The 

equations comprising the WAVE model simulating the hourly temperature are as 

follows: 
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0 ≤ H < RISE and 

1400 < H ≤ 2400 
�(A� = ��V + ���(cos 4 Zℎ10 + @]^_6� Equation 15 

 

RISE≤H≤1400 

 

�(A� = ��V − ���(cos 1Z(A − @]^_�14 − @]^_ 3�  

Equation 16 

 

where RISE is the time of sunrise in hours (24 Hour clock) and T(H) is the 

temperature at any hour. H is the time in hours measured on a 24 hour clock. 

Numbers correspond to times based on the 24 hour clock. h is = H+10, if H < RISE, 

h=14 if H>1400. Tav = (Tmin+Tmax)/2, amp = (Tmax –Tmin)/2 and 

amp=amplitude. 

 

6.2.7 Reproduction 

Reproduction is dependent on the temperature experienced by the aphid, the morph 

of the aphid, as well as the crop GS. Apterous individuals have been found to exhibit 

higher fecundity levels (Ankersmit and Dijkman, 1983; Wratten, 1977) than that of 

alates, and for that reason, each morph is treated separately.  Akin to Skirvins 

approach, this submodel also consists of two linear functions fitted to the data of 

Dean (1974a) for apterous individuals (Figure 6.7) and two functions for alates 

(Figure 6.8). The first regression describing the relationship between reproduction 

and temperature was fitted to Deans (1974a) data from zero development at 3°C 

(LT) to maximum development at 20°C, while the second was fit in agreement with 

Skirvins approach (between 20 and 30°C). The reproductive LT where zero 

reproduction occurs has been amended from that utilised by Skirvin (1995). This 

modification of the reproductive LT is in line with results summarised by Williams 

and Wratten (1987), who stated that the temperature-reproduction relationship was 

well described when temperatures above 3°C were used. For that reason, a 

reproductive LT of 3°C was included and the corresponding linear functions to 

describe apterous rates of reproduction below 20°C were updated accordingly. The 

form of the linear function is described in Equation 14, where y is the dependent 

variable (number of nymphs), β0 is the intercept, β1 is the slope and x is the 

independent variable (in this case, temperature). The parameters of each separate 

regression can be seen in Table 6.6. 
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Figure 6.7 Fecundity of apterous S. avenae response to temperature (source: Dean, 1974a) 

 

In the case of alate reproduction, Wrattens (1977) alate data was used to infer the 

reproductive capacity of alates at 20°C. Two linear functions were then fit to the data 

(Table 6.6): One between the reproductive LT of 3°C and the Topt of 20°C; and the 

second between the Topt and UT of 30°C (Figure 6.8). The data was not available in 

its ‘raw’ format, so a trial version of digitising software (Enguage, 2012) was used to 

extract the mean daily fecundity of S. avenae at 20°C from Wratten's (1977) work. 

This data was utilised in conjunction with an assumed 20-day adult survival period 

to calculate the mean daily nymphs produced over this time period. A 20-day 

survival period was chosen owing to extremely low reproductive and survival rates 

reported after that time period has been surpassed (Dean, 1974a; Wratten, 1977). 

This submodel assumes that alates that alight in-field are immediately reproductively 

capable, while all apterous individuals must pass through a pre-reproductive delay 

before reproducing. Alate individuals that mature within the model are also assumed 

to emigrate as soon as they reach maturity. As a result, the only reproducing alates in 

the model are those individuals who are deposited in-field. 
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Figure 6.8 Fecundity of alate S. avenae response to temperature (source: Wratten, 1977) 

 

Morph and Temperature 
Range 

β0 β1 

Apterous 3°C-20°C - 0.3766 0.1772 
Apterous 20°C-30°C 9.1917 - 0.3050 

Alate 3°C-20°C - 0.3653 0.1218 
Alate 20°C-30°C 6.2100 -0.2070 

Table 6.6 Fecundity parameters for both morphs of S. avenae in response to temperature 

 

The variability of the reproductive rate of S. avenae in response to its host plant was 

highlighted by Watt (1979). As with previous models (Carter, 1978; Skirvin, 1995); 

an increase in reproductive rate was applied at ear emergence and before the milky-

ripe stage (GS 59 – 73) in line with Watt (1979) (multiplied by 1.6). The 

reproductive rate is set to zero after GS 80; as the crop is not suitable for aphid 

reproduction (Watt, 1979). The reproductive data utilised here to produce 

reproductive rates of both morphs were not available at hourly intervals, but rather 

on a daily timestep (Dean, 1974a; Wratten, 1977). As a result, nymph production 

was simulated on a daily, rather than hourly timescale in order to minimise the error, 

as well as the complexity associated with averaging out the daily data over a 24 hour 
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period. This step is somewhat justified when Carters' (1978) initial findings 

regarding the effect of daylight on reproduction are taken into account. He reported 

that the mean number of nymphs born per hour were significantly higher during 

daylight hours than under dark conditions. While his findings were not proven to be 

entirely conclusive, in the absence of hourly reproduction data, daily reproductive 

rates were applied at the same timestep that alates alighted in-field. As a result, the 

number of alates and reproductively capable apterous adults are checked daily within 

the model and multiplied by the morph-specific reproductive rate, producing the 

number of nymphs born each day. 

 

6.2.8 Morph determination 

The morph that each aphid will become is decided at birth. All nymphs produced by 

both alate and apterous parents are summed before their morph (alate or apterous) is 

determined. The morph is dependent on both the crop developmental stage and the 

density of aphids at that particular timestep. This finding has been iterated 

throughout the literature, citing increases in alate production concurrently with the 

deterioration of the host plant and crowding (Sutherland, 1969; Watt and Dixon, 

1981). The multiple linear regression equation used to describe the percentage of 

nymphs that become alates is: 	Percentage	alates	=	2.603	x	Aphid	density	+	0.847	x	GS	–	27.189	
 

Equation 17 

Equation 17 above, relating the proportion of nymphs that develop into alates to the 

crop GS and the density of aphids per tiller  is based on winter wheat development 

stages and aphid density on said crop at the birth-time of nymphs (Carter et al., 

1982). In the absence of detailed data for Ireland, this work assumes that the core 

relationship holds for all crops, i.e. that increased crowding and deteriorating host 

plant quality will induce a high proportion of alates to be produced in the latter 

stages of barley growth (Watt and Dixon, 1981). 
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6.2.9 Nymph and adult survival 

Survival is treated separately for nymphs and adults in the current model. Due to the 

lack of detailed survival data for S. avenae, a simplistic approach to introducing 

mortality to the system was utilised. Mean mortality of immature stages is available 

in Deans (1974a) work across the temperature range of 10-30°C. Mortality is 

generally low across the instars. This finding is supported by Williams and Wrattens 

(1987) analysis which reported survival means of 97%. Using this data, a survival 

probability is applied daily to the nymphs in the system. Dividing the daily data into 

hourly intervals based on daily data would not achieve any more detail than could be 

achieved on a daily basis alone, but could in fact provide a further source of error in 

the model. As a result, as new aphids are ‘born’ on a daily basis the survival 

probability is applied. This is accomplished by multiplying the probability by the 

number of nymphs in the system daily and the result is subtracted from the overall 

number of nymphs. This survival probability is calculated using Skirvins (1995) 

approach; wherein the probability of a nymph surviving is adjusted depending on the 

amount of development which has taken place in the daily timestep. The adjustment 

is used owing to the fact that the length of the instar changes depending on the 

temperature experienced. The equation used is: 

 

 ^��V�V�? = ]	PvPw  Equation 18 

 

Where I is the temperature-dependent proportion of nymphs surviving to complete 

the instar; Hh is the amount of development which took place in the timestep and Hi 

is the length of the instar (i.e. 1). The method for calculating I has been adjusted for 

simplicity and  is calculated by fitting an asymptotic regression (Figure 6.9)  to the 

data of Dean (1974a) and is of the form: 

 

x���ℎ�?	y��V�V�?	(]� = z� − z × ���(−z| × ����(]�� Equation 19 
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Figure 6.9 Proportion of nymphal survival in response to temperature 

 

Coefficient Value 

Θ1 94.4449 

Θ2 3.3221e-008 

Θ3 -0.7256 

Table 6.7 Regression coefficients used in describing nymphal survival in response to 
temperature 

 

The coefficients of Equation 19 are described in Table 6.7. In order to account for 

the effect of plant GS on nymphal survival, the proportion of nymphs surviving past 

GS 73 was reduced in accordance with the findings of Watt (1979). A fixed 

proportion after this stage of 0.45 (Watt, 1979) was chosen working on the 

assumption that S. avenae’s preference for the ears of the crop would be 

predominant. 

 

For adult survival, a constant longevity of 20 days was adopted from the moment the 

aphid becomes a reproductively capable adult. This assumption is based on three 

separate lines of reasoning: Firstly, according to Deans (1974a) experimentation, the 

mean adult life span across the temperature range 10°C-25°C is 20 days. Dean 
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(1972) also found that adult S. avenae survived a mean of 20 days when reared at a 

constant 15°C on barley. Finally, according to Wratten (1977) after 20 days, adult 

aphid survival and reproduction are extremely low. Wratten (1977) acceded that 

individual variation was high in the experimentation; however, the current work is 

interested in the population as a whole, not individuals. For these reasons, adult 

longevity was limited at 20 days. When adults reached this age within the model; 

they were ‘killed off’ within the model. 

 

6.2.10 Development 

The relationship between rate of development and temperature for each of the instars 

is illustrated in Figure 6.10. Each of the instars developmental relationship with 

temperature was described separately, owing to the fact that Dean (1974a) reported 

data for each of the individual developmental stages independently. Development 

was quantified by summing the instantaneous fractions of development in response 

to hourly temperature using the Lactin function (Lactin et al., 1995) parameterised 

for each individual instar as described in the previous chapter. This quantification of 

temperature-mediated development is calculated within the model array, facilitating 

the ‘aging’ of newly born nymphs daily. The difference between this approach and 

that utilised in by Carter (1978) and Skirvin (1995); is that this approach purports 

that the relationship between development rate and temperature is nonlinear as 

opposed to being linearly related.  
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Figure 6.10  Rate of development in S. avenae in response to temperature across all 
developmental stages. 

 

A common misconception regarding nonlinear functions is that it is the shape of the 

function that defines whether the function is linear or nonlinear, when in fact it is the 

parameters which dictate the type of function. Carter (1978) and Skirvins (1995) 

approach utilised linear parameters which constrain the equation being utilised to 

one basic form; wherein every term in the model is additive and contains only one 

parameter that multiplies the term. In contrast, nonlinear parameters facilitate many 

different forms of nonlinear equations, the shape of which are usually informed by 

prior knowledge of the chemical or physical properties of the system in question. 

This flexibility facilitates the use of models such as the Lactin model to describe the 

entirety of the temperature-development relationship over the temperature range of 

interest (once prior knowledge regarding the system has been obtained). This 

flexibility is not a characteristic of linear parameters mentioned above. 

 

Growth rates have been suggested to decrease in later instars in S. avenae, as 

resources are allocated to embryo development (Newton and Dixon, 1990b; Newton 
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and Dixon, 1990a). This is particularly the case with fourth instar nymphs that are 

destined to become alate adults (due to the formation of wings). As a result, 

development in 4th instar alate nymphs takes longer than that of an apterous 4th instar 

nymph. The original SAM7 model proposed that the additional time can be 

quantified as 1.5 times that of the developmental time of apterous individuals. This 

proposition is based on work on a different species, however data which 

distinguishes between morphs of S. avenae (Lykouressis, 1985) suggest that in this 

species, the 4th instar does indeed exhibit a longer developmental time in the alate 

form. As a result, it was decided to maintain the assumption that 4th instar stage in 

the alatiform nymphs would take 1.5 times longer than their apterous counterparts to 

complete development. The original approach utilised (Carter, 1978; Skirvin, 1995) 

multiplied the number of apterous nymphs by 1.5, in an effort to produce the number 

of apterous 4th instars that would be present if both morphs were of equal duration. 

This model used a different approach; by calculating the amount of hours that 4th 

instar apterous nymphs took to reach unity (complete development to a total of one) 

in response to hourly temperatures and multiplying that number of hours by 1.5 to 

produce the 4th instar alate development time. All alates were assumed to emigrate as 

soon as their 4th instar was completed, while apterous individuals were assumed to 

enter a prereproductive stage before producing offspring themselves. 

 

6.2.11 Pre reproductive period 

The development rates describing the prereproductive period for S. avenae was not 

of similar shape to the preceding four instars (Figure 6.10). As a result, the Lactin 

model was not a suitable function to describe the compulsory pre-reproductive 

period that apterous individuals must pass through before they become 

reproductively capable adults. Alates do not pass through this stage and emigrate 

upon reaching adulthood as previously mentioned. A cubic polynomial (Figure 6.11) 

was found to describe this relatively short lived stage in apterous individuals; with an 

R2 of 98.6% and is of the form: 

 

 �(�� = 	}��| +	} � + }|� + }~ Equation 20 
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Where p(x) is the prereproductive rate, x is temperature and P1, P2, P3 and P4 are 

coefficients to be estimated (Table 6.8). This linear function was treated in the same 

fashion as the Lactin model and was used to accumulate developmental time in 

response to temperature for the prereproductive period. Figure 6.11 illustrates the 

derived temperature-rate relationship using the above polynomial, while the 

coefficients of the regression are represented in Table 6.8. 

 

Figure 6.11 Pre-reproductive rate of development in apterous S. avenae  in response to 
temperature (Source: Dean, 1974a). 

 

 

Coefficient Value 

P1 -0.1688 

P2 0.0327 

P3 -0.0014 

P4 1.9e-5 

Table 6.8 Polynomial coefficients used in the calculation of the prereproductive period of S. 
avenae. 
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6.2.12 Crop growth 

Cereal crop development is driven by temperature and quantified as growth stages 

(GS)  in accordance with the Zadoks growth scale (Zadoks et al., 1974). Data to 

describe the development of spring barley (cv. Quench) in conjunction with the daily 

minimum and maximum temperatures were acquired (Data courtesy of Shane 

Kennedy, Teagasc) for three sites in Ireland (Carlow, Wexford and Cork) for 2011 

(Figure 6.12). Degree days were summed using a LT of 0°C for each of the three 

sites, to provide a measure of the thermal energy in the system.  Development was 

quantified using the Zadoks scale (Zadoks et al., 1974) for cereals and regressed 

against the cumulated degree days (CDD) for each of the sites using a cubic  

polynomial as in Equation 20, where x is the CDD. An additional regression was 

executed on the collapsed data for all three sites. Each of the four derived models 

were used to simulate the growth stages for the sites individually, and then assessed 

for their goodness of fit using the SSE (sum of squares due to error), RMSE (root 

mean square error) and MAE (mean absolute error) (Table 6.9). For each site, the 

site-specific GS model performed best by minimising the error between modelled 

and observed data. Overall however, the collapsed model (which used the data from 

all three sites) was the most consistent in minimising the errors across all of the sites 

collectively (see Table 6.10 for coefficients). For this reason, a pragmatic approach 

was taken, wherein the collapsed model was utilised in order to render the GS model 

more spatially generalised while simultaneously maintaining a satisfactory fit to the 

data. The model fit to the data is illustrated in Figure 6.13. 
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Figure 6.12 Location of three spring barley sites 

 

 
Wx model Ck model Cw model Collapsed model 

Wx  363.9964 521.6343 937.7 482.6209 

 
4.627262 5.539348 7.426899 5.328176 

Cw  798.6019 325.8173 232.8888 339.425 

 
6.8539 4.3779 3.7012 4.4684 

Ck  428.6139 253.7829 380.9376 263.7782 

 
5.3455 4.1133 5.0394 4.1934 

Table 6.9 Error associated with each of polynomial equations fit to site-specific and collapsed 
GS data for Wexford (Wx), Cork (Ck) and Carlow (Cw). SSE is in the blue rows. RMSE is in 

the white rows. 

 

P1 P2 P3 P4 R2 

-2.3921e-08  5.0981e-05  0.0378 0.3684 97% 

Table 6.10 Polynomial coefficients utilised to describe the relationship between DD and crop GS 
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Figure 6.13 Observed Zadoks crop GS in response to CDD at three Irish sites in 2011 with a 
fitted polynomial model using GS data from all three sites 

 

In order to ensure that the polynomial was in fact robust enough to describe GS 

progression for barley crops, an additional year (2012) of GS data was obtained for 

the same three sites and the model was tested for its adherence to the observations. 

GS data was plotted against its corollary CDD, while the combined model was 

plotted for every CDD point, in an effort to determine how well it approximated the 

data. Overall the model represented the observed GS’s well over the three different 

locations, considering that the model is non-site-specific (Figure 6.14). As a ‘higher 

level’ test of the skill of the combined GS model, it was applied using site-specific 

CDD (as input to the combined model) for each of the three sites and it’s adherence 

to the observations assessed. The model performed particularly well for the Wexford 

and Carlow sites (Figure 6.15), however the error associated with the Cork site is 

larger than for the other two (Table 6.11). Despite the fact that the GS model was not 

designed to be site specific, generally it performed well when applied at a site-

specific level.  
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Figure 6.14 Observed Zadoks crop GS in response to CDD at three Irish sites in 2012 with the 
fitted polynomial model derived using GS data from three sites in 2011 
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Figure 6.15 Observed 2012 Zadoks crop growth stages for three Irish sites vs fitted GS 
polynomial 

 

 

Site 

Collapsed model 

SSE RMSE 

Wexford 161.9189 3.8367 

Carlow 364.3971 5.1018 

Cork 1196.3511 10.4288 

Table 6.11 Error associated with the utilisation of the fitted GS model against site-specific 2012 
GS data for Wexford (Wx), Cork (Ck) and Carlow (Cw). SSE is in the blue rows. RMSE is in 

the white rows. 

 

6.2.13 Tiller numbers 

Past models have utilised different approaches for the production of tiller numbers; 

including  choosing a static number of tillers per unit area (Klueken et al., 2009; 

Zhou et al., 1989), as well as using the actual recorded field tiller data recorded 

(Carter, 1985; Skirvin, 1995). A major limitation using either of these approaches is 
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the explicit incorporation of tiller numbers in the production of the final model 

output metric: ‘aphid per tiller’. This unit of measurement is highly influential in the 

final model calculation of the level of aphid infestation; and as a result necessitates 

temporally representative counts. The attainment of this metric was complex, as 

multiple factors impact the potential number of tillers (per unit measurement) in any 

one year, and the utilisation of a fixed number is not a realistic representation of 

what occurs in the field over a season. Consequently, a tiller model based on Irish 

field data was developed for use in SAV4.  

 

Tiller count data was gathered in 2011 from spring barley (cv. Quench) at the same 

three sites (Figure 6.12) from which the GS data was collected (Data courtesy of 

Shane Kennedy, Teagasc). A subsample of tillers was counted from a quadrat of 6 x 

1m row lengths, taken in the field at each site across three replicates. The tiller data 

was plotted, which suggested that the ‘shape’ of the plot for tiller numbers was 

approximately the same for all three sites. As a result, all of the data from the three 

locations was collapsed into one dataset. While the counts were slightly erratic at the 

beginning of the growing season, the peak usually occurred towards the end of May 

followed by a decline as the crop moves into stem extension. Tiller numbers levelled 

off approaching harvest, however a late ‘flush’ of tillers also appeared to occur. The 

data was analysed for the ‘best’ type of model to describe tiller numbers, and a 

fourth degree polynomial was chosen and fit to the data (Figure 6.16). The 

relationship between GS and tiller numbers was found to be significant (α=0.05) and 

the newly parameterised model was plotted against independent tiller data from 2012 

to illustrate how well it described the observations (Figure 6.17). The spread of the 

data between sites was not considered to be ideal, however the model validation 

using the 2012 data produced reasonable outputs when compared with the 

observations. As a result, this approach was considered an improvement on the use 

of static tiller numbers and was incorporated into the overall model. 
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Figure 6.16 Collapsed tiller data from three sites in Ireland in 2011 fitted with a fourth degree 
polynomial. 

 

Figure 6.17 Modelled tiller numbers (fitted line) ‘trained’ on 2011 data against 2012 
observations 
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6.3 Conclusions 

The use of simulation models to describe the population dynamics of aphid pests has 

been widely established as a useful tool for highlighting the underlying processes of 

pest/crop systems. The model described here is the first step in an Irish context to 

describe the life cycle of S. avenae in spring barley in response to future temperature 

projections. While complexity does not necessarily equate to skilfulness, the sparsity 

of data for the Irish domain necessitated a novel and empirical-based approach to 

modelling the aphid’s dynamics. The assumption that relationships derived between 

aphids and temperature in the UK are similar to those in Ireland, facilitated the 

partitioning and quantification of various portions of the hemipterans lifecycle in 

such a fashion that each compartment can dynamically interact with the next on a 

hourly/daily timestep. This iterative quality enables the model to simulate how the 

aphids respond to both temperature and host crop throughout a season. The next 

chapter will progress this analysis, by describing the validation and sensitivity 

analysis of SAV4, before the incorporation of temperature projections as model input 

in an Irish context. 
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CHAPTER 7  

VALIDATION 

7.1 Introduction 

Due to the fact that no universal convention exists to test the validity of ecological 

models, Rykiel (1996) stated the importance of defining the validation criteria for 

individual models as a precursor to any modelling activity. The principle validation 

criterion for the current work is concerned with assessing SAV4’s ability to 

reproduce observed behaviour in real aphid populations. The model described here 

has a number of predefined purposes or performance requirements: (1) To 

adequately represent the structure of the dominant causal relationships that shape S. 

avenae’s population dynamics. (2) To serve as an indicator of the potential 

directionality and magnitude of response in Irish populations of S. avenae to 

changing temperature as a result of climate change. (3) To emphasise the importance 

of data to modelling endeavours such as the current research, as well as the highlight 

the existing knowledge gap regarding pest monitoring in an Irish context. (4) To 

promote discussion on potential adaptation strategies to projected changes in Irish 

pest populations as a result of climate change. In order to confirm that SAV4 does in 

fact meet the performance requirements above, model verification and validation 

was carried out. In the context of this research, validation is taken to mean that the 

model described in this work is ‘acceptable for its intended use because it meets 

specified performance requirements’ (Rykiel, 1996:229). Following on from the 

validation, the model was subjected to a sensitivity analysis in order to assess if 

SAV4 was sensitive to specific input parameters, and if so, why these sensitivities 

were occurring. This approach also serves to qualify which parameters merit further 

efforts in data collection in future applications of the model. 

 

7.2 Verification 

Verification of the model is the process of determining that firstly, the model 

correctly represents the programmer’s conceptual model of the system; and 

secondly, that the physical logic of the program (i.e. the code) is functioning as 
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intended. The first part of the verification (in this particular case) is implicit in the 

construction of the model, given that that both the conceptual model and the program 

were designed and written in conjunction with one another. Submodels were 

programmed according to the specifications of the conceptual diagram illustrated in 

Chapter 6 (Figure 6.1), ensuring that both the conceptual and the mechanical aspects 

of the model were coordinated. The second part of the verification procedure 

involved checking that the numerical algorithms incorporated in the model were 

calculating variables correctly. This part of the verification process essentially 

equates to ‘debugging’ the model, which was carried out iteratively throughout the 

construction of the model using a variety of techniques to verify calculations and 

built-in error checks in the code. 

 

7.3 Conceptual validation 

The conceptual validity of the model is concerned with the justification of the 

abstractions of reality within the model i.e. that the relationships that comprise the 

conceptual model, do in fact describe the system of interest. Much of this part of the 

validation is concerned with referencing the appropriate sources that ‘define 

behaviours, relationships, characteristics, and processes’ (Liu et al., 2011:153) for the 

system to be represented within the model. These references were stated throughout the 

description of the model in Chapter 6. Further justification is required however, for 

facets of the system’s behaviour which are known to exist, but are omitted intentionally. 

Omissions such as these can technically render a conceptual model false or invalid, 

owing to their known involvement in ecological function. For example, the current 

model has omitted all natural enemies/predator-activity from the conceptual model. This 

omission is justified when the uncertainties surrounding their effects are considered 

(outlined in chapter 3). While it is accepted that the current model could potentially 

benefit from the inclusion of an accurate natural enemies submodel, the sparsity of 

monitoring and consumption-rate data on both a national and international level could 

diminish the potential usefulness of such an inclusion. Issues regarding the limited 

amount of data regarding the searching and handling rates of beetle predators has been 

highlighted by Skirvin (1995). Ultimately, the fact that the ability of natural enemies to 

act as a regulatory biological control of S. avenae has not been conclusively 



  

146 
 

established provides reasonable justification for its exclusion and simultaneous 

maintenance of a robust conceptual validation. 

 

7.4 Operational validation: Modelled GS 

This portion of the validation procedure is concerned with how well the model 

reproduces the aphid system. The assessment of model-skill is carried out by 

comparing model-derived measurements with real-world measurements, and 

assessing how accurately they correspond. No suitable data was available in an Irish 

context, so data used in the original SAM7 model (Carter, 1978; Carter et al., 1982) 

was utilised, owing to its suitability for this type of study .i.e. daily measurements of 

aphids in field. This approach also had the added benefit of facilitating direct 

comparison between the current model and previous models (SAM7 and Skirvin's 

(1995) model: SACSIM), allowing for an assessment of SAV4’s performance in 

relation to the previous two. Field count data of peak numbers of S. avenae 

(measured in numbers per tiller), along with the timing and magnitude of peak 

numbers were the chosen metrics to evaluate the capability of SAV4 to reproduce 

population dynamics in-field. Field data used in the validation of the original SAM7 

model in Norfolk from 1976-1979 was digitised (using plot digitising software 

(Huwaldt, 2014)), along with  published observed and simulated winter wheat GS 

data (Carter et al., 1982; Carter, 1978) for use in the current validation procedure. 

Other data incorporating a measure of the peak numbers/timing of aphids was also 

identified and maintained for utilisation in the validation (Entwistle and Dixon, 

1986). One year of Rothamsted-derived data used in the validation of SACSIM was 

also digitised for analysis later in the chapter. 

 

The validation of SAV4 has two main components: Firstly, to investigate how well it 

performs in relation to the field observations and secondly, to test how well the 

model performs in comparison with previous models (Carter, 1978; Skirvin, 1995). 

This first section will compare the outputs between SAM7 and SAV4 in an effort to 

identify which model is more skilful in reproducing the field observations. In order 

to facilitate a fair comparison between SAM7 and SAV4, it is imperative that the 

same input data that was previously utilised is used to initiate the current model. For 

this reason, daily aphid catches from the Brooms barn suction trap in Norfolk were 
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obtained from Rothamsted research facility, while temperature data was obtained 

from the BADC database (2014) for the local MIDAS station in Norfolk (Morley St. 

Botolph, SRC ID:422). The final input required was crop GS data. Carter (1978) and 

Carter et al. (1982) provided two separate approaches to modelling GS’s for 

Norwich: (1) Equation 21: A single polynomial based on 1977 field data. Equation 

22 and Equation 23: two separate linear regressions employed for different GS 

segments. Carter (1978) stated that Equation 21 underestimated crop growth early in 

the season and offered Equation 22 and Equation 23 as alternatives (where Equation 

22 is used for GS 30-50 and GS 70 onwards, while Equation 23 describes GS 30-50). 

Carter et al. (1982) later stated however, that Equation 21 was fit for purpose and 

provided graphs illustrating the fit of this polynomial to field data.  

 

 
�^ = 0.173 ∗ �22 − 0.000125 ∗ �22 

+ 26.336 
Equation 21 

 

GS:30-50 & >70 �^ = 27.92 + 0.11 ∗ �22 Equation 22 

GS: 50-70 �^ = 35.96 + 0.1 ∗ �22 Equation 23 

 

 

Both approaches were tested for their ability to recreate the data published in Carter 

et al. (1982:36), in order to ensure that the same model input was utilised here (e.g. 

Figure 7.1 and Figure 7.2). While Equation 22 and Equation 23 appear to improve 

the issue of underestimation of the GS early in the growing season in Equation 21, 

the model does not capture the GS well in the mid to high GS’s (GS 50 upwards). 

Upon further examination of the remaining years of data, it appeared that this 

underestimation was consistently occurring. As a result, the modelled GS’s 

presented in Carter et al. (1982) were digitised, in order to ensure consistency 

between the GS inputs for both SAM7 and SAV4.  SAV4 was ran using the suction 

trap catches, daily temperatures and digitised modelled GS’s as input from 1976-

1980, and the output compared with both SAM7 output and the observations on an 

annual basis. This approach assured a fair comparison between the models, by 
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ensuring that any changes between the outcomes would be a result of the internal 

dynamics of the models, and not the initialising input data. 

 

Figure 7.1 Digitised Zadoks GS data vs Carters polynomial GS model (Equation 21) 

 

Figure 7.2 Digitised Zadoks GS data vs Carters GS model (Equation 22Equation 23) 
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7.4.1 Norfolk 1976: Digitised modelled GS 

Two fields of observations were used for 1976, both of which were cultivar (cv.) 

Maris Huntsman (MH).  Figure 7.3 and Figure 7.4 illustrate the outputs from SAV4 

on a daily timestep, as well as the digitised field observations and the original output 

from SAM7 for 1976. A slightly different set of modelled GS data was available for 

each field, so both datasets were used to test the potential difference in model 

outcome as a result. Carters reduced-predation simulation output was chosen to 

compare against SAV4 in both instances, as it was considered the most directly 

comparable to SAV4 (since it does not employ a predation subroutine).  

 

SAV4 performed reasonably well, providing superior fit to the data in comparison 

with SAM7 in field 1 (cv.MH) (Figure 7.3). The timing of the peak was predicted 

correctly; however the magnitude of the peak was overestimated by approximately 

35 aphids/tiller. This constitutes an improvement in predictive capacity when 

compared with SAM7 (Table 7.1) whose peak day was underestimated by 5 days, 

while the peak number was overestimated by approximately 46 aphids/tiller. The 

same outcome occurred in field 2 in 1976 (also cv. MH), with SAV4 outperforming 

SAM7 in relation to both peak and magnitude (Figure 7.4). Both models 

overestimated the observed peak number of aphids/tiller (Table 7.2). The ability of 

SAV4 to predict the timing of the peak event in the two separate fields (despite inter-

field variation in GS inputs) suggests that the model is not overly sensitive to very 

slight changes in GS input. However, the difference in peak magnitude between the 

two fields highlights the fact that the GS is impacting dynamics as expected. 
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Figure 7.3 Comparison of in-field aphid observations from 1976 in field 1 (cv. MH) in Norwich, 
with output from SAV4 and SAM7 using GS model output from Carter et al. (1982). 

 

Data Source Peak day (JD) Peak number 
Observations 182 47.5 

SAV4 182 82.1 (+34.6) 
SAM7 177 (-5) 92.6 (+45.1) 

Table 7.1 Summary of validation outputs for 1976 (Field 1) using modelled GS (offset in 
brackets). 
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Figure 7.4 Comparison of in-field aphid observations from 1976 in field 2 (cv. MH) in Norwich, 
with output from SAV4 and SAM7 using GS model output from Carter et al. (1982). 

 

Data Source Peak day (JD) Peak number 
Observations 182 51.9 

SAV4 182 69.9 (18) 
SAM7 177 (-5) 87.2 (35.3) 

Table 7.2 Summary of validation outputs for 1976 (Field 2) using modelled GS (offset in 
brackets). 

 

7.4.2 Norfolk 1977: Digitised modelled GS 

Two fields were also used in the analysis for 1977 using modelled GS input.  Figure 

7.5 and Figure 7.6 illustrate the output from two different fields of winter wheat 

(cv.Maris Freeman (MF) and cv. MH). Once again, each of the cultivars displayed 

an offset in growth patterns to each other, so it was deemed appropriate to test how 

SAV4 would respond to these differences. In both cases, the peak day was accurately 

described by SAV4, while SAM7’s estimation was late by two days. SAM7’s 

prediction of the magnitude was closer to the observed than SAV4 in both cases. 

SAV4 in comparison; underestimated the peak magnitude by approximately half in 
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both field cases. The slight differences in crop GS translated once again, to only 

negligible differences in SAV4 magnitudes between fields, while the differences 

between SAM7’s output was slightly more pronounced. 

 

 

Figure 7.5 Comparison of in-field aphid observations from 1977 in field 1 in Norwich, with 
output from SAV4 and SAM7 (cv. MF) using modelled GS. 

 

Data Source Peak day (JD) Peak number 
Observations 193 66.5 

SAV4 193 38.4 (-28.1) 
SAM7 195 (+2) 74.1 (+7.6) 

Table 7.3 Summary of validation outputs for 1977 (Field 1) using modelled GS (offset in 
brackets). 
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Figure 7.6 Comparison of in-field aphid observations from 1977 in field 2 in Norwich, with 
output from SAV4 and SAM7 (cv. MH) using modelled GS. 

 

Data Source Peak day (JD) Peak number 
Observations 193 89.3 

SAV4 193 (-) 39.6 (-49.7) 
SAM7 195 (+2) 88.1 (-1.2) 

Table 7.4 Summary of validation outputs for 1977 (Field 2) using modelled GS (offset in 
brackets). 

 

7.4.3 Norfolk 1978: Digitised modelled GS 

Only one field was utilised in the analysis for 1978 in Norwich (cv. MH). Both 

SAV4 and SAM7’s projected the same peak day (Table 7.5) which were both 6 days 

early in comparison with the observations. The observational ‘peak day’ (JD 215) in 

this year could be viewed with some dubiety, in that the peak number for this day is 

almost identical to the aphid/tiller recorded on JD 206 (aphid/tiller value: 4.99). As a 

result, the identification of a ‘peak day’ is constrained to be based on extremely 

small population differences between days. If these data have any error associated 

with them (which is highly possible in biological sampling), the peak day may very 
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well be shifted backwards by 9 days. Such a shift, would improve the 

correspondence between the current model and the observations for this year. SAV4 

calculated the magnitude of the population more accurately than SAM7, with a 

difference of 1.3 aphids/tiller between modelled and observed (compared with an 

offset of 11.6 for SAM7). This year was categorised within SAV4 as a ‘cold regime’ 

year. The number of aphids in the spring migration was also small, which explains 

why the observed numbers are relatively low. For the most part, SAV4 appears to 

have correctly assimilated both of these facts. 

 

 

Figure 7.7 Comparison of in-field aphid observations from 1978 in Norwich, with output from 
SAV4 and SAM7 (cv. MH) using modelled GS. 

 

Data Source Peak day (JD) Peak number 
Observations 215 5 

SAV4 209 (-6) 6.3 (+1.3) 
SAM7 209 (-6) 16.6 (+11.6) 

Table 7.5 Summary of validation outputs for 1978 using modelled GS (cv.MH) (offset in 
brackets). 
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7.4.4 Norfolk 1979: Digitised modelled GS 

Data from only one field of winter wheat was available for analysis this year. Aphid 

immigration did not occur until very late in the season (JD 184), which meant that 

alighting individuals were arriving in the crop when the simulated GS’s were at a 

much later stage of development than they would be in a typical year. Furthermore, 

this year was classified by SAV4 as a ‘cold regime’ year, which probably served to 

limit the thermal energy available for development to both those individuals in-field 

and the crop. This translated within SAV4’s output to a scenario where the 

population dynamics did not have the opportunity to ‘build up’, resulting in a 

misrepresentation of the magnitude. SAM7’s output was closer to the observed in 

both timing and magnitude of the peak in this year (Table 7.6) with SAV4 

underestimating the peak day by 3 days and the peak number by approximately 5 

aphids/tiller. 

 

Figure 7.8 Comparison of in-field aphid observations from 1979 in Norwich, with output from 
SAV4 and SAM7 (cv. MH) using modelled GS. 
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Data Source Peak day (JD) Peak number 
Observations 208 5.5 

SAV4 205 (-3) 0.4 (-5.1) 
SAM7 207 (-1) 1.9 (-3.6) 

Table 7.6 Summary of validation outputs for 1979 using modelled GS (cv.MH) (offset in 
brackets). 

 

7.4.5 Norfolk 1980: Digitised modelled GS 

Interpretation of this year’s output must be treated with caution, as the suction trap at 

Brooms barn did not trap intermittently between the 14th of May and the 1st of June 

that year. As a result, the aphid catch-data inputs are incomplete, which modifies the 

input to the model ultimately impacting its ability to replicate the observations. If 

allowances/modifications were made in previous work regarding the catch data for 

SAM7, they were not explicitly outlined (Carter, 1978; Carter et al., 1982), which 

renders the comparison between SAV4 and SAM7 undependable. To complicate the 

situation further, only one set of GS data was usable for digitisation; while two fields 

of aphid sampling data (using two different cultivars) were available. Which field of 

aphid data was associated with the GS data available was not clear, and as a result 

SAV4 was ran (using available catch data) based on only one set of modelled GS 

and the output compared against both fields of data. SAV4 appears to fit the MH 

observations better than the MF field data (Figure 7.9). If one is to assume that the 

GS data was derived from the MH field, then the peak day was underestimated by 

SAV4 by 5 days, but the magnitude of the peak was accurate. SAM7 was closer to 

the observed peak day in both cases; however it overestimated the magnitude by 

more than double for MH and by a factor of 7 for MF (Table 7.7). 
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Figure 7.9 Comparison of in-field aphid observations from two fields in 1980 in Norwich, with 
output from SAV4 and SAM7 using modelled GS: (a) cv. MH (b) cv. MF 

 

Data 
Source 

 
Peak day (JD) 

 
Peak number 

Obs 192 (MH) 197 (MF) 50.4 (MH) 15.6 (MF) 

SAV4 187 (-5 to 10) 49.7 (-0.7 to 34.1) 

SAM7 189 (MH) (-3) 190 (MF) (-7) 111.6 (MH) (+61.2) 108.5 (MF) (+92.9) 

Table 7.7 Summary of validation outputs for 1980: MH and MF (offset in brackets). 

 

7.4.6 Discussion: SAV4 using modelled GS data 

The previous section illustrated the comparison between SAV4 and SAM7 using 

simulated GS data from the work of Carter et al. (1982). The number of occasions 

when SAV4 outperformed SAM7 in its predictive capacity (using the metrics of 

peak day and peak number) were quantified in comparison with the number of times 

that SAM7 surpassed SAV4 (Table 7.8). This comparison illustrated that overall; 

SAV4 represented an improvement on SAM7. Correlation analysis was also carried 
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out using the observed and modelled peak metrics, in order to statistically quantify 

the skill of each of the models in comparison to one another (Table 7.9). 1980 was 

excluded from the analysis owing to the data complications outlined in section 7.4.5. 

Both Pearsons r (rp) and Spearmans rho (rs) were calculated as measures of 

correlation between each of the peak metrics and the observed values. rs was 

considered to be more appropriate in this instance, owing to its lack of assumptions 

regarding the distribution of the data, as well as its lack of sensitivity to outliers. This 

analysis indicated that SAV4 was as skilful as SAM7 at calculating the timing of the 

peak (with perfect rank correlation as quantified by rs), however it did not improve 

upon SAM7’s peak number projections.   

 

 
Year 

SAV4 SAM7 
Peak day Peak number Peak day Peak number 

1976 (1) 1 1   

1976 (2) 1 1   

1977 (MH) 1   1 

1977 (MF) 1   1 

1978  1   

1979   1 1 

1980  1 1  

Total 4 4 2 3 

Overall total 8 5 

Table 7.8 Quantification of events where improvements in predictive capacity were made for 
both SAV4 and SAM7 

 

Metric (R 2) SAV4 (rp) SAM7 (rp) SAV4 (rs) SAM7 (rs) 

Peak day (n=6) .99 .97 1 1 

Peak number 
(n=6) 

.56 .87 .43 .54 

Table 7.9 Correlation analysis results for comparison between SAV4 and SAM7 using modelled 
GS data. 
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7.5 Operational validation: Observed GS 

Analysis of the modelled versus the observed GS data from Carter et al. (1982) work 

highlighted the fact that the GS model utilised was not always a good representation 

of the observations. As a result, the observed GS data were used as input to SAV4, to 

test if the model simulations are improved when more accurate GS data is provided. 

The next part of the validation is an independent test of the mechanics of SAV4 and 

its ability to produce realistic outcome (as opposed to a comparison with SAM7). 

The utilisation of (mostly) observations as model input, facilitates a level of ‘error 

accounting’ within the model; wherein the error typically associated with modelled 

inputs is reduced, leaving only the error associated with the model-mechanisms, 

natural variability and digitisation technique. SAV4 was ran using the suction trap 

catches from Brooms barn, daily temperatures and observed GS’s as input from 

1976-1980. The output from SAV4 was then compared with the observations on an 

annual basis to assess if the ability of SAV4 to reproduce aphid dynamics is 

improved when accurate GS data is utilised. SAM7 output is included in each of the 

graphs for reference, but it is important to note that the SAM7 output has been 

produced using modelled GS data, not observed. 

 

7.5.1 Norfolk 1976 Observed GS 

Figure 7.10 and Figure 7.11 illustrate the outputs from SAV4 on a daily timestep 

using the digitised observed crop GS data, as well as the field observations and 

original output from SAM7 for 1976. Once again, the crops in each of the fields 

progressed at slightly different rates, so both were used to test the potential 

difference in model outcome as a result (a summary of the output can be found in 

Table 7.10 and Table 7.11). SAM7 provided a more accurate timing of peak day than 

SAV4 in both fields (by two days). The directionality of the offset was different 

however, with SAM7 underestimating the timing of the peak day, while SAV4 

overestimated the timing of the event. The magnitude of the peak numbers for this 

year in both fields was well described by SAV4’s output (discrepancy of 

approximately 5 aphids in field 1 and just 1 aphid in field 2), but was overestimated 

by SAM7 (difference of approximately 45 aphids/tiller in both model runs). 
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This outcome for SAV4 is different from the scenario where modelled GS was 

utilised (Section 7.4.1), where slight between-field differences in the crop GS 

elicited only a small response in magnitude. In this case, the use of observed GS’s 

(which were considerably different from the modelled counterparts) served to 

significantly alter the projected peak day in SAV4’s output for both fields (Figure 

7.10 and Figure 7.11), illustrating how large differences in GS input can induce quite 

different overall model results. This fact highlights the importance of the accuracy of 

the GS data, as the crop GS influences reproduction and morph determination (both 

of which exert a fundamental influence on the population dynamics). 

 

 

Figure 7.10 Comparison of in-field aphid observations from 1976 in field 1 (cv. MH) in 
Norwich, with output from SAV4 and SAM7 (incorporat ing reduced predation to make it more 

comparable with the current work). 

 

Data Source Peak day (JD) Peak number 
Observations 182 47.5 

SAV4 189 (+7) 52.3 (+4.8) 
SAM7 177 (-5) 92.6 (+45.1) 

Table 7.10 Summary of validation outputs for 1976 (Field 1) using observed GS’s (offset in 
brackets). 



  

161 
 

 

Figure 7.11 Comparison of in-field aphid observations from 1976 in field 2 in Norwich, with 
output from SAV4 and SAM7 (incorporating reduced predation to make it more comparable 

with the current work) 

 

Data Source Peak day (JD) Peak number 
Observations 182 51.9 

SAV4 189 (+7) 52.7 (+0.8) 
SAM7 177 (-5) 87.2 (+35.3) 

Table 7.11 Summary of validation outputs for 1976 (Field 2) using observed GS’s (offset in 
brackets). 

 

7.5.2 Norfolk 1977 Observed GS 

SAV4 performed well in both fields, projecting the peak day accurately in both 

cases. These results constituted an improvement in peak day outputs, compared with 

when modelled GS data were employed (Table 7.12 and Table 7.13). The magnitude 

of the peak was reasonable in both MF and MH (difference of 11 and 14 aphids/tiller 

respectively); however the simulated magnitude produced by SAM7 was closer to 

the observations (difference of 8 and 3 aphids/tiller respectively). Once again, the 
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differences in the rate of growth in both fields were manifested in slight differences 

in magnitude between the two fields. 

 

 

Figure 7.12 Comparison of in-field aphid observations from 1977 in field 1 in Norwich, with 
output from SAV4 and SAM7 (cv. MF). 

 

Data Source Peak day (JD) Peak number 
Observations 193 66.5 

SAV4 193 77.4 (+10.9) 
SAM7 195(+2) 74.1 (+7.6) 

Table 7.12 Summary of validation outputs for 1977: MF 
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Figure 7.13 Comparison of in-field aphid observations from 1977 in field 2 in Norwich, with 
output from SAV4 and SAM7 (cv. MH) 

 

Data Source Peak day (JD) Peak number 
Observations 193 89.3 

SAV4 193  75.5 (-13.8) 
SAM7 195 (+2) 88.1 (-1.2) 

Table 7.13 Summary of validation outputs for 1977: MH (offset in brackets). 

 

7.5.3 Norfolk 1978 Observed GS 

As in section 7.4.3, aphids/tiller and GS data was only available for digitisation from 

one field of winter wheat in the Norwich study area in 1978. The simulated timing of 

the peak day is improved using the observed GS, reducing the discrepancy between 

modelled and observed to just three days (Figure 7.14). While the magnitude of the 

peak event does not constitute an improvement on the modelled GS scenario, the 

peak number is still well captured (Table 7.14). 
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Figure 7.14 Comparison of in-field aphid observations from 1978 in Norwich, with output from 
SAV4 and SAM7 (cv. MH) 

 

Data Source Peak day (JD) Peak number 
Observations 215 5 

SAV4 212 (-3) 7.3 (+2.3) 
SAM7 209 (-6) 16.6 (+11.6) 

Table 7.14 Summary of validation outputs for 1978: MH (offset in brackets). 

 

7.5.4 Norfolk 1979 Observed GS 

Once again, only a single field of winter wheat was available for this year’s analysis. 

SAV4 overestimated the timing of the peak day by 6 days in this case which is less 

accurate than the peak derived using modelled GS (Table 7.6). The use of observed 

GS data constituted an improvement in the projected magnitude of the peak however 

(Figure 7.15). 
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Figure 7.15 Comparison of in-field aphid observations from 1979 in Norwich, with output from 
SAV4 and SAM7 (cv. MH) 

 

Data Source Peak day (JD) Peak number 
Observations 208 5.5 

SAV4 214 (+6) 3.8 (-1.7) 
SAM7 207 (-1) 1.9 (-3.6) 

Table 7.15 Summary of validation outputs for 1979: MH (offset in brackets). 

 

7.5.5 Norfolk 1980 Observed GS 

The problems associated with the data for this year has already been outlined in 

section 7.4.5. Maintaining the assumption that the GS data is describing the MH 

crop, the use of observed GS does not improve either metric in this case. The peak 

day is underestimated by a week, while the magnitude is off by about half.  
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Figure 7.16 Comparison of in-field aphid observations from two fields in 1980 in Norwich, with 
output from SAV4 and SAM7 using modelled GS: (a) cv. MH (b) cv. MF 

 

Data Source Peak day (JD) Peak number 
Observations 192 (MH) 197 (MF) 50.4 (MH) 15.6 (MF) 

SAV4 185 (-7 to 12) 21.3 (-29.1 to 5.7) 
SAM7 189 (MH) 190 (MF) 111.6 (MH) 108.5 (MF) 

Table 7.16 Summary of validation outputs for 1980: MH and MF (offset in brackets). 

 

7.5.6 Discussion: SAV4 using observed GS data 

The use of the observed GS data improved the projections in the majority of model 

runs (mostly in relation to the magnitude of the peak).  Correlation analysis was 

carried out on the output from SAV4 and compared with previous output when less 

accurate GS data was utilised. While both the rp and the rs were reduced slightly in 

relation to the peak day, the peak number statistic was vastly improved with the use 

of observed data, resulting in a statistically robust model (Table 7.17). This serves to 

highlight the importance of using a GS model which is as accurate as possible.  
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Metric (R 2) 

SAV4 (CGS) 
(r p) 

SAV4 (CGS) 
(r s) 

SAV4 (OGS) 
(r p) 

SAV4 (OGS) 
(r s) 

Peak day (n=6) .99 1 0.95 0.94 
Peak number (n=6) .56 .43 0.96 0.88 

Table 7.17 Correlation analysis results for comparison between SAV4 using modelled GS data 
(CGS) and SAV4 using observed GS (OGS) data. 

 

Naturally, the use of observed GS data is not possible in cases where future 

projections are required. For this reason, one final step was taken in the validation of 

SAV4 using the Norfolk data. All of the digitised GS data was regressed against the 

CDD for Norfolk (based on the minimum and maximum temperatures) in an effort to 

provide an improved GS model, from which further projections could be derived for 

comparison against the remaining peak aphid data from 1981-1984 (Entwistle and 

Dixon, 1986). SAV4 was ran using this new GS polynomial model which is of the 

form: 

 

 �^ = �(�� = 	}��| +	} � + }|� + }~ Equation 24 

 

Where P1, P2, P3 and P4 (Table 7.8) are coefficients and x is the CDD. A 

comparison of the new GS model with Carters original GS model (Equation 14), as 

well as the observed GS’s can be viewed in Figure 7.17. A visual comparison of the 

new GS model and Carters original GS model against the observations suggests that 

the new model constitutes an improvement on Carters GS model. The results from 

this final model run for Norfolk using Equation 24 can be viewed in Figure 7.18. The 

output from SAV4’s ‘model start’ (i.e. the simulated JD of first aphid catch) routine 

is also included in Figure 7.18a in order to test the explanatory power of the 

subroutine in a different spatial area to where the original algorithm was developed 

(the original data source being Rothamsted). SAV4 performed well in this task, 

bolstering the assumption that aspects of the biology of S. avenae are indeed 

transferable between different geographic locations based on thermal dependencies. 

Overall, SAV4 performed well, particularly regarding the predictions of peak day 

(Figure 7.18b). 1980 and 1981 are notable, in that the magnitudes of the observed 

and simulated peaks are significantly different. The discrepancy regarding 1980 can 

be explained owing to the data issues outlined earlier in the chapter. 1981 has 
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previously been highlighted as an atypical year, wherein high aphid immigration 

does not translate to high aphid peaks in the crop. It appears that SAV4 did not 

capture the intricacies of the population’s ‘rate of increase’ during flowering, which 

is extolled by Entwistle and Dixon (1986) as important during anomalous years such 

as this. Overall however, SAV4 provided reasonable output when compared with the 

observations (Figure 7.18). 

 

P1 P2 P3 P4 R2 

0.0000003 0.0006549 0.4506468 -12.5395257 96% 

Table 7.18 Polynomial coefficients utilised to describe the relationship between DD and crop GS 

 

 

Figure 7.17 Comparison of Equation 24 polynomial (Sim), Carters GS model (Carter GS) 
(Equation 14) and GS observations (Obs) from 1976 to 1980 inclusive. 
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Figure 7.18 (a) Modelled and observed (Obs) start day, (b) peak day (measured in JD) and (c) 
peak number of aphids annually from 1976-1980 in Norwich. 

 

7.5.7 Operational validation: Rothamsted 

The final part of the validation procedure was concerned with the output from SAV4 

in a different geographic area.  One year of field data from Rothamsted was available 

from Skirvin's (1995) validation procedure in 1994. This part of the validation, while 

brief, serves to provide some indication of how SAV4 compares to Skirvin’s (1995) 

model (SACSIM), as well as the potential skill of SAV4 in a different location to 

above. Once again, the field data was no longer available in its raw format, so it was 

digitised from Skirvin’s (1995) work. Suction trap catches from Rothamsted were 

used to ‘seed’ the model with initial aphid numbers, while minimum and maximum 

daily temperature data derived from the Rothamsted weather station (BADC, 2014) 

were used to drive the model. Suction trap data was used as opposed to simulated 

catches, in recognition of the fact that the stochastic element of SAV4 would serve to 

provide a large range of potential outcomes, as opposed to the desired single 
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population trajectory for that specific year. Furthermore, the comparison of SAV4 

with Skirvin's (1995) model (SACSIM) was deemed necessary in order to assess 

which model was more skilful in reproducing the observations (SACSIM also used 

observations as input for the validation, which facilitates the direct comparison of the 

models). 

 

Regrettably, the GS input data used in SACSIM no longer exists; which hampers the 

direct comparison of SAV4 and SACSIM. Skirvin's (1995) Fortran code reflects the 

use of the same GS model that Carter (1985) used, despite Carter (1978:57) having 

previously stated that this polynomial regression based on the year 1977 was not 

adequate. As a result, this GS model (Equation 21) was used in the comparison of 

SAV4 against the Rothamsted observations and SACSIM, using the 1st of January as 

the starting point for accumulation of DD (using Frazer and Gilbert's (1976) 

algorithm). Since no GS observations were reported for 1994 in Rothamsted, the 

model output could not be checked for inconsistencies/validated. Figure 7.9 

illustrates the output from SAV4 for 1994 in Rothamsted. SAV4’s peak day 

projection was slightly closer to the observations than SACSIM, while the peak total 

number/tiller was higher than SACSIM (Table 7.19). Both models overestimated this 

metric by more than an order of magnitude. As a final step, the improved GS model 

outlined in Section 7.5.6 was used as input to SACSIM, to assess the impact on the 

final output. The output (Figure 7.20) is summarised in Table 7.20. The improved 

GS model had no effect on the peak day projection; however the magnitude of the 

peak dropped significantly in the direction of the observations. This resulted in 

SAV4 outperforming SACSIM in both aphid metrics. However, without GS 

observations, it is not possible to test if SAV4 is outperforming SACSIM for the 

right reasons. If the assumption is made however, that it is appropriate to accumulate 

DD from the 1st of January to describe resulting crop GS’s, then it acceptable to state 

that SAV4’s output constitutes an improvement on SACSIM, based on the limited 

observations available. 
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Figure 7.19 Comparison of in-field aphid observations from 1994 in Rothamsted, with output 
from SAV4 and SACSIM using Carter’s GS model (Equation 14). 

 

Data Source Peak day (JD) Peak number 
Observations 186 1.4 

SAV4 178 (-8) 70.9 (+69.5) 
SACSIM 176 (-10) 63.8 (+62.4) 

Table 7.19 Summary of validation outputs for 1994 in Rothamsted using Carter’s GS model 
(offset in brackets). 
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Figure 7.20 Comparison of in-field aphid observations from 1994 in Rothamsted, with output 
from SAV4 and SACSIM using new GS model (Equation 24). 

 

Data Source Peak day (JD) Peak number 
Observations 186 1.4 

SAV4 178 (-8) 43.7 (+42.3) 
SACSIM 176 (-10) 63.8 (+62.4) 

Table 7.20 Summary of validation outputs for 1994 in Rothamsted using new GS model 
(Equation 24) (offset in brackets). 

 

7.6 Sensitivity analysis 

Before the validated SAV4 was applied in an Irish context, a basic sensitivity 

analysis (SA) was employed. The implementation of a SA in model performance is 

useful, as it serves to highlight (i) parameters which require additional research in the 

future in order to reduce output uncertainty, (ii) parameters or variables that ‘add’ 

nothing to the model and can essentially be removed and (iii) which parameter-

driven inputs contribute the most to model variability (Hamby, 1994). SA is defined 

as ‘the process of defining how changes in model input parameters affect the 
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magnitude of changes in model output’ (Mulligan and Wainwright, 2013). The 

process is particularly useful, in that it serves to describe the general importance of a 

parameter, and by proxy the effort which should be invested in obtaining data to 

reduce uncertainty in that parameter.   

 

Generally speaking, the method utilised for sensitivity analysis is determined by the 

computational practicality/ease of obtaining outputs. Due to the intensive 

computational requirements of SAV4, the run-time limits the extent to which a SA 

can be applied. For this reason, a small number of parameters deemed the most 

biologically significant to the dynamics of SAV4 were chosen for analysis. This 

method of SA is referred to as ‘Screening’, and is employed specifically in instances 

where model complexity is high and the number of parameters intractable. This 

technique discriminates between parameters to be included in the SA and those 

which are assumed unimportant to the final output. Finally, a ‘local approach’ 

(Cariboni et al., 2007) was employed, wherein the influence of chosen parameters 

are tested by adjusting their values and maintaining all other variables as static. The 

parameters or inputs included in the SA were:  

 

i. Nonlinear Lactin parameters used in the quantification of temperature-driven 

development. 

ii.  Temperature 

iii.  The crop sowing date (in JD) 

iv. Survivorship parameter 

v. Stochastic aphid number input 

 

Using extreme values in a SA is a particularly useful tool for testing the assumptions 

of the model. This approach facilitates not only the identification of parameters to 

which the model is sensitive, but it also contributes to increasing confidence in the 

role of parameters if the outcome behaves in a systematic and predictable manner. 

Identification of the ranges of values over which to test the model, can aid in 

highlighting the potential uncertainty associated with parameters tested across their 

extremes. Three sources of parameter uncertainty can be acknowledged at this point: 

(i) imprecise measurements (ii) natural variation (iii) unknown differences between 

the UK and Irish aphid populations. Despite these uncertainties, the SA subjectively 



  

174 
 

facilitates the assessment of influential parameters (expected or unexpected), as well 

as the identification of areas within the model to be addressed in future work.  

 

In order to analyse the sensitivity of the model to a single parameter change at a 

time, the stochastic input of the model was omitted in (i) – (iv) above and a year of 

real catches and temperatures from each of the three regimes was utilised as input to 

SAV4. This was carried out due to the difficulty in disentangling potential 

sensitivities in the output if both a parameter of interest and the input aphid numbers 

are altered simultaneously. Fixed data for each regime (temperature, catches, start 

and end dates) was chosen by ranking the years within each regime by their 

temperature difference from the overall regime mean and choosing the year closest 

to the mean regime value. This approach was utilised in an attempt to ensure that a 

‘mid-range’ year from each regime was chosen, as opposed to a potentially 

anomalous year of data. This same premise was applied to the chosen year’s start 

dates: if they appeared anomalous in relation to the other years within the regime, the 

next year fulfilling the criteria was chosen instead. Each of the temperature regimes 

were ran using the ranges of SA values specified below in order to identify 

sensitivities, as well as potential regime-specific effects.  

 

7.6.1 Lactin parameters 

The errors around the mean developmental times for S. avenae were used in the SA 

to test the sensitivity of SAV4 to potential error in the Lactin parameters. The 

reported developmental time errors (Table 4.2) were added to the mean 

developmental time reported by Dean (1974a) and these new values were used to 

refit the Lactin function in order to assess how the newly derived parameters 

(representing the error around the developmental mean) would impact model output. 

Both of the new fits (Lactin plus the error and Lactin minus the error) are illustrated 

in Figure 7.21 for each of the instars in S. avenae. 
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Figure 7.21 Original Lactin model fit (black dashed line) and newly derived Lactin model fit 
based on ±±±± error incorporation (red lines). 

 

The newly derived parameters were separately employed in SAV4 in order to test 

their influence on the final model output. Regime-specific SAV4 outputs produced 

from three sets of Lactin parameters derived using: (i) the mean developmental time, 

(ii) the mean developmental time minus the error and (iii) the mean developmental 

time plus the error (Figure 7.22). Findings suggest that SAV4 does not appear to be 

overly sensitive to changes in the Lactin parameters. The output illustrated in Figure 

7.22 is intuitive, in that the ‘plus error’ output produces slightly lower peak numbers, 

due to the lengthening of the developmental period, ultimately elongating the time to 

adulthood and reproduction, and lowering population numbers. In the case of the 

‘minus error’, the opposite is the case. The changes in the timing of the peak 

numbers and the peak numbers themselves in response to the SA are small (Table 

7.21), suggesting that SAV4 is not overly sensitive to changes in the parameters 

(assuming that their values are derived from data that lies within the spread recorded 

in the initial lab studies (Dean, 1974a)). The small magnitudes of these changes are 
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reasonably consistent across each of the regimes, suggesting that not only is the 

development submodule acting as expected regarding temperature, but also that there 

does not appear to be any hidden interactive effects of changing the Lactin 

parameters. 

 

Figure 7.22 Regime-specific SAV4 outputs produced from three sets of Lactin parameters 
derived using: (i) the mean development time, (ii) the mean development time minus an error 

and (iii) the mean development time plus an error. 

 

 

Parameter 

set 

 

Peak 

JD cold 

 

Peak 

JD mod 

 

Peak 

JD hot 

Peak 

(APT) 

cold 

Peak 

(APT) 

mod 

Peak 

(APT) 

hot 

Mean  196 180 171 1.62 33.55 55.32 

Plus error 196 181 171 1.53 30.78 50.93 

Minus error  196 179 171 1.70 37.10 57.34 

Table 7.21 Peak metric change in response to Lactin parameter SA (APT=Aphids Per Tiller). 
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7.6.2 Temperature 

While the importance of temperature is implicit in the model’s dynamics, the level of 

model sensitivity in response to modification of the temperature inputs was 

unknown. As a result, two temperature increments were chosen by which to perturb 

the model: (i) ±2°C and (ii) ±4°C. These increments were deemed reasonable, firstly 

in consideration of potential future changes in temperature, but more importantly, 

they were considered of ample magnitude to provide a range over which SAV4’s 

sensitivity could be assessed. The SA suggested that SAV4 is particularly sensitive 

to temperature, indicating large differences between outputs when temperature was 

modified by ± 2/4°C. This finding is not surprising, considering the dependence of 

the model-dynamics on temperature. The relationship between final model output 

and temperature increase is revealed as a linear one, although not in the direction that 

one might expect. Increases in temperature across all of the regimes produced a 

consistent decrease in APT output, while decreases in temperature precipitated APT 

increases. This is perhaps counterintuitive to what would have been expected 

considering the relationship between temperature and insect development, however 

the mechanisms which drive this negative linear relationship can be explained. 

 

There appears to be two processes driving the sensitivity illustrated in Figure 7.23-

Figure 7.25. Increases in temperature facilitate an earlier and more pronounced 

population-increase in the ‘increased-temperature’ model population, due to the 

earlier onset of sexual maturity as a result of the increased rate of temperature-

dependent development (particularly evident in Figure 7.24 (a) Figure 7.25 (a)). This 

increase in density over a short period of time promotes the production of 

progressively higher numbers of alates owing to crowding, resulting in population 

decline. Simultaneously, the increased thermal energy in the system also serves to 

advance the timing of the critical crop GS’s, capping the growth of the population 

(due to the earlier occurrence of GS’s which were unsuitable for aphid hosts).  

Ultimately, SAV4 appears to be highly sensitive to temperature inputs, due to the 

phenological relationship between the model population and their host plant. This 

sensitivity is not viewed however, as a negative aspect of the model. To the contrary, 

the SA served to bolster confidence in the model, as large changes in the most 

important driver (temperature) promoted systematic and logical changes in SAV4 
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output. It is worth noting however, that while this section of the SA highlights the 

sensitivity of SAV4 to temperature inputs, it does not necessarily indicate the 

expected directionality of the final model output in response to increasing 

temperatures, due to the unrealistic nature of the ‘static’ model inputs for the purpose 

of the SA. 

 

 

Figure 7.23 SAV4 output from cold-regime temperature SA. Magnitude of output response to 
(a) increased temperatures and (b) decreased temperatures. 

 



  

179 
 

 

Figure 7.24 SAV4 output from moderate-regime temperature SA. Magnitude of output 
response to (a) increased temperatures and (b) decreased temperatures. 

 

Figure 7.25 SAV4 output from hot-regime temperature SA. Magnitude of output response to (a) 
increased temperatures and (b) decreased temperatures. 
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7.6.3 Crop sowing date 

In Ireland, spring barley is sown from the middle of March onwards, depending on 

weather conditions. The timing of this practice informed the SA concerning the 

sowing date. Three separate sowing dates were chosen: (i) early March (ii) mid 

March and (iii) the end of March; the output from which is illustrated in Figure 7.26. 

The use of different sowing dates had the effect of shifting the developmental crop 

GS that the aphids encountered when entering the model. Earlier sowing dates 

allowed for more plant development to take place before aphids entered the crop, 

meaning that aphids were encountering a more advanced GS when upon alighting in-

crop. This allows less time for feeding and reproduction on the plant, before the crop 

becomes unsuitable for population progression. This explains the lower APT’s 

depicted in Figure 7.26 (a) while (b) and (c) illustrate the opposite effect. Intuitively 

enough, this part of the SA suggests that SAV4 is sensitive to changes in sowing 

date. There is a caveat which must be considered with this finding however: despite 

the fact that more time is available to crops for development when they are sown 

earlier, this does not guarantee that there will be enough heat in the system to 

facilitate development at earlier times in the season. It is reasonable to assume 

however, if crops are sown earlier in reality, that prevailing weather conditions are 

probably suitable for crop development. Once again, this section of the SA reinforces 

model confidence in the constructed phenological relationship between crop and 

aphid host, and the resulting output. 
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Figure 7.26 SAV4 magnitude (top row) and GS output (bottom row) using three different spring 
barley sowing dates: (a) March 1st, (b) March 16th and (c) March 31st (CR = Cold Regime, MR = 

Moderate Regime, HR = Hot Regime). 

 

7.6.4 Survivorship 

Survival percentage was altered by ±5% for each of the temperature regimes, 

resulting in an unequivocal linear increase in output when survival was increased, 

and a decrease in output when survival was decreased (Figure 7.27). No effects of 

interactive processes were evident in the output. The magnitude of the divergence in 

outputs across each of the survival levels and regimes (particularly moderate and 

hot), suggests that SAV4 is particularly sensitive to this input parameter. Unlike 

previous SA variables however, the variance in the output can not be explained by 

interacting factors built into model, and as a result, is entirely dependent on the 

accuracy of the survival submodel. Since a simplistic rendering of survival was 

implemented in SAV4 (described in Chapter 6), this SA has highlighted an area 

which merits more effort in data acquisition if uncertainty derived from this input is 

to be reduced in future applications.  
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Figure 7.27 SAV4 output using two different levels of survivorship 

 

7.6.5 Stochastic input 

The final part of the SA concerned the potential sensitivity of the model to stochastic 

inputs. Temperature data characterising each of the temperature regimes were used 

as input, and SAV4 was ran for each regime using the same start date (JD 119) and 

the regime-specific negative-binomial parameters to stochastically produce aphid 

catches (based on the approach described in Chapter 6). Due to the stochastic nature 

of the input, model output varies between simulations, despite the use of identical 

starting conditions. For this reason, 500 repetitions of SAV4 were executed for each 

temperature regime, in order to ensure an adequate sample size from which the 

distribution of the output could be assessed. From the 500 years of simulated data for 

each regime, the annual peak APT was obtained, resulting in 500 data points for each 

of the regimes. A histogram was plotted for each of the regimes as an initial 

analytical step (Figure 7.28), resulting in the identification of two different output 
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distributions. The cold and moderate regime both approximated a normal 

distribution, while a lognormal distribution fit the hot regime best. The Probability 

Distribution Functions (PDF) and parameters for each regime are illustrated in 

Figure 7.29. While the spread in the output across regimes was quite large, the PDF 

approach provides a starting point for making inferences regarding the probability of 

APT magnitudes being achieved under specific temperature regimes. For example, 

under the cold and moderate regime, while the output range is quite large (up to 334 

APT) the probability of achieving these large magnitudes are extremely small, in 

comparison with the APT values which lie closer to the mean of the population. The 

hot regime displays a lognormal distribution, skewed towards low probabilities of 

high values for that specific regime, however these magnitudes are much lower than 

the other regimes, perhaps indicating lower levels of model sensitivity to stochastic 

input under higher temperature-regimes. 

 

 

Figure 7.28 Histograms depicting frequency of stochastic peak APT output from SAV4 on a 
regime-specific basis using a fixed start date based on 500 model runs. 
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Figure 7.29 Regime-specific PDFs for SAV4 output using identical start dates (distribution-
specific parameters provided in each legend). 
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The use of a fixed starting point for each of the regimes achieved a fair comparison 

between the stochastic output for each regime, however, is considered unrealistic 

regarding the likelihood of all three regimes initiating at the same point in time 

(when the effect of temperature on the timing of aphid-alighting is considered). For 

this reason, and for the sake of completeness, representative start dates for each of 

the regimes were substituted in for the fixed start date and SAV4 was re-ran for each 

regime (500 model runs per regime). The regime-specific start dates are displayed in 

Table 7.22. It was suspected that changing the start dates could have a significant 

impact on the output from the stochastic distribution and Figure 7.30 confirmed this 

supposition. The movement of the cold regimes start date to a later point in the 

season resulted in a decrease in the output magnitude from this regime. The 

moderate regime maintained the same start date as it was applicable to a moderate 

temperature regime, and as a consequence, no change was recorded. Finally, the Hot 

regime was initiated at a much earlier point in the season owing to the effect of 

warmer temperatures on SAV4 alighting. The advance of the start date altered the 

magnitudes recorded for this regime as well as their frequency (Figure 7.30 and 

Figure 7.31).  

 

Cold regime Moderate regime Hot regime 

155 119 104 

Table 7.22 Regime-specific start dates (JD) utilised in the SA. 

 

It is accepted that all models which contain stochastic processes will produce outputs 

that vary within simulations, despite the use of identical starting conditions and 

parameters. For this reason, SAV4’s apparent sensitivity to the stochastic inputs 

described here is not unexpected. However, the potential for the output ranges to 

change not only their frequency, but also their distribution, when the start date is 

perturbed in combination with the stochastic inputs, confirm the importance of 

firstly: the accurate simulation of the start date phenology, and secondly: the 

interactive effects that occur between the model starting point and the stochastic 

aphid input. The ability of SAV4 to provide reasonable predictions of start date 

occurrence has already been detailed in the previous chapter, however the precise 

quantification of the uncertainty associated with the use of stochastic inputs would 
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require in-depth statistical analysis that is beyond the scope of the current work. In 

the context of this research however, the SA has succeeded in emphasising the 

importance of the initial numbers used to ‘seed’ SAV4, and for this reason, the effort 

which should be invested in obtaining reliable data for this input parameter in the 

future, thus reducing uncertainty.  

 

 

Figure 7.30 Histograms depicting frequency of stochastic peak APT output from SAV4 on a 
regime-specific basis using regime-specific start dates (note the difference of scale across the x-

axes). 
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Figure 7.31 Regime-specific distributions for SAV4 output using identical start dates. 
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7.7 Conclusions 

This section provided an overview of the validation and SA procedures carried out 

on SAV4 before its final application in an Irish context. SAV4’s validation criterion 

was outlined at the outset of this chapter in order to guide the validation procedure. 

That criterion concerned the model’s ability to reproduce observed data; which has 

been satisfied throughout the course of the validation analysis.  SAV4 has been 

shown to provide reasonably skilled peak aphid forecasts, without the necessity for 

‘data-hungry’ predation subroutines. Using the validation data utilised by previous 

models SAM7 and SACSIM; SAV4 was shown to provide improved predictions of 

peak aphid metrics for both Norwich and Rothamsted. The importance of using a 

skilful GS model was highlighted through the systematic comparison of model 

outputs: in the first case, using the modelled GS outputs originally used in both 

SAM7 and SACSIM; secondly using the observed GS outputs recorded; and finally 

using an improved GS model. The GS model used in the implementation of SAV4 in 

the next chapter has been described in detail and validated in Section 6.2.12, thus 

providing a robust measure of crop growth for the Irish context. The validation 

procedure carried out here highlighted the skill of SAV4 in two different 

geographical areas within the UK, highlighting its potential applicability across 

different domains. Due to the absence of appropriate data in the Irish context, the 

model could not be validated for the Irish domain. However, the earlier classification 

of both Ireland and Southern England as comparable agroclimatic zones (Metzger et 

al., 2005), coupled with the assumption that the thermal biology of the species is 

proximate between similar climates, assures the transferability of SAV4 to an Irish 

domain. 

 

The SA provided in this chapter identified consistently important inputs influencing 

the final output of SAV4. The identification of the spread in SAV4 output as a result 

of the incorporation of the stochastic aphid element was expected, and can be 

interpreted as a source of uncertainty within model output which merits future data 

collection efforts in an Irish context. It is important to note, that while SA serves to 

highlight potential model sensitivities, the analysis can be quite subjective when the 

range of arbitrary parameter ranges are considered. Despite this, the outputs 

presented here provide a level of confidence in the interactive nature of the built-in 
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relationships in SAV4. The linear relationship between SAV4 inputs and outputs 

provide evidence that the model structure is functioning as expected, and that 

unforeseen nonlinearities are not impacting the final model outputs. The range of 

outputs also indicated the importance of ensuring that the values utilised in each of 

these inputs are adequate to describe the phenomena in question. The next chapter 

will employ SAV4 using climate observations and projections for a range of 

geographical locations in Ireland in an effort to describe how S. avenae populations 

will respond to changing temperatures in the future.  
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CHAPTER 8  

RESULTS 

 

8.1 Introduction 

Ireland experiences a predominantly maritime climate as a result of the prevailing 

westerly winds and its geographic position on the western edge of Europe flanked by 

the North Atlantic Ocean (Keane and Sheridan, 2004), and trends in key climate 

variables have mirrored much of what is occurring on a European and global scale. 

Long term national precipitation averages have indicated a 5% increase in 

comparison with the 1961-1990 average (Gleeson et al., 2013), while spatially 

rainfall is the highest in the west, declining in a North-easterly direction (Walsh, 

2012). According to Dwyer (2012) annual mean temperatures for Ireland have 

followed a similar increasing trend to that reported globally, with temperature 

increases of 0.8ºC reported over the last 110 years the rate of which was more 

pronounced from the 1980s onwards (McElwain and Sweeney, 2007). Temperature 

increases are evident in every season, and minimum temperatures in both winter and 

summer ‘have tended to be higher than the 1961-1990 average’ (Dwyer, 2012:11), 

particularly over the last 20 years. These increases have facilitated a reduction in the 

number of frost days (< 0˚C) resulting in a shortened frost season and a reduction in 

the number of ‘consecutive cold days’ (Sweeney et al., 2008:32). These increases, 

along with a greater contribution to annual mean temperatures derived from winter 

warming (Dwyer, 2012; McElwain and Sweeney, 2003; McElwain and Sweeney, 

2007; Sweeney and Fealy, 2002) have also been accompanied by an increase in the 

extent of heatwaves and decreases in summer rainfall (as was the case in 2006).  

 

Evidence outlined in this work espousing the well-accepted relationship between 

insects and temperature has established the potential for changes in the prevailing 

temperature regime to cascade down to pest populations, resulting in changes to their 

annual and seasonal dynamics. Changes are occurring in Irish climate, and this 

chapter will describe the outputs from the previously described model (SAV4), using 

both current temperature observations, as well as regional projections for a range of 
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locations around Ireland. Firstly, a brief summary of projected changes for Ireland 

will be provided, as well as an outline of the GCMs used here. Resultant outputs will 

facilitate the assessment of the directionality and magnitude of change (if any) in 

Irish populations of S. avenae in response to projected climate change by utilising a 

number of aphid metrics. These metrics include measures of phenological events: the 

date of immigration into the crop (start day), the date at which pest thresholds are 

surpassed, the date of highest aphid numbers (peak day), as well as quantity metrics 

including the peak magnitude (APT) and voltinism. 

 

8.2 Irish Projections 

A summary of future climate projections for Ireland include a reduced number of 

frost days, a higher likelihood of extreme events, increased rainfall events in winter 

(+20% in the midlands) and less frequent precipitation in summer (particularly for 

the eastern and southern parts of the country) (Fealy and Sweeney, 2007). According 

to a downscaling approach utilised by Fealy and Sweeney (2008), Ireland’s future 

climate is projected to experience temperature increases of 1.4-1.8ºC by the 2050s, 

with the largest increase in temperature occurring during the autumn months (Figure 

8.1). This rise is followed by an even larger increase during the 2080s, with 

projections of mean autumnal temperature increases reaching as high as 2.7ºC. Fealy 

and Sweeney (2008)  also report the emergence of a pronounced ‘continental’ effect 

towards the latter part of the century. Other available projections report future 

temperature increases in the region of 1.2-1.4ºC for the period 2021-2060 (Dunne et 

al., 2008), providing broadly consistent temperature projections as Fealy and 

Sweeney (2008) towards the middle of this century for Ireland, despite the use of an 

alternative methodological approach. Dunne et al. (2008) projected slightly more 

enhanced warming  towards the latter end of the century than Fealy and Sweeney 

(2008), with an increase in the region of 3-3.4 ºC which was produced utilising both 

the A1B (predominantly) and the A2 SRES storylines. Fealy and Sweeney (2008) 

reported a 3ºC increase in summer temperatures when the A2 scenario was 

incorporated in the analysis, which suggests that for the most part, both analyses are 

broadly in agreement. 
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Figure 8.1 Ensemble mean seasonal temperature increase for the 2020s,2050s and 2080s (Fealy 
and Sweeney, 2008) 
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8.3 Current climate data 

In advance of simulating future population projections for S. avenae, observed daily 

temperature data was obtained for a selection of synoptic stations representing 

coastal and interior locations and used as input to SAV4 (Malin head, Casement, 

Kilkenny, Shannon and Roches point) (Figure 8.2). Despite the absence of data with 

which to validate these outputs, they serve as an indicator of the potential interannual 

variability that exists between model outputs under current climate, as well as 

highlighting years which appear to be at higher risk to aphid outbreaks than others. 

Figure 8.3 illustrates modelled aphid magnitudes for the selected locations between 

1961 and 2009 (Kilkenny and Roches point had less available observations ranging 

from 1961-2007 and 1961-1990 respectively). The magnitude of the outputs appears 

to be anomalously high in some years, although it must be stated that the simulated 

outputs exclude the effect of pesticide applications. The years indicating extremely 

high numbers could be interpreted as those years which have the potential to be 

‘aphid outbreak’ years in the absence of chemical control. The timing of the peak 

days displayed in Figure 8.4 indicates that the years displaying highest magnitudes, 

are the same years which display the earliest peak. The converse also appears to hold 

true, with the lowest-magnitude-years demonstrating the latest timing of the peak. 

Intuitively, this situation makes sense, wherein those years with extremely fast rates 

of development display exponential-like population growth, eliciting the density 

dependent response much earlier than those populations with slower rates of 

development.  
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Figure 8.2 Locations for fourteen synoptic stations, for which downscaled temperature data was 
obtained. 
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Figure 8.3 Simulated S. avenae magnitudes for a selection of locations in Ireland using 
temperature observations ranging between 1961 and 2009. 
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Figure 8.4 Simulated S. avenae timing of peak magnitudes for a selection of locations in Ireland 
using temperature observations ranging between 1961 and 2009. 

 

Limited qualitative data was obtained for a further location in Oakpark Co. Carlow 

(Figure 8.2) relating to the level of BYDV in spring barley and weekly counts of 

aphids between 1990 and 1996 in winter barley (Gaffney, personal communication). 

The consideration of this data is primarily a qualification exercise, as opposed to 

quantification for three reasons: Firstly, the aphid counts were not identified to 
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species level (although evidence suggests that the majority of aphids encountered in 

these years were in fact S. avenae (Kennedy and Connery, 2005). Secondly, the 

count data reported is sampled from winter barley as opposed to spring barley: 

meaning that the count observations were derived from a crop which was at later 

stages of development than would be simulated in SAV4. Finally, the existence of a 

large magnitude of aphids (either modelled or observed) does not necessarily 

guarantee a high level of BYDV in the crop. Despite this fact, even if BYDV is not 

recorded at a high level, the feeding action of high numbers of aphids can still serve 

to reduce yield. For these reasons, the data displayed in Table 8.1 are treated as an 

indicator, as opposed to entirely robust data. The count data were collected using a d-

vac suction system, which sampled areas of 1 m2. The data displayed in Table 8.1 

represent the sample taken during the last week of April, while the BYDV level 

represents the overall recorded level for that season. Minimum and maximum 

temperatures from 1990-1996 were obtained from the Teagasc facility in Oakpark 

and used as input to SAV4. The modelled counts in Table 8.1 represent aphid 

numbers (per m2) output from SAV4 averaged over the last week in April annually 

from 1990-1996. Figure 8.5 represents the peak numbers/timing (as opposed to the 

April count) for the same location and years. SAV4 appears to have correctly 

identified two high risk years (1990 and 1993), however its output did not 

adequately represent the final high risk year: 1995). Conversely, the lowest risk year 

(1991) was correctly identified by SAV4, both using the April model count, as well 

as the final peak metrics. These findings are evidenced in both Table 8.1 and Figure 

8.5. SAV4 also produced reasonable counts for the low BYDV risk years (1992 and 

1994), despite the offset between winter and spring barley GS. More advanced GS 

(as was probably the case with the winter barley) could be expected to produce 

higher aphid numbers earlier in the season than the SAV4 outputs, owing to the 

promoting effect of later GS on reproduction. This could explain the occurrence of 

higher aphid counts in comparison to the modelled output in Table 8.1. Generally 

speaking, it appears that SAV4 could provide preliminary levels of aphid risk, 

particularly in extreme low or high years (such as 1990, 1993 and 1991). 
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Year 
BYDV level in 
Spring barley 

Observed aphid 
numbers m2 

Modelled aphid 
numbers m2 

1990 High 314 68.5 
1991 Low 0 0 
1992 Low 7 18.6 
1993 High 116.2 102.8 
1994 Low 13 7 
1995 High 77.5 6 
1996 Low 54.3 3.6 

Table 8.1 BYDV levels recorded in spring barley and aphid count (per m2 on the last week of 
April) in Teagasc research facility, Oakpark Co. Carlow (Source: pers. com). 

 

 

Figure 8.5 SAV4 peak day versus peak APT from 1990 to 1996 using temperature data derived 
from Oakpark, Co. Carlow. 

8.4 Future climate data 

In order to assess the potential changes in future aphid population dynamics in 

response to the temperature change, future climate projections are required as input 

to SAV4. Downscaled data was obtained for fourteen Irish synoptic stations (Figure 

8.2) derived from three different GCMs: CGCM2, CSIRO (Mk2), HADCM3 model, 

as well as the multi-model ensemble mean (referred to hereafter as ‘Ensemble’), 

which utilises the three previous models and is calculated based on the Climate 
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Prediction Index (CPI) (Murphy et al., 2004). The CPI enables allocation of 

weighting to individual models based on their ability to reproduce the statistics of 

observed temperature over a common time slice (1961-1990), providing an objective 

means by which model reliability can be quantified.   

 

For each of the three GCMs, an A2 and B2 scenario (referred to above) were 

available, while the ensemble incorporated input from both scenarios to produce a 

single dataset. It has long been recognised, that different GCMs can produce entirely 

different projections even when forced with the same climate scenarios (Hulme and 

Carter, 1999). For this reason, the uncertainty associated with the use of a single 

model-scenario combination was addressed via the utilisation of multiple GCMs and 

both the A2 and B2 scenarios.  Overall, this resulted in 7 different sets of 

downscaled data employed as input to SAV4 for each of the synoptic stations. In 

recognition of the fact that the chosen data would result in the production of a large 

body of outputs, the focus for the results was centred on the ensemble outputs, using 

the individual GCMs to provide ‘ranges’ in the final output. This approach was 

identified as the most parsimonious for two reasons: Firstly, the use of multiple 

model drivers contributes to the reduction of uncertainty in the results by removing 

over reliance on a single GCM which could potentially carry it own biases. 

Secondly, the Ensemble provides the sole source of data which facilitates the 

contribution of all GCMs and scenarios simultaneously (as outlined above). Finally, 

the extreme ranges existing in the outputs are accounted for without the need for 

production of multitudinous graphs. 

 

8.5 Baseline observations 

In advance of the utilisation of the downscaled temperature data, it was first 

necessary to check that it was fit for purpose. The phrase ‘fit for purpose’ in this 

instance, concerns the ability of the GCMs referred to above to reproduce the 

statistics of past climates: specifically, temperature for the period 1961-1990. This 

approach works on the assumption that if the temperature is simulated reasonably for 

past climates, that the models are capable of producing reliable temperature 

projections for the rest of the century. Observed minimum and maximum 

temperature observations were obtained from the Irish meteorological service (Met 
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Eireann) for each of the fourteen synoptic stations for the period 1961-1990. In their 

entirety, the stations provide representation of both coastal and inland locations at 

relatively low-lying locations. No missing data was recorded for the time period 

analysed, although two of the stations opened post-1960 (Table 8.2). The stations 

were individually assessed for their suitability for use in the current study, resulting 

in exclusion of three stations: Cork airport, Dublin airport and Mullingar II. 

Consideration was given to the potential for the highly impervious nature of the 

airport sites to affect the temperatures recorded. This, in conjunction with the fact 

that both sites are in close proximity to other synoptic stations (Roches point and 

Casement respectively), meant that the spatial signal derived from the SAV4 output 

would not be greatly impacted by the removal of both airports. Finally, the removal 

of Mullingar II from the analysis is due to its relatively short data record in 

comparison to the other stations. Ultimately, these exclusions resulted in the 

utilisation of observed temperature data from eleven of the fourteen synoptic 

stations. 

 

Station Name Location Height (m) Year Opened 

Belmullet Coastal 11 1956 

Birr Interior 73 1954 

Casement Aerodrome Interior 94 1944 

Claremorris Interior 71 1943 

Clones Interior 89 1950 

Cork Airport* Interior 154 1961 

Dublin Airport* Interior 71 1939 

Kilkenny Interior 66 1957 

Malin Head Coastal 22 1957 

Mullingar II* Interior 104 1973 

Roche’s Point Coastal 43 1877 

Rosslare Coastal 26 1956 

Shannon Airport Interior 6 1937 

Valentia Observatory Coastal 11 1866 

Table 8.2 List of Irish synoptic stations with relevant metadata. (Those marked with an asterisk 
were not used in the analysis) 
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8.6 Baseline downscaled data 

The downscaled data utilised was previously bias corrected (Fealy, Personal 

communication) however a visual inspection of the fit of the temperature data to the 

observations was carried out to ensure the identification of any potential anomalies 

which could cascade error through to the SAV4 output. It is worth mentioning that 

the divergence between the temperatures derived from the A2 and B2 scenario does 

not occur until later in the century (Nakicenovic et al., 2000), however both were 

included in the baseline assessment for completeness. Both the A2 and B2 scenarios 

provided reasonable representation of the observations for the baseline period of 

1961-1990. Figure 8.6 below illustrates the mean temperature for the timeslice 1961-

1990 for (1) the observations, (2) A2 and (3) B2 scenarios for each of the GCMs and 

the Ensemble using Kilkenny synoptic station as a representative example. No major 

anomalies were discovered in the data, aside from an apparent ‘step jump’ between 

the spring and summer seasons in the CGCM2 model, likely resulting from bias 

corrections performed on the original data. This type of step jump in the input data 

has the potential to produce anomalous results from SAV4 considering that the 

change occurs during a season where aphid development is likely to be taking place. 

The fact that the step jump is apparent despite the use of a mean across the thirty 

year time slice, suggests that the jump is systematically occurring throughout each of 

the years and is not being masked by averaging across time. For these reasons, 

CGCM2 output was flagged to be ‘assessed with caution’ throughout the rest of the 

analysis. 
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Figure 8.6 Meteorological year of mean observed temperature for the baseline period (1961-
1990) versus modelled mean temperature for the same period using separate models and 

scenarios. 
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8.7 Baseline outputs 

Station-specific modelled Tmin and Tmax daily values were used as input for SAV4 

for the time period of 1961-1990 for each of the model-scenario combinations 

outlined above. While the previous section ensured that the temperature data was not 

introducing bias into the system; this section analyses the output from SAV4 for the 

baseline period, to ensure that the results produced are comparable between the 

observed baseline period (hereafter referred to as ‘observed baseline’), and the 

modelled baseline period (hereafter referred to as ‘Ensemble baseline’).  This 

inspection enables the identification of systematic (or non-systematic) biases 

between SAV4 outputs based on the observed versus modelled temperature inputs. 

This step is particularly important, as the results directly impact the manner in which 

the future model outputs are interpreted. Ultimately, similar SAV4 outputs using 

both observed and modelled baseline inputs enable a degree of confidence in the 

input-assimilation-output relationship, which can then be utilised for future 

projections. The daily mean of SAV4 outputs over the 30 year period from 1961-

1991 was calculated, in order to produce a year of mean APT over the course of a 

season for each station. Figure 8.7 provides a snapshot of the SAV4 baseline output 

for a subset of the stations representing a latitudinal transect through Ireland for each 

of the GCMs and the multimodel Ensemble (The full output from each of the 

GCM/station combinations can be viewed in Appendix C). 
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Figure 8.7 Output from SAV4 using GCM data from CGCM2, CSIRO, HADCM3 and the Ensemble for two emissions scenarios over the baseline period 1961-1990 for a 
subset of synoptic stations with APT as the output metric.
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Of the four model outputs, CGCM2 appeared to be the least skilful model at simulating 

comparable baseline output to the observed baseline output. HADCM3, CSIRO and the 

Ensemble produced reasonable matches between observed baseline and model-driven 

output (Figure 8.7). Further examination of the outputs revealed that any offsets that 

existed between the baseline results did not appear to occur systematically between or 

within models (rendering the utilisation of bias correction of the outputs extremely 

difficult). As a result, the Ensemble baseline was utilised as the final standard against 

which the modelled future SAV4 output will be compared (as opposed to using the 

observed baseline driven by temperature observations). Consequently, any differences 

reported within the remainder of this chapter are relative differences between the 

Ensemble baseline and Ensemble future output, unless otherwise stated. Both the 

observed baseline and Ensemble baseline output for the full suite of synoptic stations 

can be viewed in Figure 8.8. This approach facilitates a more qualitative analysis of the 

S. avenae dynamics in response to climate change, by providing indication of the 

directionality and magnitude of the change in populations as the century progresses, 

without the requirement for specifying the exact population numbers at the baseline 

period. This approach seems particularly apposite in this case, due to the apparent 

consistent inflation of the SAV4 APT outputs (reasons for which will be discussed in 

the next chapter). Where appropriate; actual output as opposed to relative output is used. 

All ranges reported around the results were obtained by calculating the mean relative 

differences recorded in the metric of interest across the individual GCM outputs for 

each of the individual timeslices, and then selecting the most extreme values (maximum 

and minimum). These ranges served to provide an indication of the uncertainty or 

model-spread surrounding the modelled outputs from SAV4 (Figure 8.13). 
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Figure 8.8 Mean Ensemble and observation-driven output from SAV4 for the baseline period 1961-
1990 for all synoptic stations. 
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8.8 Future simulations 

For each of the eleven stations utilised, downscaled maximum and minimum daily 

temperatures were used to provide temperature input for SAV4 for the period ranging 

from 1990-2099 (Fealy and Sweeney, 2008). For each model year, SAV4 outputs 

consisted of the number of APT per JD, as well as the timing of the population 

progression to a peak on a daily timestep. Ultimately, this output produced a seasonal 

profile of S. avenae dynamics per annum for each station in the analysis. Three 30-year 

timeslices were extracted from the future modelled output (along with the Ensemble 

baseline for reference): The time period centred on (1) the 2020s; (2) the 2050s and (3) 

the 2080s. For each of these time periods the daily mean APTs were calculated across 

the 30 years of output to produce a ‘typical’ aphid profile for each time period in 

response to the prevailing temperature across each of the eleven locations. This was 

carried out in order to account for the natural variability evident within each of the 

models, ultimately facilitating the high level identification of trends within and between 

models, as opposed to the use of model extremes.  

 

8.8.1 Start date and regime 

The start date is described as the date upon which the first aphid alights in-field. Figure 

8.9 illustrates the simulated start dates from 1961-2099 for each of the station locations 

analysed.  A clear trend towards earlier start dates is evident as the century progresses 

and temperature-increase continues. The sensitivity analysis in the previous chapter 

suggested the potential for earlier start dates to influence the final model output. When 

these earlier start dates are considered in conjunction with the increasing prevalence of 

modelled moderate and hot regimes as the century progresses (Table 8.3), increased 

frequencies of higher model outputs could be expected owing to increased development 

time and thermal energy. This will be examined further in the next section. The relative 

advance of the start date (measured against modelled baseline outputs) are illustrated in 

Figure 8.10, indicating the range of potential start dates across different GCMs. 

Generally the Ensemble mean start dates lie at the centre of the ranges for each station. 

While the variability within each of the GCM timeslices is muted by averaging across 

the 30 simulated years, the selection of the minimum and maximum ranges from the 

collection of these mean points per model serve to provide a measure of the spread in 

start dates owing to the individual GCMs (as opposed to the more conservative 
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Ensemble). The extent to which each of the GCMs differ across this metric are 

illustrated in Figure 8.11, indicating in all cases either start dates remaining static or 

advancing between time periods depending on the modelled winter temperatures. The 

start dates appear to be advancing to a greater extent in some GCM/ SRES scenario 

combinations (referred to hereafter as GCM/SRES) over others. For example, the 

HADCM3 B2 start dates between the 2020s and the 2050s appear to remain static, 

while in every other case, this metric is advancing. This apparent lack of change in this 

metric suggests that the degree of increase in winter temperatures for this specific 

GCM/SRES combination between the 2020s and 2050s is much less than for other 

GCM/SRES combinations (all of which display significant advance between time 

periods). 

 

 

Station 

Ensemble 

1961-1990 2020 2050 2080 

Malin head 1 29 0 0 29 1 0 19 11 0 0 30 

Belmullet 1 29 0 0 20 10 0 2 28 0 0 30 

Clones 6 24 0 0 27 3 0 11 19 0 0 30 

Claremorris  3 27 0 0 27 3 0 9 21 0 0 30 

Casement 1 29 0 0 25 5 0 5 25 0 0 30 

Birr 1 29 0 0 17 13 0 1 29 0 0 30 

Shannon 0 13 17 0 0 30 0 0 30 0 0 30 

Kilkenny 1 29 0 0 16 14 0 1 29 0 0 30 

Rosslare 0 25 5 0 6 24 0 0 30 0 0 30 

Valentia 0 10 20 0 0 30 0 0 30 0 0 30 

Roches pt 0 20 10 0 2 28 0 0 30 0 0 30 

Table 8.3 Station-specific occurrence of temperature regimes (cold (blue), moderate (green) and hot 
(red)) per timeslice over the 139-year Ensemble model run. 
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Figure 8.9 Annual absolute modelled start dates (1961-2099) for eleven synoptic stations using the 
Ensemble. 
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Figure 8.10: Advance of modelled start day relative to the Ensemble baseline. The Ensemble mean 
is depicted by the black circle, while the ranges depicted by the colored bars represent the 

maximum and minimum mean relative start day advance across all of the models (per timeslice): 
blue=2020s, green=2050s and red=2080s. 

 

 

 



  

211 
 

 

Figure 8.11 Absolute mean start dates per time period for each of the GCM/SRES combinations 
utilised. 

 

8.8.2 Magnitude of aphid numbers  

SAV4 outputs display a consistent trend towards larger peak magnitudes when 

compared with the Ensemble baseline as the century progresses (Figure 8.12). Trends 
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appear to be less pronounced in the earlier part of the century (2020s) than the 2050s, 

while the 2080s persistently display the highest aphid numbers and earliest peaks. The 

mean relative magnitude differences between each of the timeslices and the Ensemble 

baseline were quantified and plotted for each of the time periods and GCM/SRES 

combinations (Figure 8.13). All of the synoptic stations displayed similar increasing 

trends in the APT magnitude relative to the baseline as the century progresses, with two 

exceptions. Firstly, the relative magnitude change between the 2020s and the 2050s for 

the HADCM3 B2 output is negative (albeit a small difference), a trend which is evident 

in all stations except Valentia and Roches point. The aforementioned lack of change 

between the HADCM3 B2 start dates for these time periods, serves to curb potential 

magnitude increases derived from advancing phenology that would be comparable with 

the other GCM/SRES trajectories (the start dates of which had advanced consistently). 

In conjunction with the static nature of the start dates between the 2020s and 2050s in 

the HADCM3 outputs, the occurrence of ‘moderate’ regimes was much higher during 

the 2020s (accounting for 62% of regime allocation) than in the 2050s (46%) (Table 

8.4). This impacts the final magnitudes due to the higher stochastic seed numbers 

characteristic of the ‘moderate’ regime, over the ‘cold’ or ‘hot’ regimes. The 

combination of a static start date and lower seed numbers at the start of the HADCM3 

B2 model run, translated to a lower accrual of aphid numbers than would have 

otherwise been expected. 

 

The second anomaly in the generally increasing trend in APT is evident in the output 

between the 2050s and 2080s for the HADCM3 A2 run. In this case, the start dates have 

consistently advanced as expected, ruling out their overt influence on final APT. Further 

examination of the regime frequency between these two time periods served to elucidate 

the reason for the contraction in APT. The frequency of ‘hot’ regimes is markedly 

increased in the 2080s for HADCM3 A2, in contrast to its occurrence in the 2050s 

(Table 8.5). While this trend is expected, the shift in the frequency of ‘hot’ regimes 

from 47% in the 2050s to 97% in the 2080s is sufficient to alter the stochastic input 

from a ‘moderate regime’-dominated distribution, to an almost entirely ‘hot regime’ 

time period. The influence of this type of shift from one regime to another is evidenced 

in the converse case of Valentia and Shannon, wherein the number of hot regimes 

between both the 2050s and 2080s are proximately comparable: these two stations are 

the only locations that reported an increase in APT for HADCM3 A2 between the 2050s 

and 2080s. 
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Figure 8.12 Mean SAV4 magnitude outputs for four different timeslices based on Ensemble 
temperature inputs. 
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Figure 8.13 Relative APT differences between the Ensemble baseline and each of the Ensemble 
timeslices, using maximum and minimum mean relative APT differences from the three GCMs as 

ranges. 
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Station 

HADCM3 B2 

1961-1990 2020 2050 2080 

Malin head 4 26 0 1 28 1 2 20 8 0 15 15 

Belmullet 2 26 2 0 21 9 0 16 14 0 4 26 

Clones 8 22 0 3 24 3 3 17 10 0 14 16 

Claremorris  7 23 0 2 25 3 3 18 9 0 13 17 

Casement 4 24 2 1 22 7 2 18 10 0 8 22 

Birr 4 24 2 1 20 9 2 15 13 0 4 26 

Shannon 1 12 17 0 7 23 0 7 23 0 0 30 

Kilkenny 4 23 3 1 20 9 2 15 13 0 4 26 

Rosslare 1 22 7 0 18 12 0 11 19 0 1 29 

Valentia 1 11 18 0 7 23 0 7 23 0 0 30 

Roches pt 1 17 12 0 12 18 0 8 22 0 0 30 

Table 8.4 Station-specific occurrence of temperature regimes (cold (blue), moderate (green) and hot 
(red)) per timeslice over the 139-year HADCM3 B2 model run. 

 

 

Station 

HADCM3 A2  

1961-1990 2020 2050 2080 

Malin head 4 26 0 1 28 1 0 25 5 0 6 24 

Belmullet 1 27 2 0 22 8 0 19 11 0 0 30 

Clones 8 22 0 1 28 1 1 23 6 0 1 29 

Claremorris  8 22 0 1 28 1 0 23 7 0 1 29 

Casement 4 24 2 1 23 6 1 22 7 0 1 29 

Birr  4 24 2 1 22 7 0 19 11 0 0 30 

Shannon 1 11 18 0 8 22 0 2 28 0 0 30 

Kilkenny  4 24 2 1 22 7 0 17 13 0 0 30 

Rosslare 1 21 8 0 18 12 0 12 18 0 0 30 

Valentia 1 11 18 0 8 22 0 2 28 0 0 30 

Roches pt 1 14 15 0 12 18 0 7 23 0 0 30 

Table 8.5 Station-specific occurrence of temperature regimes (cold (blue), moderate (green) and hot 
(red)) per timeslice over the 139-year HADCM3 A2 model run. 
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The GCM ranges associated with reported APT changes reported here are comparably 

larger than the Ensemble mean outputs for each of the time periods (Figure 8.13), 

indicating the extent of the uncertainty associated with the projections. The magnitudes 

of these ranges are projected to increase as the century progresses. This dispersion of 

the APT metric is not entirely unexpected when the contribution of various sources of 

uncertainty to the final output are considered including (1) the SRES scenarios utilised, 

(2) the GCMs and (3) SAV4-derived uncertainty as a result of the stochastic production 

of ‘seed’ aphid numbers discussed earlier in the sensitivity analysis. The temperature 

data produced under the two SRES scenarios utilised here do not generally diverge until 

approximately the 2050s (Fealy and Sweeney, 2008), which probably contributes to the 

increase in the magnitude of the ranges in the 2050s and 2080s resulting from 

variability in the temperature input between the A2 and B2 scenarios.  

 

The fact that the Ensemble mean for each time period is not symmetrically placed 

within the range of potential magnitudes can be explained by the effect of averaging out 

over an extended period, ultimately dampening the natural variability that could 

otherwise exist on an annual basis and contribute to the final mean. The existence of 

larger ‘upper range’ magnitudes than lower ranges, is simply due to the existence of 

extreme years when all model factors facilitated an expedited doubling time for the 

aphid population (and hence a large peak magnitude). In contrast, extreme low 

temperatures can only maintain low population sizes, or decimate the population almost 

entirely. It can not push the population into negative space, hence producing 

asymmetric ranges around the output mean. 

 

The spatial distribution of the relative APT magnitude-changes for each of the three 

timeslices are illustrated below (Figure 8.14). The data was interpolated between the 

eleven sites using the IDW (Inverse Distance Weighted) technique in ArcGIS v10.2. 

This technique uses the known data in conjunction with weights which are calculated 

based on the distance between known (synoptic station locations) and unknown points. 

Consequently, points that are ‘further away’ have less influence than points that are 

‘near-by’. The idealised scenario, would be to utilise a dense network of points for this 

analysis, however, as only eleven points were available, the technique is employed with 

a caveat: Interpolated surfaces near more isolated points will display smoother more 

uniform surfaces than those areas wherein multiple stations are located.  
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The 2020s displays the least amount of change in APT magnitudes across each of the 

timeslices. This was expected due to the relatively small temperature changes projected 

for this time period. During this time period however, a trend towards larger magnitude 

differences begin to emerge within the coastal locations. This increase can be explained 

by the effect of continentality on aphid dynamics via its mediating effect on the 

temperatures experienced by the model population. Continentality can be described 

essentially as a ‘coastal effect’, which is characterised by an increased range of 

temperatures experienced inland in comparison to marine environments. This effect is a 

consequence of the reduced heat capacity of land in contrast to water surfaces and 

results in warmer winter temperatures in coastal environments relative to inland 

locations. The opposite is also true, in that summer temperatures in coastal regions tend 

to be cooler than that of their inland counterparts. As a result of this phenomenon, it can 

be posited that the prevalence of increased magnitudes around the coastal margins for 

the 2020s (illustrated in Figure 8.14) is due to the earlier occurrence of aphids in-field, 

due to the modifying effect of winter temperatures on their time of spring migration. 

The previous chapter emphasised the importance of the start date of immigration in 

conjunction with the regime experienced, and the higher magnitudes illustrated here for 

the coastal stations attests to this. The advance of the start date reported above (Figure 

8.9) along with the prevalence of the moderate and hot regimes (Table 8.3) serve to 

explain these findings further. Generally, the 2050s display a continuation of this trend, 

displaying more pronounced relative increases in stations located in maritime 

environments than those inland. 

 

The 2080s displays a north-south trend in the distribution of magnitude changes, with 

the southern half of the country exhibiting magnitude increases in excess of their 

northern counterparts. Analysis of the downscaled minimum temperatures used as input 

to SAV4 for this specific time period, displays a distinct trend towards higher 

temperatures in the majority of coastal stations. For example, the station with the 

highest median minimum temperature for this time period is Valentia, followed by 

Rosslare, Roches point and Shannon. The same pattern does not exist for the maximum 

temperatures, however Shannon and Valentia place in the top four warmest stations. 

Shannon’s position as one of the warmest stations in the 2080s is translated to the 

highest APT magnitude increase in Figure 8.14. The fact that the maximum 

temperatures did not display the same temperature rankings at the minimum 

temperatures, suggest that the minimum temperature is more important to population 
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growth than maximum. This finding is logical, considering the fact that it is generally 

the minimum temperature which acts to limit population development in temperate 

environments. 

 

 

 

 

Figure 8.14 Spatial distribution of relative APT increases to the 1961-1990 baseline for three 
timeslices: The 2020s, the 2050s and the 2080s. 
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8.8.3 Voltinism 

The change in the number of generations achieved across all of the stations was 

calculated in an effort to provide a complimentary metric to magnitude-changes. This 

metric serves to provide more information about the population dynamics, by 

facilitating an assessment of the reproductive capability of the population via the 

voltinism metric. The number of generations within each thirty year time period were 

averaged for each station and GCM/SRES combination, and the relative changes against 

the Ensemble baseline calculated (the ranges of which are illustrated in Figure 8.15). 

The trend across all of the stations using Ensemble means is that of increase. Once 

again, the minimum and maximum ranges are obtained from the mean outputs from all 

of the station/GCM combinations. Generally, the ranges in Figure 8.15 display an 

increasing trend, with the exception of the minimum value (HADCM3 B2) in the 2050s 

already explained in the previous section. Further examination of the ranges reveals that 

all of the maximum relative increases are derived from the CSIROA2 GCM/SRES, 

while the minimum range values are derived from HADCM3 B2. 

 

Spatially, three to four additional generations are projected country-wide for the 2020s 

(Figure 8.16), which is in keeping with smaller relative changes recorded in the APT 

metric for this time period. The 2050s indicate the emergence of a north to south trend, 

indicating higher numbers of relative generations in Shannon, Birr and Casement than 

elsewhere. This pattern consistent with the APT output described above, particularly the 

APT for the 2080s. Finally, the 2080s displays similar voltinism patterns to the aphid 

magnitude reported for this time period, particularly for Shannon, where the highest 

temperature recorded for this time period occurred. Overall, these findings serve to 

bolster the intuitive expectation that higher aphid magnitudes correspond with increased 

voltinism. 
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Figure 8.15 Relative change in the number of S. avenae generations produced in comparison with 
the Ensemble baseline. The Ensemble mean number of generations is depicted by the black circle, 

while the ranges depicted by the colored bars represent the maximum and minimum mean increase 
in voltinism across all of the models (per timeslice): blue=2020s, green=2050s and red=2080s. 
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Time slice Minimum voltinism  Maximum voltinism 
6190 55 90 
2020 63 96 
2050 63 101 
2080 65 110 

Table 8.6 Maximum and minimum mean voltinism recorded across the seven GCM/SRES 
combinations and eleven synoptic stations. 

 

 

Figure 8.16 Spatial distribution of voltinism change relative to the 1961-1990 baseline for three 
timeslices: The 2020s, the 2050s and the 2080s. 
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8.8.4 Crop growth stage (GS) 

The simulated crop phenology advanced with the progression of the century in response 

to increasing temperature. Figure 8.17 displays the annual timing of flowering (GS 59) 

and harvest (GS 90) in simulated spring barley from 1961-2099. Flowering was chosen 

for illustration, owing to its influence on the reproduction and survival of S.avenae, 

while an approximate harvest GS was selected purely as an indicator of the extent of 

temporal advance elicited as a result of increasing temperatures. These advances are 

quantified for each of the locations in the analysis (Figure 8.17), and were calculated 

based on the difference between the 1961-1990 mean JD and the mean JD in the 2080s 

for each GS occurrence. For flowering, advances range from a minimum of 8 days, to a 

maximum of 13 days, while the harvest GS advance ranges from 11 days to 17 days. 

The advance of flowering by almost two weeks very likely contributed to the increase in 

aphid magnitudes earlier in the season as the century progressed, due to the increase in 

reproduction on the ears. The largest advances occurred in the inland sites, while the 

lower advances were evident around the coast. This finding is not surprising, 

considering the effects of continentality discussed regarding previous metrics.  
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Figure 8.17 Simulated annual timing of flowering and harvest in Spring barley for each of the 
synoptic station locations, with associated advance of GS (in days) included (FA=Flowering 

Advance, HA=Harvest Advance). 
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8.8.5 Peak day (PD) 

Early aphid peaks can be detrimental to younger crop plants, owing to their weaker 

resistance to plant viruses, in comparison to plants at older stages of development (Katis 

et al., 2007). SAV4 consistently produced outputs illustrating earlier occurrence of the 

peak aphid population for every synoptic station as the century progresses. For clarity, 

the actual projected peaks for each timeslice are illustrated in Figure 8.18 while the 

GCM ranges for this metric are illustrated in Figure 8.19 on an annual timestep. This 

advancement of the peak metric is indicative of the general advancement of the aphid 

population as a whole, in synchrony with the progression of the crop GS (in response to 

increasing downscaled temperature projections). The peak day output from each 

timeslice constitutes an advance in peak timing on every previous time period recorded 

(Table 8.7). Advances of over a week are evidenced by the 2050s, while peak timing up 

to eighteen days earlier than the baseline was recorded for the 2080s. 

 

Station 2020s 2050s 2080s 
Malin head 5 9 13 
Belmullet 5 10 14 

Clones 8 13 18 
Claremorris 7 12 16 
Casement 7 11 17 

Birr 7 11 16 
Shannon 5 10 16 
Kilkenny 6 11 16 
Rosslare 3 7 11 
Valentia 5 10 14 

Roches pt 4 8 12 
 

Table 8.7 Relative advance (in days) between baseline period and each of the three timeslices: 
2020s, 2050s and 2080s. 

 

The ranges around the mean annual peak day illustrated in Figure 8.19 display a high 

degree of variability, reflecting the year-to-year natural variability of the climate 

system. Once again, the ranges are derived from the most extreme modelled mean value 

across each of the three GCM’s in order to provide some indication of the potential 

spread or uncertainty in the modelled output. Peak day ranges increase as the century 

progresses towards the 2080s, likely a cause of extreme temperature occurrences within 

regimes which are already exhibiting warmer mean temperatures. The coastal stations in 

particular exhibit smaller ranges than the other stations. This is perhaps an artefact of 
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the effect of continentality as described previously, wherein the coastal stations do not 

experience the same range of temperature extremes as inland. 

 

Figure 8.18 Ensemble-driven absolute mean peak day for the baseline period, the 2020s, 2050s and 
2080s.  
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Figure 8.19 Ensemble-driven absolute peak day for the baseline period, the 2020s, 2050s and 2080s, 
including corresponding GCM ranges in peak day metric. 

 

The spatial distribution of peak day advance exhibits a different pattern (Figure 8.20) to 

previous metrics discussed above. Akin to the other maps discussed above, the relative 

change is small in the 2020s, arguably within the realm of natural variability. The 

beginning of an inland trend towards earlier peaks emerges during this time period, 

while the southern coastline of the country retains peak times close to the baseline 
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values. The 2050s display’s a continuation of this trend, which is likely explained by the 

spatial distribution of the data sites and the interpolation technique used to fit the 

surface between the sites. The area of the most extreme advance during this time period 

is centred on the inland stations of Clones and Claremorris. The likelihood of higher 

summer temperatures in the interior of the country are likely responsible for expediting 

development at faster pace than those around the coast, resulting in what appears to be 

an ‘early peak day’ hotspot in the midlands. The reason that this hotspot is not evenly 

distributed around the interior is due to the small increments that differentiate between 

relative advances (i.e. one day), while the classification system utilised is in two-day 

increments. For example, a difference of one day between Claremorris and Birr 

somewhat obscures the comparability between all of the midland stations.  In the 2080s 

however, this similarity between inland stations is revealed in its entirety and the area of 

high peak day advance expands further into the interior of the country. Concurrently, 

the extreme north and south stations display a smaller relative advance to the inland 

stations. 
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Figure 8.20 Spatial distribution of peak day advance relative to the 1961-1990 baseline for three 
timeslices: The 2020s, the 2050s and the 2080s. 

 

8.8.6 Aphid threshold 

While each of the metrics outlined above facilitate the quantification of change in the 

directionality and magnitude of pest pressure, an additional indicator of risk relating to 

PPPs is useful. Pest risk can be quantified by assessing the change in the date when 
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economic thresholds are surpassed across the length of the modelled century. 

Thresholds can be interpreted as points in time when chemical intervention is deemed 

necessary to curb the further development of pest populations. These thresholds are 

exclusively utilised in short-term forecasting as opposed to long-term warning systems, 

however their measurement serves to illustrate the potential change in PPP requirements 

as a result of changing temperature regimes. While these thresholds are widely used on 

an international scale for many pest species, a consensus has not been reached regarding 

the level at which the thresholds should be set (Liu et al., 2014), and their use has been 

described as unreliable in some cases owing to low reported correlations between aphid 

numbers and post-spraying crop yields (Larsson, 2005). Nonetheless, the use of a 

threshold metric here would serve to provide some indication of potential temporal 

shifts in the requirement of chemical applications to control aphid populations, as well 

as the interannual variability over time pertaining to the requirement for control. A fixed 

threshold for Ireland was not readily evident within current literature, so a UK-based 

threshold was utilised of ‘5-aphids-per-tiller’ (Liu et al., 2014). The JD at which the 

aphid threshold is exceeded is illustrated in Figure 8.2, clearly displaying a general 

decrease in the JD at which the economic threshold is surpassed towards the end of the 

century. The advance in the timing of this occurrence is likely due to the general 

advance of aphid and crop phenology in response to temperature over time, in 

combination with increasing temperatures. 
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Figure 8.21 Absolute JD at which the ‘5 aphids per tiller threshold’ is surpassed annually over the 
modelled time period 1961-2099. 
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8.9 Conclusions  

This chapter outlined current climate trends, as well as the projected trajectory of Irish 

temperatures in response to anthropogenic climate change. Downscaled national 

projections using a variety of GCMs were employed as input to SAV4 to provide aphid 

population projections for eleven sites across Ireland for three future time periods: the 

2020s, the 2050s and the 2080s. Results suggest that as temperatures increase 

throughout the century as a result of climate change, aphid populations will respond 

positively to the increase in thermal energy available. SAV4 produced consistent 

projections of earlier and larger population dynamics across all of the sites employed in 

the analysis. The use of an adopted economic threshold suggested that timing of 

chemical intervention could also change in the future in response to shifting 

phenological patterns in aphids and crops. Interpolation of some of the findings 

suggested that a spatial element exists in the response of aphid populations to 

temperature change, primarily occurring between the interior and coastal environments. 

Considering the spatial nature of cereal growing in Ireland, this translates to a situation 

where some areas will be less or more impacted than others in relation to pest pressure. 

The next chapter will analyse the key findings outlined here in the context of crop 

production in Ireland, in order to address the potential repercussions of changes to the 

grain aphid’s population dynamics and phenology under climate change. These findings 

will be contextualised within the national and international research, in order to identify 

future adaptation options for the cereal-producing sector. 
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CHAPTER 9  

DISCUSSION AND CONCLUSIONS 

 

‘A model is designed to serve a purpose. It does not need to specify 

reality fully, nor to be agreed by all’ (Inkpen, 2005). 

 

9.1 Introduction 

The impacts of climate change on agricultural production are likely to require changes 

to policy and pest-risk management in the future. Models such as SAV4 are typically 

used in conjunction with regionally downscaled climate projections in an effort to 

provide a ‘best estimate’ regarding how pest dynamics might change in the future, thus 

guiding long-term decision-making. This research posed the question: how will the 

agricultural pest S. avenae respond to future climate change in Ireland? This chapter 

will assess how robustly this question is addressed via the current research findings.  

The validity of the findings will be assessed by giving consideration to both model 

uncertainty and potential methodological shortcomings. The implications of the current 

research findings for crop production in the future in Ireland will be addressed, with 

specific reference to the potential economic and IPM ramifications of the current 

research. Recommendations will be made, both in relation to future policy and further 

modelling efforts and how they can be improved. 

 

9.2 Main research findings 

The primary aim of this research was to assess whether projected changes in climate 

would impact the population dynamics of S. avenae in Ireland. According to the results 

outlined here, projected future changes in temperature if realised, are expected to 

increase pest pressure from the grain aphid (S. avenae) in Irish barley crops. Increasing 

aphid density and voltinism, coupled with advances in phenology during migration and 

development could serve to negatively impact spring barley crop yields in the future. 

Generally, the largest changes in peak aphid metrics are projected to occur after the 
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2020s. The trends for all locations analysed display an increase in aphid magnitudes and 

earlier beginning of spring migration, regardless of the GCM or SRES utilised. Winter 

temperature was found to be increasingly important as the century progressed, owing to 

its impact on the timing of spring migration and resultant impacts on the season’s 

population magnitudes. Minimum temperatures throughout the aphid season were also 

identified as more influential than maximum temperatures in relation to aphid 

abundance. For example, coastal stations that displayed the highest minimum 

temperatures over the 2080s, also displayed the highest aphid abundance simulated. 

Earlier simulated timing of economic thresholds for the grain aphid further supported 

these findings, suggesting requirements for earlier chemical intervention in the future. 

Model simulations such as those presented here have never been carried out before for 

the Irish domain, and as a result constitute a novel contribution to knowledge. 

 

Secondary aims in the research posed the question of whether a single climate variable 

could be identified as more appropriate than others for use in pest modelling studies. 

Temperature was identified as the most influential variable on insect development 

owing to its regulatory effect on enzymatic activity. This was not a novel finding, but 

rather a well-established fact within the entomological literature. The consequent 

identification of temperature as the most appropriate variable for use in the current 

study was a result of both its widely reported influence on insect development, as well 

as an effort to reduce uncertainty within the modelling study. The aim of quantifying the 

relationship between climate and S. avenae in an Irish context was achieved by utilising 

well-established methods for describing the development-temperature relationship in 

insects. The most suitable of the nonlinear functions (the Lactin model) presented was 

selected based on a criteria-led approach. 

 

9.2.1 Start of spring migration 

The findings presented here are in keeping with many previously espoused impacts, 

illustrating an increase in pest risk owing to projected changes in temperature. The 

modifying effect of winter temperature has been extensively referred to throughout this 

work, however the extent to which the effect was capable of moderating the resultant 

phenology of aphid populations in response to climate change in Ireland was unknown. 

The increase in projected winter temperatures (over the course of the modelled time 

period (1961-2099)) used in this research served to positively influence the model 
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populations of S. avenae, by facilitating progressively earlier first flight. This advance 

of spring migration of S. avenae in response to temperature projections is consistent 

with the findings of Harrington et al. (2007), where an advance in spring migration of 8 

days was projected for the 2050s (averaged across numerous locations in Europe), while 

the UK-specific advance was cited as 1 day every 7 years. Analysis of the first modelled 

catch in this work indicated a comparable advance of 1 day every 6 years3, when 

averaged across each of the synoptic stations. The use of temperature as the driving 

climatic variable for the calculation of aphid first capture has previously been confirmed 

for the European domain (Cocu et al., 2005) and was further corroborated in the current 

research. Changes in this model metric are apparent by the 2050s, suggesting that 

relative advances are occurring between the 30-year time periods of the 2020s and 

2050s. These changes have the potential to alter the seasonal progression of aphid 

dynamics, owing to their immigration timing relative to the crop growth stage (Bell et 

al., 2014), as well as their overall damage potential in-crop. Depending on changes in 

calendrical crop sowing in the future, the shift in spring migration could serve to 

increase or decrease aphid damage-potential, depending on the directionality of sowing 

dates in response to the changing climate regime. This will be discussed further later in 

this chapter.  

 

9.2.2 Aphid magnitude and voltinism 

The limiting effect of winter temperature on temperate insects was reiterated by Bale et 

al. (2002), increases in which serve to extend the aphid season, thus facilitating the 

availability of increased thermal energy for aphid development and reproduction. 

Increases in minimum temperatures during the aphid season were identified as more 

influential over the final aphid abundance than maximum temperature, highlighting the 

importance of the lower developmental threshold in insects and its role in the limitation 

of development (Sharpe and DeMichele, 1977). Reported increases in abundance over 

the course of the modelled time periods are indicative not only of the damage potential 

(via mechanical feeding and virus spread), but also the production potential of large 

number of alates (owing to density-induced cues). The resultant increase in magnitude 

is mirrored in the increased voltinism in S. avenae, a finding cited previously in a 

Californian study utilising a range of pests and GCMs (Ziter et al., 2012), in the UK 

(Harrington et al, 2007) and more generally (Cannon, 1998).  Walters and Dewar (1986) 
                                                 
3 Measured as the difference between the baseline period first catch for the 2050s  
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highlighted how early infestation (as referred to in the previous section) can be an 

important factor in relation to abundance and subsequent aphid outbreaks during the 

summer; a relationship which was also indicated here (Figure 9.1).  

 

 

Figure 9.1 Relationship between the modelled start of spring migration (JD) and the peak aphid 
magnitude per tiller over the period ranging from 1961-2099. 

 

These findings reported here display consistent increases in aphid abundance across all 

of the locations used in the Ensemble analysis, however the SA highlighted the potential 
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for management practices (such as sow date) to modify aphid trajectories and elicit a 

decrease in abundance in response to earlier planting dates (Section 7.6.3). The reported 

reduction in aphid magnitudes in response to earlier sowing dates (highlighted in the 

sensitivity analysis) is in agreement with current knowledge for Ireland: that earlier 

sowing dates impart less aphid pressure on crops (both mechanical and viral) (Kennedy 

and Connery, 2000). The reason for this is explained by the fact that generally, plants at 

younger growth stages are more susceptible to yield reductions caused by aphids and 

their viruses (Fabre et al., 2003; Harrington et al., 2007). If plants are sown earlier, they 

have time to establish themselves and develop before aphids migrate into the crop and 

start feeding (reflected in the model dynamics presented here, owing to the effect of GS 

on reproduction and survival). This management practice could be in jeopardy however 

if projected increases in extreme precipitation events for this country inhibit early spring 

sowing in the future, thus indirectly increasing the potential for crop losses. 

 

The apparent dampening effect of increasing temperatures on aphid magnitude 

illustrated in the sensitivity analysis (SA) was unexpected in the current analysis. 

Intuitively, the a priori expectation would have been for the population to respond 

positively to increases in temperature (particularly those temperatures associated with a 

temperate mid latitude country like Ireland), with corollary increases in model output: 

an expectation which was realised in the final model outputs reported (contrary to the 

directionality of response displayed in the SA).  This apparent disagreement between 

the SA and the final outputs was likely due to the ‘release’ of the model initialisation 

from the use of static starting values. i.e. in the SA, SAV4 was constrained to run using 

fixed starting dates and seed numbers. This is in contrast to the results presented here, 

which are derived from model runs wherein the modules were allowed to respond to 

temperature (and each other) in a more realistic fashion, simulating the natural variation 

typical of a biological system.  

 

9.2.3 Temperature regimes 

Across each of the models, the prevalence of hot regimes was found to increase between 

sequential time periods, while cold and moderate regimes decreased (Table 8.3 to Table 

8.5 and Table C-1 to Table C-4 (Appendix C)). The Ensemble displayed only hot 

regimes by the 2080s, affecting both aphid development, as well as the numbers 

simulated for the spring migration. The influence of previously described differences 
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between the regime-specific immigration profiles (hot regimes were illustrated to 

provide lower stochastic numbers of initial aphids) appear to be less important in 

determining the magnitude of final aphid numbers when thermal energy is abundant. 

For example, the fact that the 2080s consistently displayed the highest magnitudes 

across all of the time periods analysed, serves to highlight the influence of earlier start 

dates and increased thermal regimes, despite the existence of relatively small initial 

population numbers. Simultaneously, the use of the regime approach facilitated the 

incorporation of natural variability, typical of biological systems, while simultaneously 

facilitating the ability to simulate immigration profiles, a pre-requisite for model-runs 

outside of the observed period. Using a similar regime classification system, Skirvin et 

al. (1995) found that the moderate regime was the most suitable for future populations 

of S. avenae when using aphid abundance as a measure of suitability. The regimes 

utilised in this study were based on different seasonal periods to Skirvin et al., (1995), 

and as a result found that the prevalence of higher aphid magnitudes in the 2080s 

indicated that hot regimes were the most suitable for aphid dynamics under climate 

change. 

 

9.2.4 Aphid and crop phenology 

General findings include the advance in phenology of aphid and crop development, 

resulting in earlier and higher occurrence of seasonal aphid abundance. Despite the 

maintenance of a fixed start date, crop progression of over two weeks was evidenced, 

with the highest advances in crop phenology evident for the inland sites. Peak day 

advances reported were generally higher for inland sites than coastal, mirroring the 

spatial pattern of crop development. These patterns were attributed to the emergence of 

a continental effect on the phenology and development rate of the grain aphid. The 

occurrence of the peak day metric is driven by density dependent factors within the 

model population, which is in turn influenced by host plant quality. As a result, the 

advance of the host plant phenology serves to influence the advance of the model 

population phenology. 

 

The impacts of phenological advances in aphid phenology also served to provide a 

measure of risk metric in the form of a ‘control threshold’ metric. Overall increases in 

the rate of aphid development in response to temperature were illustrated via the use of 

the economic threshold. This threshold occurred progressively earlier in synchrony with 
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changing temperatures, indicating the possibility of earlier seasonal requirements for 

pest control strategies in the future in response to changing aphid-host phenology. 

 

9.2.5 Summary of findings 

In summary, the main findings of this work are: 

 

• Spring migration is expected to advance in the future in response to milder 

winter temperatures. This equates to earlier infestation of crops by the grain 

aphid, ultimately facilitating population build up earlier in the season. Changes 

are projected to occur as early as the 2020s.  

• The frequency of occurrence of hot regimes is set to increase significantly by the 

2050s, and become dominant by the 2080s across all GCM/SRES scenarios 

employed in the analysis. 

• Aphid abundance is expected to increase as the century progresses, owing to 

both earlier arrival in crop as well as increased thermal energy as a result of 

increasing ambient temperatures (largely associated with minimum temperature 

increases). Projected warmer regimes are expected to expedite development 

rates, facilitating the completion of development more rapidly as the century 

advances. Corresponding developments in voltinism have also been projected 

for similar time frames. 

• Temperature-induced stimulation of crop development was evidenced across the 

modelled time-period for all locations, using the temporal advance of flowering 

(8-13 days by the 2080s) and harvest (11-17 days by the 2080s) as gauging 

metrics.  

• The timing of the peak abundance of aphids reflects the general advance in 

phenology seen elsewhere in these results, with the peak day occurring earlier as 

the century progressed. This result is contributed to by the impact of the GS 

advance, by expediting the occurrence of developmental stages that promote 

aphid population growth via increased reproduction rates.   

• The time at which economic thresholds are passed in-field is projected to 

become earlier as time advances towards the 2080s. This finding is a direct 

result of the general advance in aphid phenology in response to temperature 

reported here, and serves to highlight the potential necessity for control 

measures earlier in the season in the future. 
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• Spatially, the effects of continentality were evident across the measures 

employed, indicating the potential emergence of a risk-differential between 

coastal and inland stations particularly towards the latter end of the century. 

 

9.3 Limitations of the research 

9.3.1 Data availability and validation 

The lack of both lab-derived temperature studies using Irish clones and Irish field-count 

data for S. avenae with which to train and validate the model was a significant 

limitation in the current research. Issues regarding data availability became apparent 

near the onset of the research, however funding to facilitate the collection of the 

required data was not available. The utilisation of firstly, the developmental data for S. 

avenae (Dean, 1974a) and secondly, the suction trap data  (Harrington and Woiwod, 

2007), necessitated the adoption of a number of assumptions regarding the 

comparability of life history characteristics and transferability of derived relationships 

between the UK and Ireland  in order to achieve the primary aim of the research. 

Despite these assumptions, the model is based on the well-accepted moderating effect of 

temperature on insect development. The assumptions made have been supported by 

evidence promulgating the homogeneity of the genetics and lifecycle structure of S. 

avenae populations across much of the UK (Llewellyn et al., 2003), as well as the 

similarity of environmental zones between the UK and Ireland (Metzger et al, 2005). 

The future collection of biological data pertaining to S. avenae for the island of Ireland 

could serve to either confirm or refute the appropriateness of the data used here. At 

present, in the absence of such data, the assumptions made are considered adequate. 

 

The lack of validation of the model for Ireland is perhaps, the most significant limitation 

in the current work. The validation of SAV4 could be achieved using field count data 

for initialisation, if such data were to become available through a monitoring 

programme. With minor modifications, the availability of such data would facilitate the 

use of SAV4 as a forecasting model once validated. Similarly, the model could be easily 

reparameterised and utilised for other aphid pest species displaying similar lifecycles. 

The validation of individual submodels (development, reproduction) within SAV4 

could be achieved via laboratory studies and would constitute a logical ‘first step’ 

towards a more comprehensive validation of SAV4 in an Irish context. 
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9.3.2 Heat stress 

The importance of GS’s on the progression of the modelled population dynamics has 

been highlighted throughout the validation, SA and results presented in this work. For 

this reason, the use of a simplistic crop growth model here dependent only on 

temperature could be viewed as a limitation. The omission of effects of heat-stress and 

drought on the crop progression from one ontogenetic stage to the next, means that in 

particularly hot years, the GS’s simulated by SAV4 could overestimate the rate of 

barley development, in turn effecting various rate submodules within SAV4 .e.g. 

reproduction, survival. While the utilisation of a dynamic crop model incorporating the 

effects of all climate variables and management practices would have been preferable, it 

was not the primary focus of the current work and a basic crop growth model was 

deemed appropriate as long as the caveats were highlighted.  

 

The effects of high temperatures were implicitly incorporated within the overall 

development model in SAV4, however the potential for periods of sustained elevated 

temperatures to impact life cycle history characteristics was not included. Recent work 

(Jeffs and Leather, 2014) suggests that sustained heat stress periods can impact not only 

aphid reproduction and survival, but also nymphal birth weights. These type of effects 

merit incorporation in future iterations of models such as SAV4. 

 

9.3.3 Moderating factors 

Simulated magnitudes across many of the model years appeared ‘inflated’ in 

comparison to recorded magnitudes reported throughout the international literature. 

These results could be explained by the fact that the dynamics were simulated 

unimpeded by the regulating effects of pesticides, however, other potential limitations 

within the current work could also be contributing to the large magnitudes recorded:  (1) 

the direct exclusion of the moderating effect of natural enemies, or (2) the use of a 

morph determination function which was derived using wheat as the substrate (as 

opposed to barley). In the case of the former, the general acceptance that the modifying 

effects of natural enemies on aphids are a result of the activities of entire guilds of 

enemies (Carter, 1994) (as opposed to a single species), rendered their incorporation 

untenable owing to both the complexity involved as well as aforementioned data-

availability. Despite their exclusion, the model performed reasonably well in the UK 
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validation (Section 7.4), in comparison to other models incorporating the effects of 

natural enemies. Improvements in insect monitoring in Irish agroecosystems would be 

required before this aspect of the grain aphid’s biology can be more fully considered. 

The latter limitation outlined above has the potential to alter the population trajectories 

presented here, if the relationship described does not apply using barley as a substrate. 

The use of wheat as the medium upon which to base this relationship could potentially 

alter the outcome of the equation, depending on the level of aphid-resistance in the 

cultivar or variety in question. Despite the fact that the morph determination equation 

described by Carter (1982) has previously been applied to describe another aphid 

species (M. dirhodum) (Zhou et al., 1989), the formulation of the relationship between 

morph determination and crop would be rendered more robust if derived on a species-

specific (both aphid and crop) level for each application. 

 

Finally, SAV4-derived simulations provide projections only for S. avenae, despite the 

fact that there are other known species found in Irish barley (R. padi and M. dirhodum). 

The direct exclusion of other aphid species that could confer damage and reduce crop 

yields, means that their influence is not accounted for in the projections. Different 

lifecycle strategies could mean that each of these species respond differently to S. 

avenae under the temperature projections used here, ultimately serving to modify pest 

risk projections in the future. The approach utilised in this work was justified, owing to 

the predominance of S.avenae over other species reported by Kennedy and Connery 

(2005), suggesting that their population dynamics imparts the greatest influence over 

aphid induced yield losses. 

 

9.4 Model uncertainty 

The limitations associated with the results reported here are compounded by the 

uncertainties associated with the climate projections that are used to drive the 

simulations. The scenarios upon which projections are based produce a wide range of 

outcomes, depending on the assumptions made by each individual scenario. The climate 

community’s inability to predict future resource use, land use change and potential 

technological advances means that there will always be inherent uncertainties associated 

with any projections made. This work catered for this uncertainty in two ways: firstly, 

by reducing the number of downscaled variables for use in the analysis and choosing a 

variable (temperature) for which there is less uncertainty than others (recall Figure 2.4) 
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and secondly, via the utilisation of downscaled data derived from multiple GCMs and 

SRES combinations (as opposed to the use of a single model).  

 

The use of multiple GCMs to drive SAV4, while computationally intensive addressed 

some of the uncertainty typical of climate impact studies which utilise only one GCM. 

By removing the over-reliance on just one GCM, potential ranges in the outputs could 

be produced, while simultaneously utilising the ensemble mean to reduce the influence 

of natural internal variability associated with any one specific model (Littell et al., 

2011). The results presented in this work indicated the same directionality of response 

towards increased magnitudes and earlier occurrences of S. avenae despite the GCM-

SRES combination used, providing a level of confidence in the main findings presented. 

 

9.5 Discussion and conclusions 

9.5.1 Economic implications 

Reductions in Irish grain yield in spring barley due to BYDV infection have been 

reported as ranging from 0.36 t/ha (7%) to 1.1 t/ha (20%), while losses due to direct 

feeding by S. avenae ranged from 0.71t/ha (10.6%) to 0.83t/ha (11.3%) (Kennedy and 

Connery, 2005). If the projections provided here are to be accepted, these losses could 

be set to increase in the future. An economic analysis of the impacts of S. avenae on 

crop losses in Ireland has never been carried out, making it difficult to extrapolate 

findings described here to a monetary cost of pest activity. However, the most recent 

statistics (Table 9.1) available regarding spring barley yields in Ireland (referring to 

2013) provide a rudimentary method by which crop losses can be quantified.  

 

Area under 
spring barley (h) 

Yield per 
hectare (t) 

Total 
production (t) Price/t (€) Value (€) 

183,500 7.2 1,321 200 €150 198,180,000 

Table 9.1 Spring barley statistics for Ireland in 2013 (h=hectare, t=tonne). Source: (CSO, 2014c).  

 

If it is assumed that the total production reported occurred despite the aphid-induced 

losses reported above, then it is reasonable to reapply these range of losses to the yield 

per hectare in order to derive the range of potential production which could have been 

achieved in the absence of pest activity. Loss ranges were calculated by adding the 

lower losses per tonne due to BYDV, to the lower losses due to mechanical damage (i.e. 
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0.36 t/ha+.71 t/ha=1.07t/ha), and the higher losses due to BYDV, to the higher losses 

recorded due to mechanical damage (i.e. 1.1t/ha + 0.83 t/ha =1.93 t/ha), resulting in 

losses in spring barley attributable to both BYDV and feeding ranging from 1.07 t/ha to 

1.93 t/ha (to provide a range of potential losses). Each of these ranges were then added 

to the actual recorded yield/hec in spring barley for 2013 (CSO, 2013), in order to 

provide hypothetical upper and lower yield/hec increases if aphid damage was removed. 

Data describing the area under spring barley in 2013 (in hectares) was obtained for 

Ireland (CSO, 2013), and consequently multiplied by the two newly calculated yield/hec 

values in order to derive the overall potential barley tonnage in the absence of aphid 

damage (Table 9.2). The difference between each of these values and the actual volume 

of barley recorded were then multiplied by €150 (the price of spring barley (per tonne) 

(IFA, 2014)) in order obtain a measure of potential monetary losses owing to aphid 

damage. This rudimentary example serves to illustrate the potential magnitude of losses 

per year, ranging from approximately €29-54 million due to aphid activity under the 

current climate. The economic costs of crop yield reductions are further compounded by 

previously mentioned expenditure on PPPs of (on average) €60 million per annum 

(CSO, 2013).  

 

Area under 
spring barley (h) 

Yield per* 
hectare (t) 

Total 
production (t) 

Difference 
(t) 

Potential 
losses (€) 

183,500 8.27 151,7545 196,345 29 451,750 
183,500 9.13 167,5355 354,155 53 123,250 

Table 9.2 Potential Irish spring barley yields in the absence of aphid damage in 2013 (h=hectare, 
t=tonne). *Lower and upper potential yield/hec in the absence of aphid damage. 

 

9.5.2 Management practices 

Current management practices in Ireland suggest that aphid risk can be reduced by 

sowing crops in March, as opposed to April, owing to the increased levels of aphid 

activity in April (Kennedy and Connery, 2000). The findings outlined here indicate that 

pest-pressure from S. avenae in spring barley is expected to increase, despite the 

maintenance of a March sowing-date. The use of models such as SAV4 in climate-

impact studies are important, as they contribute towards developing future strategies to 

adapt to climate-induced changes. Currently, aphid control strategies espoused in 

Ireland are generally based on calendrical cues. For example, in winter barley: ‘the 

application of aphicide in October and November is a standard recommendation…for 
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barley sown before the last week of September’ (Kennedy and Connery, 2000), or for 

spring cereals, Teagasc (2014) ‘recommend the application of a contact aphicide…to 

crops at the four to five leaf stage’, while producers of PPPs suggest that farmers should 

‘monitor crops and apply KARATE ZEON™ as soon as aphid activity is detected’ 

(Syngenta Ireland Ltd, 2010). Neither of these approaches take account of interannual 

variability or the potential for aphid numbers to be so low that spraying is not required. 

This highlights the crux of the current research: the findings outlined here represent 

mean changes in aphid metrics over time, removing much of the variability referred to 

above. Potential changes in future climate will incorporate extremes in climate variables 

that contribute to this variability, providing the potential for consecutive high-pest-

pressure years on the ground for farmers. Sequential extremes, coupled with the 

alteration of seasonal phenology could serve to significantly impact yield attainment in 

the future, by rendering current control strategies outdated. While the current model 

used was not designed as a short-term forecasting system, the model’s outputs provide 

an indication of this potential future variability in pest dynamics, allowing policy 

makers to act proactively to facilitate sustainable future crop production. Additionally, 

use of SAV4 as a short term forecasting system could also be assessed in the future, if 

the model is suitably modified and validated. 

 

9.5.3 Pest generalisations 

The prophylactic control of crop pests referred to above is no longer a viable option in 

the current agricultural climate for a number of reasons including increasing costs, 

associated environmental risks, emerging pest resistance, as well as altered PPPs 

regulations. Increases in pest pressure reported here, in combination with these reasons, 

highlights the necessity for sustainable adaptation strategies to ensure the maintenance 

(and proposed increases) of future crop yields. Any such strategies however, would 

need to be generally applicable in the absence of individual risk studies for every 

agricultural pest.  

 

While this work is concerned with the future dynamics of only one insect pest, 

generalisations regarding the potential applicability of these findings to other species 

could be tenuously made based on species displaying similar life cycle traits, such as 

anholocycly. This trait has been implicated in the timing of first flight, providing an 

initial indicator for the potential trajectory of seasonal dynamics depending on when the 
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immigration starts relative to crop development (Bell et al., 2014). The results outlined 

here could be utilised to make qualitative statements regarding potential climate-

induced changes to other aphid species displaying similar traits. Bell et al. (2014) 

further propose that under climate change, the most adaptive aphids will be the most 

successful, specifically those which display facultative anholocycly. This ability to 

adapt to extremes in winter temperatures by producing either sexual or parthenogenetic 

clones would certainly confer an advantage to those species displaying this trait. As a 

result, this work could be taken one step further to theorise that those species displaying 

facultative anholocycly could be expected to respond even more positively to changes in 

future climate in comparison to the results presented here for S. avenae. Further 

generalisations can be drawn regarding the potential applicability of current findings to 

those regions displaying similar agroclimatic conditions to Ireland. Assuming 

comparability between climate projections and land use, it is reasonable to assert that 

population dynamics of the grain aphid illustrated here, could respond similarly in the 

future in climatically proximate zones (assuming that lethal temperature limits are not 

surpassed).  

 

9.5.4 Spatial heterogeneity of aphid pressure in relation to host crop 

Cereals in Ireland are predominantly grown in the east and south of the country as well 

as east Donegal, making up 16% or higher of the total area farmed per Electoral District 

(ED). This spatial pattern of cereal growing is encompassed to the south and east of a 

line running from Louth to Cork. Figure 9.2 illustrates the spatial distribution of spring 

barley in Ireland in 2013 (measured in hectares per ED). Generally, the projected 

changes in aphid metrics described are not homogeneous over the cereal-growing areas. 

As these areas encompass both coastal and inland locations, the potential for offsets in 

pest pressure between the two are possible, owing to the proposed effect of 

continentality on the overall change in aphid metrics. According to Figure 9.2 coastal 

locations in the spring barley-growing areas display the highest hectarage of land 

farmed. According to the results outlined here, these areas of intensive cereal production 

(particularly in the south and southeast coastal areas) will experience the highest 

increases in aphid abundance in the future, owing the effect of coastal temperatures on 

spring migration. Generally speaking, changes projected for the 2020s are small in 

comparison to the 2050s, providing an opportunity for the sector to adopt strategies now 

in order to ensure resilience in the future against these impacts. 
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Figure 9.2 Spatial distribution of spring barley cultivation in 2013 (CSO, 2014c) 

 

9.5.5 International context 

Many of the climate change studies produced by the agricultural research community 

are comprised of crop sensitivity studies, describing crop responses to global climate 

projections, the broad consensus of which is that crops will be negatively impacted in 

the future in response to climate change (Rosenzweig et al., 2014; Teixeira et al., 2013; 

Trnka et al., 2011). While these types of studies are critical to the assessment of future 

food security prospects, they have generally operated in the absence of consideration for 

moderating effects of pest species, which can impart major yield effects. This situation 

is changing however, as the potential for their influence to modify projected crop yields 

is being recognised and highlighted as ‘an important area for future model 

development’ (Rosenzweig et al., 2013:3270). Andrew et al. (2013) provided an 

illustration of this changing trend by analysing the prevalence of studies examining the 
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effects of climate change on insects between 1985 and 2012 within the scientific 

literature. They found this subject matter was most dominant in Europe and North 

America, while more generally an increasing trend in the numbers of publications that 

incorporated the effects of climate change on insects was apparent (Figure 9.3). Their 

analysis serves to place the current work in context within the international research, by 

highlighting the contribution of current findings to an area that thus far is under-

represented in the international literature.  

 

 

 

Figure 9.3 Number of publications assessing the impact of climate change on insects from 1985-
2012. A star is shown for 2012 as it only includes papers to August 2012 (Andrew et al., 2013).  

 

Andrew et al. (2013) elaborated on their analysis by including the insect orders, as well 

as the habitats included in the publications analysed. Generally, they illustrated that the 

Hemiptera (the order to which S. avenae belongs) were less well studied than other 

orders such as the Lepidoptera and Diptera (among others) within Europe, as well as in 

agricultural habitats. This work contributes towards furthering knowledge pertaining to 

both of these areas by contributing climate change projections of an economically 

important Hemipteran in Europe. Specific areas of contribution are illustrated in Figure 

9.4, where the variables used to measure insect response to climate change were 

categorised into groups depending on their prevalence in the literature. The outputs 

from SAV4 produced in the study directly contribute to the furtherment of international 

knowledge across three of these groups, incorporating measures of abundance, 

interactions (with crop), phenology and development; ultimately increasing the 

knowledge base for future studies of this kind, both nationally and internationally. 
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Figure 9.4 How insect responses to climate change have been recorded in publications between 1985 
and 2012. Four groups (A-D) allocated based on number of publications in each response group 

(Andrew et al., 2013). Red circles denote areas of contribution by SAV4. 

 

9.5.6 Adaptation strategies and policy 

Despite the existence of aforementioned sources of uncertainty, the potential for adverse 

impacts on food production is evident and requires the application of the ‘precautionary 

principle’ if future food demands are to be met. An idealised outcome from the current 

research would be the production of simulations wherein uncertainty did not exist and 

the findings could be construed as entirely robust. This could then lead to the 

formulation of targeted adaptation strategies in the Irish agricultural sector in order to 

ensure resilience under future climate change. This scenario is not the case here, nor is it 

likely to ever be the outcome in climate impact studies. What is more likely, is that the 

level of uncertainty will increase, as scientists uncover new sources of uncertainty in the 

highly complex climate-biosphere model system. What Lemos and Rood (2010:670) 

refer to as the ‘uncertainty fallacy’ (‘the belief that the systematic reduction of 

uncertainty in climate projections is required in order for the projections to be used by 

decision makers’) is all-to-often used as a reason for inaction on behalf of policy 

makers. However, the potential economic cost of this inaction means that adaptation 

options must be implemented despite the existence of uncertainty. In this context, it is 
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important to recognise the role of models such as SAV4, which is not to predict the 

future, but rather to provide a set of plausible outcomes that facilitate the identification 

of vulnerability within the sector to changes in climate. This raises the question: How 

can we formulate robust adaptation strategies for the future in the midst of such 

uncertainty? 

 

By providing an indication of the true magnitude of the climate-pest problem, the 

benefits of fostering adaptive strategies is highlighted as an area meriting investment of 

(scarce) economic resources. Adaptation strategies that take cognisance of the results 

outlined here will need to take account of the aforementioned potential for 

generalisations regarding pest responses, as well as the uncertainty discussed above. A 

significant proportion of the uncertainty described in this work is a direct consequence 

of the adoption of necessary assumptions regarding species biology in the absence of 

Irish data pertaining to pest pressure.  This fact impresses the need for pest monitoring 

as one of the key strategies required to inform adaptation responses to climate change in 

the cereal growing sector. 

 

The underestimation of pests as a genuine future risk under climate change could be the 

reason why so little has been accomplished to date regarding adaptation in the form of 

monitoring and knowledge based risk systems in Ireland. Olesen et al. (2011) carried 

out a study based on a (mostly) subjective questionnaire, regarding the perceived risks 

and impacts of climate change on agriculture within Europe (using agricultural 

researchers as respondents). Interestingly, the study reported sentiments suggesting that 

no climate change impacts were expected in the crop-limiting abilities of pests in spring 

barley for the environmental zone to which Ireland belongs (Metzger et al., 2005). They 

also reported that the expected importance of adaptation measures relating to 

operational monitoring of pests for the same zone was ‘minor’. These findings are in 

direct contradiction to what has been found in this work, and should be regarded with 

caution considering their subjective nature, along with the fact that the study was carried 

out in advance of the transposition of the new pieces of European PPP legislation 

(removing reliance on chemical panaceas). Either way, lack of perceived risk could 

hamper attempts to formulate policy that would foster resilience in cropping systems to 

future impacts of climate change. 
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This research provides the necessary indication of risk required to instigate the 

formulation of such policies on a national level.  Policy that focuses on investment in 

monitoring, as well as decision support and early warning systems are the most 

appropriate adaptation strategies to foster for two reasons: Firstly, this approach is 

closely linked with the European Sustainable Use Directive (SUD) which explicitly 

advocates the monitoring of pest organisms for utilisation in IPM and DSS regarding 

PPP application (European parliament and council of the European Union, 2012), and 

secondly, this type of approach is not impacted by the type of study or GCM/SRES 

used, but rather it will provide useful framework to support pest management in a 

‘scenario-neutral’ manner. A system such as this discards the necessity for providing 

definitive model results, which can oft be used as a reason for inaction, and facilitates 

the formulation of robust adaptation in spite of the uncertainty inherent to climate 

impact studies. 

 

9.5.7 General recommendations 

While this research has constituted a first step towards assessing future pest risk under 

climate change for Ireland, significant limitations have been identified towards the 

attainment of robust results. In spite of this, the implications of this research have 

facilitated the identification of high level adaptation strategies to ensure the cereal-

growing sector’s resilience to concurrent changes in pest risk and chemical regulations 

in the future. In light of the findings and uncertainties outlined in this work, as well as 

the adaptation policies outlined, a number of recommendations can be made, all of 

which are referred to in last years national action plan for the Sustainable Use of 

Pesticides (SUD) (DAFM, 2013). 

 

9.5.7.1 Monitoring and IPM 

The establishment of a monitoring scheme within Ireland to detect and analyse pest 

species responses to short term weather and long-term climate conditions, would 

facilitate the identification of vulnerabilities within the cropping system owing to 

climate-mediated pest dynamics. This type of approach would serve to inform a 

plethora of tools for modelling and mapping pest species, ultimately providing a 

knowledge base to build upon in future Integrated Pest Management (IPM) 

programmes. The national action plan for the SUD states that ‘harmful organisms must 
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be monitored by adequate methods and tools, where available. Such adequate tools 

should include observations in the field as well as scientifically sound warning, 

forecasting and early diagnosis systems’ (DAFM, 2013:24). The importance of 

monitoring pest species can not be overstated. The use of models such as SAV4 for 

climate impact studies, requires that there is a certain level of confidence in both the 

models employed and their skill under current climate. For such confidence to be 

fostered, data pertaining to pest lifecycles, dynamics in-field and climatic responses are 

required on a national level. On a short-term basis, models akin to SAV4 can be used as 

‘forecasting’ systems, in conjunction with observed temperature data to indicate the 

trajectory of seasonal dynamics of pests. These forecasting systems contribute to a more 

‘knowledge-based’ system, by attempting to optimise the timing, location and nature of 

control strategies.  

 

IPM generally constitutes an ecosystem-approach that focuses on the long term control 

of pest species via the utilisation of multiple techniques including the use of crop 

rotation, resistant crop varieties, biological control (and enhancement of pre-existing 

beneficial organisms) and habitat manipulation. Each of these techniques have been 

outlined in the SUD, and are directly applicable here as recommendations on a national 

level for the long-term management of pests such as S. avenae. These combined 

approaches are designed to facilitate knowledge-based decision making by the 

‘professional user’ (farmer) (DAFM, 2013), regarding when (if at all) control action 

(chemical or otherwise) should be taken. The recommendations here would stress a final 

point regarding the adoption of the IPM approach: the adequate training of the farmers 

using these techniques is an area which merits significant attention in the future, as it is 

these end users who ultimately put the recommendations into practice, and their records 

which aid in assessing the success of such measures. 

 

9.5.7.2 Targeted research recommendations 

Establishing the validity of the biological underpinnings in this study via the acquisition 

of Irish data would enhance confidence in SAV4 as a long-term risk assessment tool. 

Further research effort is merited towards the establishment of field studies to monitor 

the spring migration of the grain aphid, and ultimately validate the initialisation 

submodels in SAV4. Similarly, laboratory studies would facilitate the assessment of the 



  

252 
 

temperature-response of Irish aphid clones (confirming or negating the utility of the UK 

data as proxy data for Ireland).  

 

The fact the SAV4 was reasonably validated using UK data raises questions regarding 

the moderating effects of natural enemies with grain aphid populations. It could be that 

the limited number of years used to validate SAV4, were not particularly ‘high-

pressure’ years for natural enemies. However, if the population dynamics of the grain 

aphid can be simulated in the absence of ‘data-hungry’ natural enemy submodels, the 

economic cost of formulating early warning systems for this, and other species of 

aphids could be significantly reduced. The establishment of the extent of their 

moderating effect (if any) via lab and field-based studies could also serve to reduce 

uncertainty associated with SAV4 outputs.  

 

9.5.8 Threats and opportunities 

The potential future threats from climate-mediated aphid dynamics have been accounted 

for over the course of the previous two chapters, however the potential for opportunities 

in cognisance of what has been learned here must also be addressed. The elongation of 

the growing season as a result of projected increases in temperature could potentially 

provide a pest-management opportunity via the modification of crop planting dates (due 

to the fact that the growing season will be longer than the time required to produce the 

crop). The potential for this opportunity is tentatively based on the ability of farmers to 

be able to move freely around their land with machinery earlier in the year (which may 

not be the case on an annual basis). If the projections outlined here are realised, then 

warmer winters will simply allow the grain aphid to enter crops as soon as temperatures 

allow. However, in combination with the monitoring schemes outlined above, the 

potential for farmers to adjust crop planting to coincide with identified natural enemy 

phenology, or synchronise pest events with less susceptible growth stages, could 

provide new opportunities for control. Manipulations such as this may be better suited 

to one type of a pest over another, a circumstance which would be revealed via detailed 

monitoring systems. 
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9.6 General discussion 

The work presented here directly contributes towards international efforts to incorporate 

the effects of pest activities into the food security debate. The ability to include realistic 

projections of pest impacts into future crop projections, will contribute towards the 

development of robust food security policies, particularly in those areas where negative 

impacts of climate are already expected for crop production (e.g. South Asia and Africa 

(Lobell et al., 2008). Across scales, from regional to global, pest responses to changes 

in climate are likely to be as spatially differentiable as the projections upon which they 

are based. Their general omission from modelling studies to date is almost certainly a 

direct result of the complexity of the system (even in isolation of pest dynamics), 

however their exclusion directly affects realistic assessments of climate impacts on 

crops in the future. Generally, global crop projections suggest decreases in yield in 

response to climate change by the 2030s, complicating the attainment of future food 

security in the presence of an increasing global populace (Challinor et al., 2014; Lobell 

et al., 2008). Despite the potential for generalisations such as these, the impacts of 

climate change (both direct and pest-mediated) will vary between regions, owing to 

differences in biophysical resources, climate and management practices (Lobell et al., 

2008). In order to fully understand the potential impacts of pests on agricultural 

production under a changing climate, it is imperative that an interdisciplinary approach 

is fostered within the scientific community, in order to fully develop each of the 

disparate strands within this area of research. The amalgamation of expertise from 

botany, entomology, meteorology, soil sciences and economics would provide a sound 

basis for the ‘systems approach’ discussed earlier in this work, facilitating the 

formulation of models that account for all facets of the agroecosystem, serving to 

minimise some of the limitations and uncertainties outlined here.  

 

Models such as the one described here have two purposes: firstly, to highlight potential 

gaps in current knowledge relating to the subject matter, and secondly, to provide 

quantification of pest-risk as the climate continues to change in the future; both of 

which have been reasonably successful in their application. Generally, quantitative 

estimates such as those described here facilitate the comparison of impacts between 

different species and locales, ultimately aiding in the prioritisation of adaptation efforts.  

Adaptation recommendations pertaining to IPM outlined for this work are not novel 

recommendations. They have been adopted to various extents across the global 
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agricultural community in an effort to maintain control over systems which are 

inherently subject to natural variability. This variability is projected to increase over the 

course of this century due to anthropogenic climate change, via direct climatic effects 

and indirectly via pest-mediated impacts, serving to highlight the importance of 

implementing robust adaptation strategies now. While Ireland is not expected to 

experience climate impacts to the same extent as other parts of the world, the potential 

for changes to existing agricultural pest complexes outlined in this work merits the 

establishment of meaningful working frameworks towards enhanced future resilience in 

the agricultural sector. 

 

9.7 Concluding remarks 

Crop pests pose a significant threat to food security on a global scale, however their 

explicit exclusion from many crop sensitivity studies directly reduces the global 

communities ability to appropriately adapt to ensure food security in the future. 

Agricultural production impacts are expected in the future due to projected changes in 

climate and corollary pest-mediated yield reductions. In Ireland, the moderating effect 

of pests under climate change has not been afforded any consideration in research 

efforts thus far. At high densities, the grain aphid S. avenae can cause significant 

damage to cereals via the removal of plant nutrients, as well as transmitting plant 

viruses, ultimately resulting in crop yield losses. The model used in this work integrated 

the findings from various grain aphid studies, along with a nonlinear modelling 

technique in order to develop a simulation model describing the population dynamics of 

S. avenae for Ireland under climate change. The absence of data in an Irish context 

meant that assumptions had to be made in order to assure the transferability of the 

model data to an Irish context. Limited validation of the model was carried out using 

UK data, which suggested that the model was adequate for purpose.  

 

Current findings suggest that the grain aphid, S. avenae will benefit from projected 

changes in temperature over the course of the century, and as a result, will increase in 

importance as a pest of Irish barley. Recommendations that complemented recent 

changes to agrochemical regulations for adaptation were made, comprising of the 

initiation of pest monitoring schemes in Ireland as well as investment in knowledge-

based support systems for farmers. Further work was suggested, pertaining to the 

collection of lab and field based data for S.avenae in order to fully validate SAV4. The 
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work described here comprises the first attempt to provide a climate-impact assessment 

relating to agricultural pests for Ireland.  

 

This work has not only served to highlight the potential changes in magnitude and 

phenology of an important agricultural pest, but it has also served a more important 

purpose: to highlight a research area that has been overlooked in a country where the 

agricultural sector has such a defining role. A greater understanding of the relationship 

between agricultural production and corollary pest complexes is required, if the 

economic and environmental impacts of climate change are to be abated. This work 

constitutes a first step towards achieving this understanding in an Irish context. 
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APPENDIX A SAV4 

A-1 Loading all the temperature data 

all_tmax_yrs=load('maximum_temperature.csv'); 

all_tmin_yrs=load('minimum_temperature.csv'); 

mod_temp_counter = 0; 

 

A-2 Time and sunrise calculation 

for mod_temp = 1:(size(all_tmax_yrs,2)); 

    mod_temp_counter = mod_temp_counter + 1; 

    disp(['year number ' num2str(mod_temp_counter)]); 

    %Save the 'year' of the GCM temperatures 

    sim_year = [1961:2099]'; 

    model_year(mod_temp_counter) = sim_year(mod_temp_counter); 

    %The next lines provide the date for the calculation of sunrise 

    date   =load('yrmthdy.csv'); 

    year   = date(:,1); 

    month  = date(:,2); 

    calday = date(:,3); 

    %Enable next 2 lines when multiple locations are being used 

    %lat    = input('Please insert latitude an as integer: ') 

    %lon    = input('Please insert longitude an as integer: ') 

    %sunrise = suncycle(lat,lon,[year,month,calday],2880) *sunrise function; 

    sunrise = suncycle(57,-6,[year,month,calday],2880); 

    T       = [(all_tmax_yrs(:,mod_temp)),(all_tmin_yrs(:,mod_temp))]; 

    %This calls up the sinewave function to produce hrly temps for the 

    %model. 

    %You need to specify the dlytemps in 'T' (*sinewave function); 

    Temp       = sinewave(T,sunrise); 

 

A-3 Initialising variables 

al_nymph_percentage    = 0; 

al_repro_rate          = 0; 

alighting_ad           = 0; 

alighting_yearly       = 0; 

ap_nymph_percentage    = 0; 

ap_repro_rate          = 0; 

aphid_per_tiller       = 0; 

currentday             = 0; 

dailyage               = 0; 

day                    = 0; 

daycounter             = 0; 

daystart               = 0; 

DD                     = 0; 

end_of_migrat          = 0; 

endday                 = 0; 

end_4th_day            = 0; 

end_4th_hr             = 0; 

fins_duration          = 0; 
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tiller                 = 0; 

clear g; 

GS                     = 0; 

gs_jd                  = 0; 

gsday                  = 0; 

Hh                     = 0; 

hr=1; 

jd32_200_av            = 0; 

jf_av                  = 0; 

myfileID               = 0; 

maxday                 = 0; 

num_al_nymphs          = 0; 

num_ap_nymphs          = 0; 

numdays                = 0; 

nymphs_al_parent       = 0; 

nymphs_ap_parent       = 0; 

peak                   = 0; 

regime                 = 0; 

stage                  = 1; 

clear survival_percent 

survivalI              = 0; 

system_al_day          = 0; 

tot_dly_nymph          = 0; 

total_number           = 0; 

 

 

    %Temp data for the reproduction & CDD_new functions 

    dlytmax             = T(:,1); 

    dlytmin             = T(:,2); 

    dlytav              = (dlytmin+dlytmax)/2; 

 

    %Simulate the startday based on the previous mean Jan/Feb temperature 

    jf_av = mean(dlytav(1:60)); 

    store_jf_av(mod_temp) = jf_av; 

    daystart = round(172.312 - (10.639*jf_av)); 

    daily_nymphal_survival = zeros(daystart,endday); 

 

    %This variable is for storing each years startday 

    store_startday(mod_temp) = daystart; 

 

    %Simulate the endday of migration according to regime; based on the 

    %mean temperature between jd 32-200 (*regime_endday function) 

    jd32_200_av              = mean(dlytav(32:200)); 

    [end_of_migrat,regime]   = regime_endday(jd32_200_av,daystart); 

 

    %This variable is for storing each year's end of migration jd 

    store_end_migrat(mod_temp)  = end_of_migrat; 

     

    %'Regime type' is the same size as 'regime' 

    regimetype(mod_temp_counter,(1:length(regime)))=regime... 

    (1:length(regime)); 

    sow_date = 76; 

    %This calls up the cumulated degree day function, (*CDD_new function) 

    DD = CDD_new(dlytav,sow_date); 

    %This calls up the crop growth stage function, (*ZGS function) 

    %GS is the crop growth stage in Zadoks decimal scale 

    GS    = ZGS(DD); 
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    gsday = (1:length(GS))'; 

    %End the model run when the GS becomes unsuitable 

    gs_jd = horzcat(GS,gsday); 

    for g = 1:length(GS); 

            if GS(g)>=86.3; 

                endday = gs_jd(g,2); 

                store_endday(mod_temp_counter,1) = endday; 

                break 

            end 

    end 

    cum_aln                = zeros(endday,1); 

    cum_apn                = zeros(endday,1); 

 

%This calls up the alate reproduction rates (*al_repro_func function) 

    al_repro_rate      = al_repro_func(dlytav,GS); 

 

%This calls up the apterous reproduction rates (*ap_repro_func function) 

ap_repro_rate      = ap_repro_func(dlytav,GS); 

numhrs              = length(Temp(:,1)); 

numdays             = endday-daystart; 

dev                 = zeros(numhrs,endday,endday); 

age                 = zeros(numhrs,endday,endday); 

stage               = 1; 

reproducing_ap      = zeros(endday,1); 

reproducing_al      = zeros(endday,1); 

system_ap_day       = zeros(endday,1); 

%Initialise variables required for recording the time of maturation 

alighting_daystart_endday = 0; 

caught                    = 0; 

devdaystart               = 0; 

devdayend_5th             = 0; 

devhrend_5th              = 0; 

dev_duration_days_5th     = 0; 

dev_duration_days_hrs_5th = 0; 

endof5th_instar           = 0; 

dev_duration_hrs_5th      = 0; 

dev_duration_5th_rounded_days = 0; 

devdayend_4th             = 0; 

devhrend_4th              = 0; 

dev_duration_days_4th     = 0; 

dev_duration_days_hrs_4th = 0; 

endof4th_instar           = 0; 

dev_duration_hrs_4th      = 0; 

dev_duration_days_alate   = 0; 

dev_duration_alate_rounded_days=0; 

 

A-4 Seeding the model with simulated aphid numbers 

%This calls up the simulated daily catches for the length of the migration 

%using a nbin distribution (*dly_sim_catch function) 

caught=dly_sim_catch(regime,(end_of_migrat-daystart)); 

 

%This is where the simulated catches are multiplied by the conc. and dep. 

%factors (*alighting function) 

alighting_daystart_endday = alighting(caught); 



  

 
IV  

 

 

alighting_yearly((1:length(alighting_daystart_endday)),mod_temp_counter)... 

= alighting_daystart_endday; 

ap_complete_day = 0; 

al_complete_day = 0; 

 

%The alighting_ad vector needs to be as long as 1:endday, due to the fact 

%that the indexing requires the actual 'days to exist. For this reason, a 

%zero vector is concatenated to the alighting aphids vector to facilitate 

%ease of indexing 

nocatch = zeros(1,daystart-1)'; 

%the +1 in the next line is to account for the fact that while the 

%end_of_migrat is recorded as a specific julian day; in reality the last 

%catch is on the previous day. 

zerovec=zeros(1,((endday+1)-end_of_migrat))'; 

alighting_ad = vertcat(nocatch,alighting_daystart_endday,zerovec); 

 

kcounter = 0; 

daycounter = daystart; 

%Alert the user that initiation is complete 

disp('Model initiation completed'); 

t=toc; 

disp(datestr(datenum(0,0,0,0,0,t),'HH:MM:SS')) 

 

for k = daystart:endday; 

kcounter = kcounter+1; 

        timer = 0; 

        currentday = k; 

        if GS(k)>86.3; 

           disp('Year run has ended'); 

           break 

        end 

        tiller(k,1) = round(20 +(90.4*(GS(k)))-(2.69*(GS(k)^2))+... 

        (0.0321*(GS(k)^3))-0.000134*(GS(k)^4)); 

 

A-5 Calculate the number of reproducing individuals 

        %This calculates the number of alate adults sourced from the trap 

        if k == daystart; 

        reproducing_al(k,1) = alighting_ad(k,1); 

        reproducing_ap(k,1)   = system_ap_day(k,1); 

        %Ensures that reproductively capable adults live for 20 days 

        elseif k>daystart && k <(daystart+20); 

        reproducing_al(k,1) = reproducing_al(k-1)+alighting_ad(k,1); 

        %Reproducing apterous individuals are summed once the first 

        %apterous nymphs have passed through the system and become 

        %reproductively capable adults 

        reproducing_ap(k,1)   = reproducing_ap(k-1,1) + system_ap_day(k,1); 

        elseif k>=daystart+20; 

        %This part of the scripts introduces a 20-day limit to adult 

        %survival within the model. 

        reproducing_al(k,1) = reproducing_al(k-1)+alighting_ad(k,1)-... 

        alighting_ad(k-20,1); 

        reproducing_ap(k,1) = reproducing_ap(k-1,1) + system_ap_day(k,1)... 

        -system_ap_day(k-20,1); 

        end 
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        %This is to remove the negative values that occur 

        %when system ap aphids fall to zero because of zero 

        %percent reproduction rates. 

        reproducing_ap(reproducing_ap<0)=0; 

        %produces an error if any of the reproducing_ap 

        %values are negative 

        assert(reproducing_ap(k)>=0); 

 

A-6 Calculate the daily nymphs produced 

        %First we need to know the number of nymphs born daily to both 

        %parent morphs 

        nymphs_al_parent(k,1) = reproducing_al(k,1)*al_repro_rate(k,1); 

        nymphs_ap_parent(k,1) = reproducing_ap(k,1)*ap_repro_rate(k,1); 

        tot_dly_nymph(k,1) = nymphs_al_parent(k,1) + nymphs_ap_parent(k,1); 

 

            if k==daystart; 

            total_number (k,1)= tot_dly_nymph(k,1) + reproducing_al(k,1)... 

            + reproducing_ap(k,1); 

            else 

            end 

 

        aphid_per_tiller(k,1) = (total_number(k,1)/10000)/tiller(k); 

        %Then calculate the percentage of those nymphs that are alate 

        al_nymph_percentage(k,1) = 2.6*aphid_per_tiller(k)+0.847*GS(k)... 

        -27.189; 

        al_nymph_percentage(al_nymph_percentage<0)=0; 

        al_nymph_percentage(al_nymph_percentage>100)=100; 

        %Then calculate the percentage of those nymphs that are apterous 

        ap_nymph_percentage(k,1) = 100-al_nymph_percentage(k,1); 

        ap_nymph_percentage(al_nymph_percentage<0)=0; 

        al_nymph_percentage(al_nymph_percentage>100)=100; 

 

        %Actual number of alate nymphs daily 

        num_al_nymphs(k,1) = tot_dly_nymph(k,1)*... 

        ((al_nymph_percentage(k,1)/100)); 

        %Actual number of apterous nymphs daily 

        num_ap_nymphs(k,1) = tot_dly_nymph(k,1)*... 

        ((ap_nymph_percentage(k,1)/100)); 

 

        for day = (daystart-1)+kcounter:endday; 

            daycounter = daycounter+1; 

 

A-7 Development submodel 

            for hr = 1:24; 

 

        switch stage 

            %These are the Lactin parameters for the first instar 

            case 1 

            dev(hr,day,k) = exp(0.000961219*Temp(hr,day))-exp... 

            (0.000961219*34.16147582-(34.16147582-Temp(hr,day))/... 

            1.35125812)+-0.999461048; 

            age(1,daystart,k)=dev(1,daystart,k); 
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            dev(dev<0)=0; 

            %These are the Lactin parameters for the second instar 

            case 2 

            dev(hr,day,k) = exp(0.000981088*Temp(hr,day))-... 

            exp(0.000981088*36.95941667-(36.95941667-Temp... 

            (hr,day))/1.953300161)+-0.998323623; 

            dev(dev<0)=0; 

            %These are the Lactin parameters for the third instar 

            case 3 

            dev(hr,day,k) = exp(0.001088157*Temp(hr,day))-... 

            exp(0.001088157*36.54549907-(36.54549907-Temp... 

            (hr,day))/1.936066696)+-0.999654336; 

            dev(dev<0)=0; 

            %The next 2 lines are needed to calculate the length 

            %of the 4th_w_instar 

            start_4th_day = day; 

            start_4th_hr  = hr; 

            %These are the Lactin parameters for the fourth instar 

            case 4 

            dev(hr,day,k) = exp( 0.000755072*Temp(hr,day))-... 

            exp( 0.000755072*36.11345944-(36.11345944-Temp... 

            (hr,day))/1.696278132)+-0.996853141; 

            dev(dev<0)=0; 

            %The next 2 lines are needed to calculate the length 

            %of the 4th alate instar 

            end_4th_day = day; 

            end_4th_hr  = hr; 

            %This is the polynomial to describe the prereproductive 

            %period 

            case 5 

            dev(hr,day,k)=-0.1688+(0.03272*Temp(hr,day))-... 

            0.001454*Temp(hr,day)^2+(0.000019*Temp(hr, day)^3); 

            dev(dev<0)=0; 

        otherwise 

            break 

        end 

 

            %This part of the script allows the accumulation 

            %continue from the end of one day to the beginning of 

            %the next 

 

            if hr==1&&day>daystart; 

            age(1,day,k)  = age(24,day-1,k)+dev(1,day,k); 

            elseif hr>1; 

            age(hr,day,k) = dev(hr,day,k)+age(hr-1,day,k); 

            end 

 

            %This selects the developmental stage parameters to use 

            if age(hr,day,k) <= 1; 

            stage=1; 

            elseif age(hr,day,k)>1 && age(hr,day,k)<=2; 

            stage=2; 

            elseif age(hr,day,k)>2 && age(hr,day,k)<=3; 

            stage=3; 

            elseif age(hr,day,k)>3 && age(hr,day,k)<=4; 

            stage=4; 

            %Stop accumulating once age reaches approximately 4 
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            elseif age(hr,day,k)>4 &&age(hr,day,k) <=5; 

            stage=5; 

            else 

            %The day development ends 

            devdaystart(k,1)  = k; 

            devdayend_5th(k,1)= day; 

            %The hr development ends 

            devhrend_5th(k,1) = hr; 

            %Gives the number of days the nymphs developed for 

            dev_duration_days_5th = devdayend_5th-devdaystart; 

            %Gives the number of days and hours the nymphs 

            %developed for 

            dev_duration_days_hrs_5th = [dev_duration_days_5th... 

            devhrend_5th]; 

            %Provides a matrix with daystart(:,1),dayend(:,2) and 

            %hrend(:,3) 

            endof5th_instar = [devdaystart devdayend_5th devhrend_5th]; 

            %These lines are rounding the duration of 5th development to 

            %the nearest day 

            dev_duration_hrs_5th = (dev_duration_days_5th*24)+devhrend_5th; 

            dev_duration_5th_rounded_days = round(dev_duration_hrs_5th/24); 

            ap_complete_day = devdaystart + dev_duration_5th_rounded_days; 

            break 

            end 

 

        %When the age in any cell reaches 4 (i.e. end of 4th instar 

        if age(hr,day,k) >=4 && timer==0; 

        %The number of new adults for that dimension 'k' is indexed by 

        %matching k(the initialising day for those nymphs) to 'k' of the 

        %nymph vector 

        timer = 1; 

        %The day development begins 

        devdaystart(k,1)=k; 

     

        %The day development ends 

        devdayend_4th(k,1)=day; 

        %The hr development ends 

        devhrend_4th(k,1)=hr; 

        %Gives the number of days the nymphs developed for 

        dev_duration_days_4th=devdayend_4th-devdaystart; 

 

        %Gives the number of days and hours the nymphs developed for 

        dev_duration_days_hrs_4th=[dev_duration_days_4th devhrend_4th]; 

 

        %Provides a matrix with daystart(:,1),dayend(:,2) and hrend(:,3) 

        endof4th_instar=[devdaystart devdayend_4th devhrend_4th]; 

        %Provides the number of hrs it took to reach the 4th instar 

        dev_duration_hrs_4th=(dev_duration_days_4th*24)+devhrend_4th; 

        

        %Alates take x1.5 times longer in the 4th instar to mature than an 

        %apterous 4th instar 

        %the next line provides half the time ap_4th takes in hours 

        fins_duration(k,1)=((((end_4th_day*24)+end_4th_hr)-... 

        ((start_4th_day*24)+start_4th_hr))/2); 

        dev_duration_days_alate = (dev_duration_hrs_4th+... 

        fins_duration(k))/24; 

        %Provides the number of days it took to develop to an alate adult 

        dev_duration_alate_rounded_days=round(dev_duration_days_alate); 
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        %This provides the day on which the alates complete development and 

        %leave the crop by adding the development duration to the day 

        %they were born 

        al_complete_day(k,1)=devdaystart(k)+... 

        dev_duration_alate_rounded_days(k,1); 

     else 

         end 

            end 

 

A-8 Survival 

        dailyage(day,k) = age (1,day,k); 

        %The daily accrued development 

        Hh(day,k)= dailyage(day,k)-dailyage(day-1,k); 

        %This part of the script produces daily nymphal 

        %survival 

        if GS(day)<73; 

        survival_percent(day,1) = 94.4449-0.0000000332214*... 

        (exp(0.725604*dlytav(day,1))); 

        else 

        survival_percent(day,1) = 45; 

        end 

        survivalI(day,1) = (survival_percent(day,1))/100; 

        Hi = 1; 

        daily_nymphal_survival(day,k)= (survivalI(day,1)^(Hh(day,k)/Hi)); 

        %Survival applied to daily nymphs 

        num_al_nymphs(k,1) = num_al_nymphs(k,1)*... 

        daily_nymphal_survival(day,k); 

        num_ap_nymphs(k,1) = num_ap_nymphs(k,1)*... 

        daily_nymphal_survival(day,k); 

 

A-9 Calculates the apterous cohort 

 

if length(ap_complete_day)==k; 

        %The next lines are accounting for the fact that some aphids which 

        %started development on different days actually finished on the same 

        %day (stops the scripts just overwriting the numbers before summing 

        %them). 

        if ap_complete_day(k) ~= ap_complete_day(k-1); 

        system_ap_day((ap_complete_day(k)),1) = num_ap_nymphs(k,1); 

        %Check to see if they finish on the same day for three days in 

        %a row 

        elseif ap_complete_day(k)== ap_complete_day(k-1)&&... 

        ap_complete_day(k)~= ap_complete_day(k-2); 

        system_ap_day((ap_complete_day(k)),1) = num_ap_nymphs(k,1)+... 

        num_ap_nymphs(k-1,1); 

        %If they do finish for three days in a row 

        elseif ap_complete_day(k)             == ap_complete_day(k-1)&&... 

        ap_complete_day(k)== ap_complete_day(k-2); 

        system_ap_day((ap_complete_day(k)),1) = num_ap_nymphs(k,1)+... 

        num_ap_nymphs(k-1,1)+num_ap_nymphs(k-2,1); 

        else continue 

        end 

 end 
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A-10 Calculates the alate cohort 

 if length(al_complete_day)==k; 

        if al_complete_day(k) ~= al_complete_day(k-1); 

        system_al_day((al_complete_day(k)),1) = num_al_nymphs(k,1); 

        elseif al_complete_day(k) == al_complete_day(k-1); 

        system_al_day((al_complete_day(k)),1) = num_al_nymphs(k,1)+... 

        num_al_nymphs(k-1,1); 

        else continue 

        end 

 end 

                if age(hr,day,k)>5; 

                    break 

                end 

end 

 

A-11 Cumulative numbers 

cum_apn(k,1)  = num_ap_nymphs(k,1) + cum_apn(k-1); 

%This will subtract the number of apterous individuals becoming 

%adults from the accumulated nymphs 

cum_apn (k,1) = cum_apn(k,1)- system_ap_day(k,1); 

cum_aln (k,1) = num_al_nymphs(k,1) + cum_aln(k-1); 

%This will subtract the number of alate individuals becoming 

%adults from the accumulated nymphs 

cum_aln (k,1) = cum_aln(k,1)- system_al_day(k,1); 

cum_apn(cum_apn<0)= 0; 

cum_aln(cum_aln<0)= 0; 

%Totals everything for the next days production of nymphs which 

%requires density 

total_number(k+1,1) = cum_apn(k,1)+cum_aln(k,1)+reproducing_al(k,1)... 

+reproducing_ap(k,1); 

stage=1; 
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A-12 Store aphid metrics 

store_yr_aphid_tiller(k,mod_temp_counter)=aphid_per_tiller(k,1); 

%Save the maximum number of aphids per tiller yearly 

max_per_till(mod_temp_counter,1)=max(store_yr_aphid_tiller... 

(:,mod_temp_counter)); 

%Save the numbers of each reproducing morph 

store_reproducing_alad(k,mod_temp_counter)=reproducing_al(k,1); 

store_reproducing_apad(k,mod_temp_counter)=reproducing_ap(k,1); 

store_cum_apn(k,mod_temp_counter)=cum_apn(k,1); 

store_cum_aln(k,mod_temp_counter)=cum_aln(k,1); 

end 

t=toc; 

disp(datestr(datenum(0,0,0,0,0,t),'HH:MM:SS')) 

[peak,maxday]                = max(total_number); 

peak_day(mod_temp_counter,1) = maxday; 

peak_num(mod_temp_counter,1) = peak; 

[peak_al,maxday_al]          = max(system_al_day); 

peak_day_al(mod_temp_counter,1) = maxday_al; 

peak_num_al(mod_temp_counter,1) = peak_al; 

store_regimes                   = cellstr(regimetype); 

end 

A-13 Save the regimes and model output 

%Construct a nominal categorical array of the regime types 

b = nominal(regimetype); 

%Provide summary statistics for nominal array above 

summary(b) 

%Output the numbers:'cold','hot','moderate' 

regime_freq = summary(b); 

save('final_full.mat'); 

t=toc; 

disp(datestr(datenum(0,0,0,0,0,t),'HH:MM:SS')) 

disp('Entire model run is completed'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
XI  

 

APPENDIX B  MATLAB FUNCTIONS 

B-1 Alate reproduction  

function [al_repro_rate]=al_repro_func(T,GS); 

al_repro_parameters =1 ; 

repro_counter =0; 

 

%This part of the script calculates the reproductive rate in response to 

%temperature using two separately derived linear regressions: Data at 20 

%degrees was estimated from wrattens (1977) paper 

 

for day =1:length(T); 

        repro_counter=repro_counter +1; 

        if T(day)>0 && T(day)<= 20; 

        al_repro_parameters = 1; 

        elseif T(day) > 20 && T(day) < 30; 

        al_repro_parameters = 2; 

        else 

end 

%The switch provides the different parameters for each of the 

%lines: The first from 0-20 degrees, the second from 20-30 degrees 

switch al_repro_parameters 

    case 1 

         alpha = -0.3653; 

         beta  =  0.1218; 

 

    case 2 

        alpha = 6.21; 

        beta  = -0.207; 

end 

    all_repro_rate(day,1) = alpha + (beta*T(day)); 

        if GS(day) >= 59 && GS(day) <= 73; 

            all_repro_rate(day,1)=all_repro_rate(day,1) * 1.6; 

        elseif GS(day) >80; 

                all_repro_rate (day,1) = 0; 

                break 

        end 

%The next line incorporates the fact that below 3 degrees,reproduction equals zero 

if all_repro_rate(day,1)<0; 

    all_repro_rate(day,1)= 0; 

end 

 

z=365-length(all_repro_rate); 

vector=zeros(z,1); 

al_repro_rate=vertcat(all_repro_rate,vector); 

end 
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B-2 Apterous reproduction 

%This function calculates the reproductive rate in response to 

%temperature using two separately derived linear regressions. 

function[ap_repro_rate]=ap_repro_func(T,GS); 

ap_repro_parameters =1 ; 

repro_counter =0; 

 

for day = 1:length(T); 

        repro_counter=repro_counter +1; 

        if T(day)>=3 && T(day)<= 20; 

        ap_repro_parameters = 1; 

        elseif T(day) > 20 && T(day) < 30; 

        ap_repro_parameters = 2; 

        %Because the fitted line doesn't cross the x axis at exactly 3 degrees; 

        %the next line facilitates the output of a zero repro rate when the 

        %temp is below 3. 

        else 

        ap_repro_parameters = 3; 

        end 

%The switch provides the different parameters for each of the 

%lines: The first from 0-20 degrees, the second from 20-30 degrees 

switch ap_repro_parameters 

    case 1 

         alpha = -0.3766;; 

         beta  =  0.1772; 

    case 2 

        alpha = 9.1917; 

        beta  = -0.305; 

    case 3 

        alpha = 0; 

        beta  = 0; 

end 

    app_repro_rate(day,1) = alpha + (beta*T(day)); 

        if GS(day) >= 59 && GS(day) <= 73; 

            app_repro_rate(day,1)= app_repro_rate(day,1) * 1.6; 

        elseif GS(day) >80; 

                app_repro_rate (day,1) = 0; 

                break 

        end 

            if app_repro_rate(day,1)<0; 

            app_repro_rate(day,1)= 0; 

            end 

z=365-length(app_repro_rate); 

vector=zeros(z,1); 

ap_repro_rate=vertcat(app_repro_rate,vector); 

end 

end 
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B-3 Alighting  

%This function applies the concentration and deposition factors to the 

%aphid catches to produce the numbers alighting infield 

function [aphids_landing]= alighting(aphids_caught) 

%This line will multiply all the aphid numbers by the deposition factor and 

%concentration factor 

aphids_landing(:,1) = aphids_caught(:,1)*237*40; 

end 

 

B-4 Cumulative degree-days  

%This script accumulates degree days as a result of temperature using a 

%threshold of zero. It requires a temperatire file (:,1). 

function [DD]=CDD(temp,startpt); 

%If the temperature is less than zero set the dlytemp to equal 0 

temp(temp<0)=0; 

for i = 1:length(temp); 

    if i==startpt; 

    DD (i,1)   = temp(i,1); 

    elseif i<startpt; 

    DD(i,1)=0; 

    else 

    DD (i,1)   = DD(i-1,1)+ temp(i,1); 

end 

end 

 

B-5 Stochastic catch simulation  

%This function produce daily catches by sampling from a negative binomial 

%distribution, the parameters of which are determined by the regime type. 

function[catches]=dly_sim_catch(regime,lengthdays); 

switch regime 

    case 'Cold' 

        %r = 0.2716 

        %p = 0.3563 

        catches=nbinrnd(0.2716,0.3563,[lengthdays,1]); 

    case 'Moderate' 

        %r = 0.2646 

        %p = 0.1532 

        catches=nbinrnd(0.2646,0.1532,[lengthdays,1]); 

    case 'Hot' 

        %r = 0.6399 

        %p = 0.5163 

        catches=nbinrnd(0.6399,0.5163,[lengthdays,1]); 

    otherwise 

        warning('Regime has not been designated. Check dly_catch function') 

end 
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B-6 Regime assignment and enday calculation 

%This function returns the regime-specific endday according to startdate 

%and the average temperature between JD 32 and 200. It also provides the 

%regime type. 

function[enddate,regime]=regime_endday(av,daystart); 

 

if av >= 8.7321 && av<=10.4137; 

    enddate = round((0.449*daystart) + 101.81); 

    regime=('Moderate'); 

elseif av < 8.7321; 

    enddate = round((0.6829*daystart)+78.262); 

    regime=('Cold'); 

elseif av > 10.4137; 

    enddate= round((0.3815*daystart)+ 115.09); 

    regime=('Hot'); 

end 

end 

 

B-7 Growth stage calculation 

%This function calculates the growth stage of the crop in respect to 

%accumulated temperature (CDD_new) 

function [GS]=ZGS(DD) 

 

for i = 1:length(DD); 

%These are the parameters for the polynomial based on the collapsed date 

%for three Irish sites:Wexford, Carlow and Cork 

GGS(i,1) = 0.3684+(0.03775*DD(i)) +(0.0000509807*DD(i)^2)-... 

(0.000000023921*DD(i)^3); 

if GGS(i,1)>90; 

    %The break is to stop the model regressing the GS 

    break 

end 

 

if GGS(i,1)<0; 

 GGS(i,1)=0; 

end 

 

end 

%The GS still needs to be as long as the DD for the sake of linked 

%submodels including repro_rates. So the zero vec is appended to ensure 

%that gs is a year long 

z=365-(length(GGS)); 

vector=zeros(z,1); 

GS=vertcat(GGS,vector); 

end 
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B-8 Calculation of hourly temperatures 

%This script will take in a daily temperature file with tmax in column 1 

%and tmin in column 2 and produce hourly temperatures for each day 

function [temp]=sinewave(maxmintemp,RISE); 

Tmax = maxmintemp(:,1); 

Tmin = maxmintemp(:,2); 

 

% Create a vector with the hours used only for plotting 

time=1:(24*(length(Tmin)-1)); 

 

% Initialize day, j and hour, t 

j=1;   % j is the day 

t=1;   % t is the hour of the day 

for i=1:length(time) 

% Set the hour for sunrise 

RISE(j)=round(RISE(j)); 

    t; 

    if (t>1 | t==1) & t<RISE(j) 

        %Temperatures between midnight and sunrise 

        t_dash=t+10.0; 

        omega(i)=(pi*(t_dash))/(10+RISE(j)); 

        Tave=(Tmax(j)+Tmin(j))/2; 

        AMP=(Tmax(j)-Tmin(j))/2; 

        temp(t,j)=Tave+AMP*cos(omega(i)); 

    elseif (t>RISE(j) | t==RISE(j)) & (t<14 | t==14) 

        % Temperatures between sunrise and 2pm 

        omega(i)=pi*(t-RISE(j))/(14-RISE(j)); 

        Tave=(Tmax(j)+Tmin(j))/2; 

        AMP=(Tmax(j)-Tmin(j))/2; 

        temp(t,j)=Tave-AMP*cos(omega(i)); 

    elseif t>14 & (t<24 | t==24); 

        % Temperatures between 2pm and midnight 

        t_dash=t-14; 

        omega(i)=(pi*(t_dash))/(10+RISE(j)); 

        Tave=(Tmax(j)+Tmin(j+1))/2; 

        AMP=(Tmax(j)-Tmin(j+1))/2; 

        temp(t,j)=Tave+AMP*cos(omega(i)); 

    end 

 

    %If the end of one day is reached 

    if t~=1 & mod(t,24)==0; 

        t=1;    % reset t to 0 and 

        j=j+1;  % set j to the next day 

    else        % else 

        t=t+1;  % set t to the next hour 

    end 

    myfileID = fopen('hrly_temps.txt','w'); 

    fprintf(myfileID,'%6.2f\n',temp(i)); 

    fclose(myfileID); 

end 

end 
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APPENDIX C        SAV4 OUTPUT        

 

  

Figure C-1 Mean HADCM3 and observation-driven output from SAV4 for the baseline period 
1961-1990 for all synoptic stations. 
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Figure C-2 Mean CGCM2 and observation-driven output from SAV4 for the baseline period 1961-
1990 for all synoptic stations. 
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Figure C-3 Mean CSIRO and observation-driven output from SAV4 for the baseline period 1961-
1990 for all synoptic stations. 
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Figure C-4 Mean SAV4 magnitude outputs for four different timeslices based on HADCM3 A2 
temperature inputs. 



  

 
XX  

 

 

Figure C-5 Mean SAV4 magnitude outputs for four different timeslices based on HADCM3 B2 
temperature inputs. 
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Figure C-6 Mean SAV4 magnitude outputs for four different timeslices based on CGCM2 A2 
temperature inputs. 
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Figure C-7 Mean SAV4 magnitude outputs for four different timeslices based on CGCM2 B2 
temperature inputs. 
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Figure C-8 Mean SAV4 magnitude outputs for four different timeslices based on CSIRO A2 
temperature inputs. 
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Figure C-9 Mean SAV4 magnitude outputs for four different timeslices based on CSIRO B2 
temperature inputs. 
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Station 

CGCM2 A2  

1961-1990 2020 2050 2080 

Malin head 8 22 0 2 23 5 0 9 21 0 1 29 

Belmullet 2 28 0 0 19 11 0 2 28 0 0 30 

Clones 16 14 0 2 22 6 0 3 27 0 0 30 

Claremorris  16 14 0 1 23 6 0 4 26 0 0 30 

Casement 11 19 0 1 20 9 0 2 28 0 0 30 

Birr  10 19 1 1 17 12 0 1 29 0 0 30 

Shannon 0 25 5 0 6 24 0 0 30 0 0 30 

Kilkenny  8 21 1 0 19 11 0 1 29 0 0 30 

Rosslare 0 28 2 0 15 15 0 2 28 0 0 30 

Valentia 0 22 8 0 6 24 0 0 30 0 0 30 

Roches pt 0 27 3 0 12 18 0 0 30 0 0 30 

Table C-1 Station-specific occurrence of temperature regimes (cold (blue), moderate (green) and 
hot (red)) per timeslice over the 139-year CGCM2 A2 model run. 

 

 

Station 

CGCM2 B2  

1961-1990 2020 2050 2080 

Malin head 0 30 0 0 17 13 0 1 29 0 1 29 

Belmullet 0 27 3 0 1 29 0 0 30 0 0 30 

Clones 2 27 1 0 7 23 0 1 29 0 0 30 

Claremorris  2 27 1 0 4 26 0 1 29 0 0 30 

Casement 0 28 2 0 1 29 0 0 30 0 0 30 

Birr  0 22 8 0 0 30 0 0 30 0 0 30 

Shannon 0 7 23 0 0 30 0 0 30 0 0 30 

Kilkenny  0 20 10 0 0 30 0 0 30 0 0 30 

Rosslare 0 13 17 0 0 30 0 0 30 0 0 30 

Valentia 0 7 23 0 0 30 0 0 30 0 0 30 

Roches pt 0 10 20 0 0 30 0 0 30 0 0 30 

Table C-2 Station-specific occurrence of temperature regimes (cold (blue), moderate (green) and 
hot (red)) per timeslice over the 139-year CGCM2 B2 model run. 
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Station 

CSIRO A2  

1961-1990 2020 2050 2080 

Malin head 2 28 0 1 25 4 0 17 13 0 5 25 

Belmullet 0 30 0 0 19 11 0 2 28 0 1 29 

Clones 6 24 0 2 21 7 0 14 16 0 2 28 

Claremorris  7 23 0 2 21 7 0 12 18 0 2 28 

Casement 1 29 0 1 20 9 0 8 22 0 2 28 

Birr  0 28 2 1 18 11 0 2 28 0 2 28 

Shannon 0 14 16 0 3 27 0 0 30 0 0 30 

Kilkenny  0 27 3 0 18 12 0 3 27 0 2 28 

Rosslare 0 25 5 0 10 20 0 0 30 0 1 29 

Valentia 0 12 18 0 2 28 0 0 30 0 0 30 

Roches pt 0 21 9 0 6 24 0 0 30 0 0 30 

Table C-3 Station-specific occurrence of temperature regimes (cold (blue), moderate (green) and 
hot (red)) per timeslice over the 139-year CSIRO A2 model run. 

 

 

 

Station 

CSIRO B2  

1961-1990 2020 2050 2080 

Malin head 3 27 0 0 25 5 0 14 16 0 11 19 

Belmullet 1 26 3 0 11 19 0 2 28 0 2 28 

Clones 8 22 0 0 23 7 0 10 20 0 6 24 

Claremorris  8 21 1 0 22 8 0 10 20 0 6 24 

Casement 3 23 4 0 14 16 0 4 26 0 3 27 

Birr  3 23 4 0 12 18 0 2 28 0 1 29 

Shannon 0 15 15 0 0 30 0 0 30 0 0 30 

Kilkenny  3 23 4 0 11 19 0 2 28 0 1 29 

Rosslare 0 24 6 0 6 24 0 0 30 0 0 30 

Valentia 0 13 17 0 0 30 0 0 30 0 0 30 

Roches pt 0 17 13 0 3 27 0 0 30 0 0 30 

Table C-4 Station-specific occurrence of temperature regimes (cold (blue), moderate (green) and 
hot (red)) per timeslice over the 139-year CSIRO B2 model run. 


