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Abstract	

This	 year	 marks	 the	 21st	 anniversary	 of	 the	 International	 GeoComputation	 Conference	 Series.	 To	
celebrate	the	occasion,	Environment	and	Planning	B	invited	some	members	of	the	geocomputational	
community	to	reflect	on	its	achievements,	some	of	the	unrealised	potential,	and	to	identify	some	of	
the	on-going	challenges.	
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Introduction	

2017	marks	the	21st	anniversary	and	homecoming	of	the	International	GeoComputation	Conference	
Series,	started	in	Leeds	in	September	1996.	The	Nintendo	64	was	released	the	same	year.	Two	decades	
later,	that	company’s	most	recent	console	is	described	as	a	hybrid,	merging	the	handheld	and	home	
gaming	 experiences.	 Geocomputation	 also	 is	 a	 hybrid,	 fusing	 together	 the	 geographical	 and	 the	
computational.	Has	21	years	of	development	created	something	original	and	 innovative	or	 is	 it	an	
idiosyncratic	outsider	searching	for	mainstream	acceptance?	

To	celebrate	the	occasion	and	as	part	of	Environment	and	Planning	B’s	refocusing	on	urban	analytics	
and	city	science	–	both	areas	of	geographical	and	computational	 interest	–	we	invited	eleven	well-
respected	members	of	the	geocomputational	community	to	reflect	on	some	of	its	achievements,	some	
of	the	unrealised	potential,	and	some	of	the	on-going	challenges	in	the	age	of	‘Big	Data’.	

What	 exactly	 is	 geocomputation	 if	 not	 an	 excessively	 syllabic	 portmanteau?	 As	 David	 O’Sullivan	
observes	 (below),	 the	 geocomputation	 community	 has	 struggled	 to	 forge	 a	 distinct	 answer	 and	
identity	beyond	“doing	geography	with	computers.”	In	the	fourth	edition	of	the	Dictionary	of	Human	
Geography	 (Johnston	 et	 al.,	 2000)	 it	 is	 described	 (by	 Paul	 Longley,	 2000)	 as	 the	 creative	 and	
experimental	application	of	geographic	information	technologies	in	research	that	emphasises	process	
over	 form,	 dynamics	 over	 statics,	 and	 interaction	 over	 passive	 response.	 Its	 appearance	 in	 the	
Dictionary,	just	four	years	after	the	first	conference,	suggests	an	early	degree	of	academic	credibility	
–	of	it	doing	something	geographical	that	is	not	only	recognisable	but	distinctive.	

To	gauge	the	success	of	geocomputation,	Mark	Gahegan	looks	back	to	that	first	conference,	and	to	
the	first	paper,	recalling	the	eight	challenges	it	presented.	He	notes	their	common	theme,	“to	compute	
our	 way	 to	 better	 analytic	 solutions	 to	 geographical	 problems.”	 In	 this	 regard,	 we	 may	 regard	



geocomputation	as	prescient	–	an	early	response	to	the	rising	tide	of	ever	more	powerful	computing	
and	to	the	deluge	of	data	it	washes	upon	the	shores	of	geographical	interest	because	so	much	of	those	
data	are	georeferenced.	The	optimist	may	see	in	this	the	opportunity	to	reinvigorate	the	ambition	of	
spatial	science:	to	further	our	understandings	of	spatial	interactions	and	of	spatial	processes	–	time-
space	geographies,	for	example,	the	interactions	between	people	and	places,	between	urban	forms	
and	functions,	about	how	cities	evolve	or	‘work’	as	(chaotic)	systems,	or	about	how	people	behave	
and	make	decisions	in	different	spatial	places	and	contexts,	and	under	varying	social,	economic	and	
other	constraints.	And,	it	may	do	so	in	a	way	that	lets	the	data	do	the	talking	through	the	brute	force	
of	 computing;	 or,	 at	 least,	 in	 a	way	 that	 is	 as	much	 interested	 in	 exploring	 data	 geographically	 –	
searching	 for	 spatial	 variation,	 looking	 for	 localised	 departures	 from	 a	 general	 trend,	 finding	
something	new,	unexplained	and	spatially	clustered	–	as	it	is	about	trying	to	‘prove’	(in	a	statistical	or	
classically	econometric	sense)	more	generalised	‘laws’	and	theories.		

However,	rising	tides	deposit	rubbish.	As	both	Paul	Longley	and	Lex	Comber	are	aware,	the	freedom	
of	geocomputation	needs	to	be	balanced	against	producing	practical	and	usable	findings	that	have	at	
least	some	anchoring	in	theory,	testable	propositions	and	realistic	representations	of	the	observable	
geographic	world.	 In	addition,	users	should	be	suitably	critical	of	what	the	data	have	and	have	not	
measured,	and	of	 the	 results	 they	generate.	The	well-worn	maxim	of	garbage	 in,	 garbage	out	 still	
applies.	However,	data	deluge	need	not	lead	to	data	junk	if	suitable	checks	and	balances	are	in	place,	
including	 what	 Chris	 Brunsdon	 advocates	 as	 reproducible	 research.	 The	 suite	 of	 localised	 and	
geographically	weighted	statistics	outlined	by	Martin	Charlton	epitomise	the	coupling	of	the	geo	and	
the	 computational,	 grounded	 within	 a	 statistical	 framework	 to	 search	 for	 and	 not	 ignore	 the	
geographical	patterning	of	a	variable	across	a	map.	At	a	minimum,	such	methods	provide	a	diagnostic	
tool	 to	 check	 the	 assumption	 of	 independence	 that	 infuse	 most	 statistical	 methods,	 including	
regression.	But	more	than	that,	they	challenge	the	whole	idea	of	‘averaging	away’	spatial	differences	
on	the	not	unreasonable	basis	that	those	differences,	and	the	processes	that	caused	them,	ought	to	
be	of	some	geographical	interest.	

If	a	goal	of	geocomputation	 is	 indeed	to	model	social	and	economic	processes,	 then	on	face	value	
agent	 based	models	 tick	 all	 the	 right	 boxes	 as	 they	 use	 data,	 computation,	 simulation,	 rules	 and	
randomisation	 to	 explores	 the	 links	 between	 theory,	 processes	 and	 geographical	 outcomes.	Nick	
Malleson	 is	 hopeful	 that	 with	 the	 sorts	 of	 data	 collected	 under	 the	 rubric	 of	 smart	 cities,	
geocomputation	has	the	potential	to	create	reliable	forecasts	of	urban	dynamics.	Alison	Heppenstall	
is	more	questioning	of	the	current	state	of	play	and	 its	ability	to	model	how	real-world	 individuals	
really	behave.	

Therein	lies	the	challenge.	To	quote	Alison,	“how	can	we	use	new	forms	of	data	to	understand	how	
real	people	shape	and	are	shaped	by	geographical	processes?”	Phrased	more	broadly,	how	does	all	
this	 computational	 power	 and	 all	 these	 data	 get	 us	 beyond	 measuring	 spatially	 differentiated	
outcomes	to	understanding	better	the	processes	that	created	those	outcomes	in	the	first	place?	How	
do	we	validate	what	we	think	we	know	about	those	processes	and	on	what	basis	do	we	develop	or	
discount	 existing	 theories?	 How	 does	 geocomputation	 engage	with	 and	 contribute	 to	 the	 best	 of	
quantitative	social	science?	And	how	do	we	do	this	in	a	way	that	has	a	wider	impact,	not	locked	away	
in	the	 ivory	towers	of	academia	but	engaging	with	commercial	partners	and	teaching	students	the	
geocomputation	 skills	 they	 need	 to	 contribute	 to	 what	 Alex	 Singleton	 and	 Daniel	 Arribas-Bel	 call	
Geographic	Data	Science?	

Looking	back,	it	is	clear	that	geocomputation	has	inspired	a	lot	of	computational	and	methodological	
innovation.	Nevertheless,	21	is	a	coming	of	age.	Apparently,	the	Switch	is	the	fastest-selling	console	
in	Nintendo	history.	Can	geocomputation	also	shape	something	distinctive	in	an	era	of	knowing	more	



yet	understanding	less	(Lynch,	2016)?	Andy	Evans	is	optimistic.	If	it	holds	to	what	he	describes	as	the	
core	principles	of	rigor,	sympathy,	and	imagination,	geocomputation	will	continue	to	inspire,	innovate	
and	evolve,	and	there	will	be	plenty	more	celebrations	ahead.	

Richard	Harris	
School	of	Geographical	Sciences,	University	of	Bristol	

	

What	Geocomputation	is	For:	Doing	Geography	with	Computers	

The	 geocomputation	 community	 has	 struggled	 to	 define	 itself	 clearly,	 and	 often	 is	 perceived	 as	 a	
quirky	offshoot	of	 geographical	 information	 science	 (GISci).	However,	 self-consciously	 emerging	 in	
1996	at	the	inaugural	Leeds	conference,	a	few	years	after	Goodchild’s	(1992)	calling	into	existence	of	
GISci,	 it	was	clearly	 intended	not	 to	be	GISci.	Gahegan	 (1999)	 forcefully	distances	geocomputation	
from	 the	 “disabling”	 technology	 GIS,	 which	 has	 itself	 distanced	 quantitative	 geographers	 from	
geographical	questions:	

Geocomputation	 is	 a	 conscious	 attempt	 to	move	 the	 research	 agenda	 back	 to	 geographical	
analysis,	 with	 or	 without	 GIS	 in	 tow	 [...]	 It	 is	 about	 not	 compromising	 the	 geography,	 nor	
enforcing	the	use	of	unhelpful	or	simplistic	representations	(p.	204).	

It	is	difficult	to	argue	plausibly	that	this	goal	has	been	achieved.	Yet	I	am	more	optimistic	now	that	it	
might	be	achieved,	than	I	have	been	for	some	time.	

Mark	Gahegan’s	pithy	argument	bears	revisiting.	In	essence,	he	suggests	that	GIS	has	been	a	“Disabling	
Technology”	 (op.	 cit.,	 p.	 203),	 because	 “GIS	 saw	 to	 it	 that	 geographers	 became	 the	 slaves	 of	 the	
computer,	 having	 to	 adopt	 the	 impoverished	 representational	 and	 analysis	 capabilities	 that	 GIS	
provided.”	Of	course,	there	are	advantages	to	adopting	shrink-wrapped	computer	solutions,	among	
them	“getting	some	sleep	and	producing	much	prettier	output”	although	anyone	who	has	attempted	
to	bend	an	obstinate	GIS	package	to	their	will,	might	quibble	with	even	this	modest	claim.	

More	 substantively,	 a	 side-effect	 of	 the	 widespread	 adoption	 of	 GIS	 in	 government,	 business,	
education	and	beyond,	has	been	the	actualization	of	early	GIS-boosters’	dubious	(at	the	time)	claim	
that	80	per	cent	of	all	data	has	a	spatial	component.	The	source	of	this	often-cited	boast	is	unclear.	
The	earliest	I	have	managed	to	trace	it	is	to	a	conference	paper	by	Antenucci	(1989)	but	the	context	
makes	clear	that	it	was	by	then	already	a	commonplace	assertion.	Chrisman	(pers.	comm.)	suggests	it	
was	 routinely	made	 to	 persuade	 doubting	 local	 government	 purchasing	 officers	 of	 the	wisdom	of	
investing	 in	 then	 untested	 GIS	 software	 with	 uncertain	 utility.	 In	 any	 case,	 80%	 seems	 a	 likely	
underestimate	now	looked	at	30	or	40	years	later.	Data	today	are	routinely	encoded	with	a	spatial	
reference	at	the	moment	of	collection,	be	it	an	address	or	GPS	coordinates,	and	if	not	can	be	readily	
associated	with	a	spatial	location	in	a	matter	of	minutes.	This	is	thanks	to	the	astonishing	success	and	
widespread	adoption	of	GIS	and	more	recently	web-mapping	and	related	technologies.	

Nevertheless,	 the	“simplistic	representations”	which	Gahegan	bemoans	remain.	For	the	most	part,	
the	geography	associated	with	data	is	encoded	as	a	point,	or	a	polygon.	Together	with	other	points	or	
polygons	 these	 are	 assembled	 in	 spatial	 layers.	 Notwithstanding	 the	 many	 operations	 that	
contemporary	GIS	software	can	perform	on	and	between	spatial	 layers	–	which	the	web	developer	
community	at	the	time	of	writing	is	assiduously	reinventing	–	the	limits	of	points,	polygons	(and	also	
grids)	as	representations	of	geography	are	apparent.	Geographers,	as	a	rule,	are	more	interested	in	
the	(spatial)	relations	among	things	than	in	the	things	in	themselves	and	in	how	processes	play	out	at	



multiple	 scales.	 How	 do	 spatial	 relations	 affect	 how	 things	 change	 over	 time,	 and	 how	 do	 those	
relations	change	over	time	and	across	scales	as	a	result?	

Such	geographical	concerns	lay	at	the	heart	of	geography’s	quantitative	revolution	of	the	1960s	and	
persisted	into	the	1970s	(see	Forer	1978,	for	example).	It	was	only	as	the	initial	hope	of	incorporating	
space	into	statistical	tools	proved	trickier	than	expected	(Gould	1970),	and	the	hoped-for	one-to-one	
correspondence	between	processes	and	the	patterns	they	produce	proved	a	mirage	(Olsson	1969)	
that	 the	 confidence	 (hubris?)	 of	 quantifiers	 waned.	 Meanwhile	 geography	 embraced	 other	
epistemologies,	and	some	of	the	creative	energy	of	would-be	quantifiers	was	directed	into	building	
mainstream	 GIS	 and	 its	 accompanying	 infrastructure	 of	 data	 models,	 ontologies,	 algorithms	 and	
routinized	analytical	approaches.	

Somewhat	in	the	shadow	of	these	developments	we	have	seen	the	emergence	of	more	open-ended,	
platform	 and	 data-model	 agnostic	 tools	 for	 the	 analysis	 of	 geographic	 data	 (see	 Brunsdon	 and	
Singleton	2014).	This	alternative	geospatial	ecosystem	now	seems	ready	for	widespread	adoption	by	
geographers,	 without	 the	 same	 commitment	 to	 particular	 approaches	 to	 representation	 that	 GIS	
demands	and	 subtly	enforces.	Geocomputation	 seems	an	apt	 label	 for	 this	polyglot	assortment	of	
approaches.	 After	 all,	 as	 Helen	 Couclelis	 (1998)	 noted,	 if	 it	weren’t	 for	 the	 happy	 accident	 of	 the	
pronounceability	 of	 ‘geo’	 as	 a	 prefix,	we’d	 likely	 call	 it	 ‘geographical	 computation’.	 And	what	 else	
would	a	geographer	with	a	computer	be	interested	in?	

David	O'Sullivan	
Department	of	Geography,	University	of	California,	Berkeley	

	

Geocomputation’s	21	year	report	card:	B-,	some	good	progress,	but	could	try	harder	

Geocomputation	began	in	earnest	with	the	conference	at	Leeds	University	in	1996	and	rapidly	became	
established	 as	 a	 vibrant	 research	 community	 (papers	 from	 the	 first	 gathering	 and	 all	 subsequent	
meetings	are	available	at	www.geocomputation.org).	In	the	very	first	paper	describing	this	new	field,	
Stan	Openshaw	and	Robert	Abrahart	(1996)	defined	a	series	of	eight	challenges	that,	for	them,	defined	
the	direction	(here	paraphrased	for	brevity):		

1. improving	the	resolution	and	precision	of	computational	models;		

2. computationally	 intensive	statistical	methods	such	as	 jack	knifing	and	bootstrapping	or	the	
use	 of	 Monte	 Carlo	 significance	 tests	 in	 place	 of	 heavily	 assumption	 dependent	 classical	
alternatives;		

3. improved	optimisation	methods	that	can	use	stochastic	search	or	evolution	strategies;		

4. unsupervised	learning	methods	to	replace	simplified	statistical	tools;		

5. improving	supervised	computational	models	by	removing	simplifying	assumptions,	via	neural	
methods;		

6. adding	more	geographical	knowledge	into	a	problem	(for	example	by	using	fuzzy	logic);		

7. tools	 for	 data	 mining,	 pattern	 recognition	 and	 cluster	 detection,	 including	 artificial	 life	
methods,	that	can	search	large	data	spaces;	

8. application	of	new	search	techniques	from	machine	vision.		



Of	 these,	 the	 first	 three	 aim	 to	 leverage	 improvements	 in	 computational	 speed	 and	 scientific	
computing	 to	 offer	 more	 accurate,	 more	 scalable	 analysis,	 or	 the	 use	 of	 previously	 intractable	
statistical	methods.	 	 The	 remainder	 aim	 to	 leverage	what	 were	 recently	 pioneered	 techniques	 in	
machine	learning	and	artificial	intelligence.	The	common	theme	linking	these	challenges	is	the	desire	
to	compute	our	way	to	better	analytic	solutions	to	geographical	problems,	by	continuously	improving	
methods	and	leveraging	Moore’s	Law.		Geocomputation	is	an	apt	name	for	such	a	field.	

How	far	have	we	got	with	this	original	agenda?		Let’s	look	at	the	high	computing	challenges	first.		At	
the	beginnings	of	geocomputation,	there	was	significant	interest	in	high	performance	computing	and	
GIS	(e.g.	Armstrong,	1995;	Healey	et	al,	1997).	At	the	time	(1996),	many	universities	had	access	to	
gigaFLOPS	computing	platforms—that	 is	109	 floating-point	operations	per	 second,	and	 the	world’s	
fastest	 computer	 could	manage	 around	 1	 teraFLOPS	 (1012	 operations/sec).	 Access	 to	 this	 kind	 of	
computing	 power	 opened	 possibilities	 for	 many	 research	 communities	 in	 terms	 of	 new	 analysis	
methods	and	scaling	up	longstanding	problems	such	as	global	climate	and	ocean	circulation	modelling.		

Two	decades	on	and	many	single	CPUs	can	now	sustain	over	1	 teraFLOPS;	 some	researchers	have	
access	 to	 petaFLOPS	 (1015)	 machines.	 	 I	 doubt	 there	 is	 an	 analytical	 question	 currently	 posed	 in	
geography	that	would	need	more	compute	power	than	that	of	the	world’s	fastest	computer	(around	
100	PFLOPS).		But	the	problem	is	not	raw	power,	it	is	scaling	up	our	algorithms	so	that	they	can	take	
advantage	of	such	platforms	via	parallelization	and	optimisation.		In	this	regard,	geocomputation	has	
achieved	very	little	in	the	last	twenty	years:	the	re-expression	of	spatial	algorithms	and	data	structures	
onto	established	HPC	templates	(Asanovic,	2006)	has	proceeded	intermittently	with	little	concerted	
effort,	a	notable	exception	being	the	work	to	parallelise	the	GRASS	open-source	GIS	(Akhter	et	al.,	
2010).		However,	there	has	been	a	late	resurgence	of	interest	in	this	topic,	in	large	part	due	to	the	
overlap	of	goals	with	CyberGIS	and	related	cloud	computing	initiatives,	(e.g.	Shi	et	al.,	2013;	Satish,	
2015;	Stojanovic	and	Stojanovic,	2013).	

Turning	 to	machine	 learning	and	artificial	 intelligence,	 the	 report	card	 is	better.	 	Machine	 learning	
techniques	such	as	neural	networks,	decision	trees,	genetic	algorithms	and	artificial	life	have	received	
a	steady	stream	of	 interest.	Papers	experimenting	with	their	application	 in	spatial	analysis,	remote	
sensing,	 and	 ecology	 appear	 quite	 regularly	 in	 the	 literature	 (e.g.	 Fisher,	 2006;	Wiley	 et	 al,	 2003;	
Pijanowski,	et	al.,	2002;	Gahegan,	2000).		More	recently,	the	focus	of	such	papers	has	moved	from	
explaining	and	justifying	these	new	methods	to	getting	the	best	out	of	them	and	demonstrating	how	
much	better	they	are	than	simple	statistical	approaches	(Rogan	et	al,	2008;	Pradhan,	2013).		Related	
interest	in	geographic	knowledge	discovery	(Miller	and	Han,	2009)	has	also	helped	to	further	this	part	
of	the	geocomputation	agenda.	

Despite	 their	 clear	 improvements	 in	 predictive	 power,	machine	 learning	methods	 remain	 notably	
absent	from	commercial	GIS	and	remote	sensing	software.		The	challenge	in	moving	them	towards	
mainstream	 adoption	 is	 twofold:	machine	 learning	methods	 usually	 require	 experimentation	with	
various	configuration	and	learning	parameters	to	get	the	best	out	of	them,	which	makes	them	difficult	
and	time-consuming	to	use,	especially	for	non-experts;	(ii)	the	statistical	models	that	machine	learning	
challenges	are	often	simpler	to	apply,	more	stable	(results	do	not	vary	due	to	search	heuristics)	and	
the	error	or	goodness	of	fit	is	computable.		However,	the	first	of	the	challenge	may	already	have	been	
overcome.		Deep	learning	methods—often	based	on	hierarchies	of	neural	networks—are	proving	to	
be	effective	at	many	 learning	 tasks,	as	 they	essentially	 remove	or	 streamline	much	of	 the	difficult	
setup	and	experimentation	phase;	essentially	this	too	is	solved	by	the	network	as	part	of	its	learning	
process	(Yann	et	al,	2015;	Schmidhuber,	2015).			



Moving	from	machine	learning	to	the	reasoning	and	automating	aspects	of	artificial	intelligence	(AI),	
the	progress	is	slower.		A	review	of	the	possibilities	is	provided	by	Wu	and	Silva	(2010)	and	some	of	
the	practical	benefits	and	challenges	are	discussed	by	Malerba	et	al,	(2003).	

On	 reflection,	 I	believe	 the	biggest	 contribution	 that	geocomputation	has	made	 in	 the	 last	 twenty	
years	is	to	encourage	a	generation	of	scholars	to	experiment	with	new	computational	methods	and	
with	their	application	to	geographical	problems.		Given	that	geographers	do	not	always	have	a	strong	
background	 in	 computer	 science,	 some	 of	 these	 methods	 can	 be	 challenging	 to	 understand	 and	
difficult	to	apply.		It	is	immensely	rewarding	to	see	that	so	many	researchers	have	tried,	succeeded,	
and	made	geographical	analysis	and	modelling	richer	and	more	powerful	as	a	result.		

Mark	Gahegan	
Centre	for	eResearch	and	Deprtment	of	Computer	Science,	The	University	of	Auckland,	New	Zealand.	

	

Geocomputation:	a	geographically	weighted	success	story	

In	the	early	1980s	there	was	interest	in	the	association	of	cancer	'clusters'	with	supposed	sources	of	
radiation	contamination.		The	media	also	was	concerned	with	possible	contamination	arising	from	the	
nuclear	waste	reprocessing	plant	at	Sellafield	on	the	Cumbrian	coast.	The	Black	Advisory	Committee	
(Black,	1984)	concluded	that	the	Sellafield	plant	was	not	connected	with	raised	levels	of	leukaemia	in	
Cumbria,	but	recommended	re-analysis	of	local	cancer	registries.	Stan	Openshaw	and	colleagues	at	
Newcastle	University	undertook	 the	analysis,	 leading	 to	his	 seminal	paper	 (Openshaw	et	 al,	 1987)	
which	appeared	in	the	first	volume	of	the	fledgling	International	Journal	of	Geographical	Information	
Systems.		

Existing	approaches	had	identified	a	source	of	radiation	in	the	electromagnetic	spectrum	to	determine	
whether	 the	 rate	 of	 morbidity	 around	 it	 was	 somehow	 higher	 than	 some	 national	 level.	 My	
recollection	is	that	electricity	substations	were	regarded	as	suspicious,	as	were	electricity	powerlines.	
But	could	the	sources	include	telephone	boxes	or	fish	and	chip	shops.?	The	underlying	issue	was	that	
no-one	knew	what	the	linkage	might	be.	

Stan	inverted	the	problem	and	decided	that	if	he	could	determine	where	the	excesses	were	centred,	
this	might	lead	to	more	fruitful	line	of	enquiry.		Thus	a	whole-map	statistic	that	suggested	evidence	of	
clustering	was	 replaced	 by	 a	 local	 statistic	 that	 suggested	where	 that	 clustering	was	 located.	 The	
implementation	led	to	a	range	of	computational	and	statistical	challenges	but	those	do	not	diminish	
the	importance	of	Openshaw	et	al	(1987)	and	subsequent	papers.		

That	was	30	years	ago.	We	can	see	other	stimuli	to	geographically-minded	approaches.	In	the	early	
1970s,	Emilio	Casetti	(1972)	had	conceived	of	regression	parameters	that	might	exhibit	heterogeneity;	
his	ideas	were	subsequently	extended	by	John	Paul	Jones	III	(Jones	and	Casetti,	1993).	Wilpen	Gorr	
had	experimented	with	parameter	 'drift'	 in	 regression	models	at	 around	 the	 same	 time	 (Gorr	and	
Olligschlaeger,	 1994),	 and	 Luc	 Anselin	 had	 looked	 at	 both	 modelling	 spatial	 structure	 and	 local	
statistics,	 in	 particular	 local	 indicators	 of	 spatial	 association	 (Anselin,1995).	 	 Rogerson	 (1999)	
developed	a	local	chi-square	statistic	to	examine	evidence	for	disease	clustering	in	New	York.		

Work	at	Newcastle	University	in	the	early	1990s	lead	to	the	first	paper	on	geographically	weighted	
regression	(Brunsdon	et	al,	1996).	A	subsequent	book	by	the	same	authors	(Fotheringham	et	al,	2002)	
consolidated	their	previous	work	and	presented	new	material.	A	paper	on	GWR	was	also	presented	at	
the	first	geocomputation	meeting	at	the	University	of	Leeds.	However,	an	early	issue	was	software.	
We	forget	that	Openshaw's	GAM	code	was	written	for	the	IBM	and	Amdahl	computers	at	Newcastle	



University	running	a	unique	operating	system	developed	at	the	University	of	Michigan.	 In	the	mid-
1980s	rapid	data	exchange	involved	a	12	inch	diamater	reel	of	magnetic	tape	and	a	courier	service.		
Embryonic	FORTRAN	code	for	GWR	was	made	available	for	potential	users	to	download.		Windows	
software	for	GWR	was	later	available	at	cost	from	Newcastle	University	following	the	Fotheringham	
et	al	(2002)	book	launch.	A	more	advanced	Windows	application	has	been	available	in	the	last	few	
years.			

The	award	of	a	Strategic	Research	Centre	to	the	National	University	of	Ireland	Maynooth	by	Science	
Foundation	 Ireland	provided	an	opportunity	to	develop	the	geographical	weighting	approach.	 	The	
major	output	was	a	package	of	open	source	code	for	the	R	system:	GWmodel	(Lu	et	al,	2014;	Gollini	
et	 al,	 2015).	 	 This	 extends	 the	 previous	 developments	 considerably,	 and	 includes	 functions	 for	
univariate	and	bivariate	analysis,	generalised	linear	models,	ridge	regression,	discriminant	analysis	and	
principal	 component	 analysis.	 Criticism	 of	 the	 susceptibility	 of	 GWR	 to	 collinearity	 among	 the	
predictor	variables	has	been	addressed	by	the	development	of	locally	compensated	ridge	regression	
(Gollini	et	al,	2015).		The	package	also	includes	functions	to	allow	the	use	of	different	distance	metrics	
in	the	geographical	weighting,	including	network	distances	and	the	Minkowski	metrics.		

Chris	Brunsdon	has	observed	that	the	Pearson	correlation	coefficient	can	be	unpicked	as	a	LISA.	If	the	
two	variables	x	and	y	have	been	mean	centred,	then	the	values:	
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are	the	 individual	components	that	sum	to	the	value	of	r.	These	can	be	plotted	on	a	map	to	show	
which	 locations	 contribute	 the	most,	 or	 least,	 to	 the	 value	 of	 the	 correlation	 coefficient.	 Such	 an	
approach	complements	the	geographically	weighted	correlation	functions	in	GWmodel.		Recent	work	
includes	the	development	of	geographically	weighted	correspondence	matrices	(Comber	et	al,	2016).	
GWR	appears	as	a	 tool	 in	 the	Spatial	 Statistics	 toolbox	of	ESRI’s	ArcGIS	 software,	 and	 for	users	of	
Quantum	GIS,	it	is	available	in	the	SAGA	freeware	that	installs	alongside	QGIS.	There	are	versions	in	
other	packages	(including	spgwr	and	gwrr).	

At	the	time	of	writing	(early	2017)	the	search	string	geographically	weighted	regression	returns	79600	
hits	 in	 Google.	 It’s	 a	 fitting	 tribute	 to	 a	 public	 health	 scare,	 a	mainframe	 ‘super	 computer’	 and	 a	
visionary	academic.	

Martin	Charlton	
National	Centre	for	Geocomputation,	National	University	of	Ireland	Maynooth	

	

Geocomputational	Musings	on	Big	Data	

There	 is	 a	 great	deal	 excitement	 across	many	 scientific	 communities	 about	 the	new	opportunities	
afforded	by	Big	Data.	For	the	geocomputation	community,	the	potential	lies	in	Big	Spatial	Data,	and	
the	 opportunities	 to	 harness	 the	 increasing	 number	 of	 open	 data	 initiatives,	 new	 forms	 of	 data	
generated	by	citizens,	the	near	ubiquitous	capture	of	location,	and	the	near	permanent	connectivity	
via	web-enabled	devices	that	allow	data	to	be	shared	and	uploaded.	

Classically	research	is	undertaken	in	the	following	way:		

1. Formulate	a	research	question.	



2. Identify	what	data	to	collect	and	how	to	collect	it.	

3. Perform	some	statistical	tests	to	determine	whether	any	effects	or	associations	arise	due	
to	random	sampling	errors.	

4. Get	an	answer	to	the	question.	

Big	data	turns	experimental	design	and	its	associated	inferential	theory	on	its	head:	

1. Collect	lots	of	data	about	anything.	

2. Perform	some	kind	of	data	mining.	

3. Get	some	kind	of	answer.		

4. Decide	what	question	it	was	an	answer	to.	

A	common	theme	is	to	allow	the	data	to	do	their	own	talking,	with	the	potential	for	data	mining	and	
machine	learning	to	identify	important	but	hidden	associations	of	social	or	scientific	interest:	

Scouring	databases	and	other	data	stores	for	insight	is	often	compared	to	the	proverbial	search	
for	a	needle	 in	a	haystack,	but	 ...	big	data	 turns	 that	 idea	on	 its	head	…	[and	quoting	Viktor	
Mayer-Schönberger]	“With	big	data,	we	don’t	know	what	the	needle	 is.	We	can	 let	the	data	
speak	and	use	it	to	generate	really	intriguing	questions”	(Needle,	2015).	

The	 idea	 is	 attractive	 but	 also	 empirically	 and	 theoretically	 naive.	 If	 research	 questions	 are	 not	
specified	 in	at	 least	 some	sense	 in	advance,	 then	 the	 results	of	data	mining	 risk	being	answers	 to	
arbitrary	questions.	If	the	aim	is	to	find	a	needle	in	a	haystack	then	making	the	haystack	bigger	does	
not	make	the	job	any	easier,	and	if	we	don’t	know	what	kind	of	needle	we	are	looking	for,	it	helps	
even	 less.	 In	 the	 shadows	of	 the	Big	Data	 paradigm	 is	 a	 need	 to	 revisit	 classic	 tools	 for	 statistical	
inference	(Brunsdon,	2016).	This	is	because	of	the	ease	with	which	spurious,	nonsensical	relationships	
and	correlations	between	variables	can	be	inferred	through	data	mining,	and	because	of	the	lack	of	
rigorous	 statistical	 methods	 for	 analysing	 very	 large	 datasets,	 where	 statistical	 ‘significance’	 is	
meaningless.			

Paul	Mather	and	Stan	Openshaw	summarised	these	concerns	in	a	prescient	way	in	1974.		Reflecting	
on	the	potential	to	analyse	population	census	data	using	computers	they	suggested:		

It	might	be	far	more	profitable	to	postulate	a	certain	pattern	of	factor	loadings	(and	inter-factor	
correlations)	and	attempt	to	find	how	far	the	hypothesis	fits	the	data	that	has	been	collected.	
This	 attitude	 should	 help	 prevent	 the	 mindless	 approach	 in	 which	 numbers	 of	 variables	
characterized	only	by	the	 fact	 that	 they	are	all	easily	culled	 from	census	volumes	or	derived	
from	 two	or	 three	 basic	 variables,	are	 picked	over	 like	 cans	 on	 a	 rubbish	 tip.	 (Mather	 and	
Openshaw,	1974,	p290,	emphasis	added).	

Geocomputation	can	play	an	 important	 role	 in	addressing	 these	concerns.	The	process	of	big	data	
analysis	 should	 be	 a	 process	 of	 investigation	 driven	 and	 supported	 by	 some	 sort	 of	 theoretical	
underpinning.	 Where	 these	 are	 absent,	 then	 analyses	 should	 proceed	 with	 reflective	 cycles	 of	
investigation	and	explanation,	rather	than	simply	data	mining	and	hypothesis	testing	–	it	should	be	
explorative	detective	work	perhaps	aided	by	visualisation.	The	 importance	of	exploratory	analyses	
cannot	be	overstated:	they	support	the	iterative	development	of	theoretical	constructs	as	the	basis	
for	 analysis	 and	 to	 develop	 robust	 and	 reproducible	 big	 data	 analyses	 by	 looking	 for	 patterns	
(geographical	and	otherwise)	through	repeated	experiment.	For	example,	 in	the	absence	of	theory	
this	could	be	by	randomly	sampling	the	big	data,	identifying	patterns,	applying	to	other	samples	or	to	



the	whole	 dataset,	 and	 then	 engaging	with	 domain	 experts	 to	 anchor	 the	 results	 in	 a	 theoretical	
framework	for	the	study.	

In	 short,	 geocomputational	 analysis	 should	 be	 grounded	 in	 some	 idea	 of	 what	 questions	 are	
important.	 The	 reflexive	 process	 described	 above	 supports	 that	 identification.	 Big	 Data	 analyses	
should	 include	 a	 reflexive	 cycle	 of	 investigation	 and	 explanation,	 rather	 than	 data	mining,	 repeat	
testing	(exploring	rather	than	fishing)	and	it	should	support	the	iterative	development	of	theoretical	
constructs	as	the	basis	for	analysis.	Until	we	act	in	this	way	Big	Data	analyses	will	not	help	us	to	answer	
the	Big	Questions	we	currently	have,	nor	identify	new	Big	Questions	deep	in	the	Big	Data.	

Lex	Comber	
School	of	Geography,	University	of	Leeds	

	

Big	Data,	Geocomputation	and	Geography	

Unlike	some	other	areas	of	computer	intensive	programming,	geocomputation	has	fallen	somewhat	
short	in	delivering	transparent	models	with	practical,	usable	findings.	This	is	perhaps	disappointing	in	
contrast	to	(a)	the	obvious	application	success	in	embodying	core	principles	of	spatial	organisation	in	
geographic	information	systems	and	(b)	the	vast	streams	of	spatially	and	temporally	referenced	data	
that	have	become	available	in	many	applications	areas.	

In	computational	terms,	it	seems	likely	that	this	is	because	the	geo-temporal	frame	that	are	subject	
to	analysis	are	unbounded.	‘Geographic’	is	commonly	taken	to	imply	scales	from	the	architectural	to	
the	global	and	work	presented	at	the	very	first	geocomputation	conference	in	1996	illustrated	that	
issues	of	scale	and	recursion	opened	up	a	seemingly	infinite	range	of	ways	of	framing	representation	
of	the	world	–	in	terms	not	only	of	form	and	process,	but	also	statics	and	dynamics.	Any	representation	
of	how	the	world	looks	and	how	it	works	is	therefore	necessarily	partial,	incomplete	and,	in	temporal	
terms	at	 least,	 open-ended.	Contrast	 this	with	 the	 closed	 system	computational	problems	of,	 say,	
translating	 natural	 languages	 (where	 the	 system	 is	 bounded	 by	 finite	 dictionaries	 of	 words	 and	
grammatical	structures),	and	it	is	perhaps	unsurprising	that	the	achievements	of	geocomputation	are	
more	muted.	Piecemeal	and	partial	models	achieve	piecemeal	and	partial	outcomes	and	there	is	some	
inevitability	that	this	wil	be	the	case.	

The	‘geo-’	prefix	differs	from	its	‘spatial’	counterpart	not	just	in	the	range	of	scales	that	it	may	describe,	
but	also	in	its	implied	association	with	the	unique	place	of	the	surface	and	near	surface	of	Planet	Earth.	
This	fundamental	distinction	may	have	underpinned	some	of	the	‘GIS	wars’	between	Openshaw	and	
Taylor,	and	others	in	the	1990s	(Openshaw,	1991;	Schuurman,	2000)	–	analysis	of	the	canals	of	Mars	
may	meet	the	scale	range	criterion	but	does	not	fulfil	the	place	criterion	and	as	such,	sensu	stricto,	
does	not	qualify	as	geographic	analysis.	This	distinction	highlights	that	geography	as	a	discipline	brings	
tacit	knowledge	to	understanding	of	places	that	are	fundamentally	unique	accretions	of	the	outcomes	
of	past	human	and	social	processes.	Representations	of	place	need	to	provide	an	effective	base	for	
geocomputational	analysis	of	the	general	effects	of	current	and	future	geocomputational	processes.	
This	is	because	geographic	objects	of	analysis	are	not	simply	locations	in	space	but	the	accumulated	
outcomes	of	systems	of	networks	and	flows	(see	Batty	2013).		

Understanding	what	 ‘place’	 is	 or	 at	 least	 how	 it	 can	 be	 effectively	 represented	 presents	 daunting	
application	specific	challenges.	Clear	conceptions	of	the	nature	of	the	geographic	data	are	required,	
yet	there	must	be	some	concern	that	geocomputation	has	acceded	to	wider	tendencies	in	Big	Data	
analysis	 to	disregard	 the	provenance	and	quality	of	 the	huge	 volume	and	 variety	of	 data	 that	 are	



available	today.	A	generation	ago	students	of	social	and	environmental	science	were,	it	seems,	much	
better	 versed	 in	 widely	 accepted	 scientific	 principles	 of	 research	 design,	 as	 well	 as	 the	 statistical	
apparatus	of	generalisation.		This	is	not	to	say	that	there	are	never	instances	where	the	availability	of	
billions	 of	 data	 points	 and	 ever	 greater	 data	 content	 cannot	 be	 a	 substitute	 for	 some	 vagaries	 of	
geographic	 coverage	 –	 sometimes	 there	 is	 a	 trade-off	 between	 the	 largely	 unknown	 biases	 of	
unconventional	data	but	the	spatial	and	temporal	precisions	that	they	can	bring.	But	precision	is	not	
the	same	as	accuracy,	and	representations	of	the	world	need	to	be	accurate	it	they	are	not	to	prove	
biased,	partial	and	potentially	delusional.		

How	might	geocomputation	better	respond	to	the	challenges	of	a	world	in	which	is	data	rich	but	in	
which	 new	 forms	 of	 data	 do	 not	 provide	 anything	 that	 might	 be	 described	 as	 spatial	 data	
infrastructure?	A	first	way	is	to	better	use	what	we	know	from	conventional	data	sources	that	may	be	
less	detailed	or	up-to-date	but	which	are	of	known	provenance	 in	 terms	of	content	and	coverage.	
Machine-learning	methods,	for	example,	must	be	guided	by	clearly	defined	populations	of	interest.	
Geographical	heuristics	may	be	used	to	achieve	the	same	ends.	The	richness	and	variety	of	Big	Data	
make	 it	 possible	 to	 ground	 many	 more	 assumptions	 at	 highly	 disaggregate	 scales	 and,	 suitably	
triangulated	with	conventional	 framework	data	sources,	draw	 inferences	 that	are	both	 robust	and	
open	to	scrutiny.	Current	research	using	consumer	data,	which	account	for	an	increasing	real	share	of	
all	of	the	data	collected	about	citizens,	provides	one	relevant	application	area	in	this	context	(e.g.	see	
cdrc.ac.uk).	

Paul	Longley	
Department	of	Geography,	University	College	London	

	

Reproducible	Research,	Quantitative	Geography	and	Geocomputation	

A	large	proportion	of	practical	quantitative	work	in	geography	relies	on	the	analysis	of	data	or	on	the	
running	of	simulation	models.	That	analysis,	and	the	results	it	generates,	are	the	outcome	of	a	process	
involving	 data	 verification,	 re-formatting,	 computer	 programming,	 modelling,	 data	 analysis	 and	
visualization.	Many	publications	are	created	to	share	the	results	and	to	discuss	their	implications.	It	
follows	that	the	validity	of	the	publications,	and	of	future	publications	citing	them	depends	on	the	
validity	of	the	initial	work	and	on	the	analytical	process.	However,	although	the	publication	itself	is	
widely	available	(in	many	current	situations	it	is	open	access),	details	of	the	supporting	activities	-	in	
particular,	the	data	collected,	the	software	code	used	and	the	exact	stages	of	analysis	-	are	often	not	
available,	or	at	least	not	easily	traceable.	

The	term	reproducible	research	(Claerbout	1992)	is	used	to	describe	an	approach	which	may	be	used	
to	address	this	problem,	and	allow	code	and	data	to	be	easily	accessed.	Although	not	noted	greatly	in	
quantitative	geography	at	the	time	of	writing	(but	see	Brunsdon	and	Singleton	2015)	 it	has	gained	
attention	in	a	number	of	applied	fields	where	quantitative	data	analysis	is	used,	exemplified	here	by	
statistics	 (Buckheit	 and	Donoho	1995;	Gentleman	and	 Temple	 Lang	2004),	 econometrics	 (Koenker	
1996)	 and	 signal	 processing	 (Barni	 et	 al.	 2007).	 The	ultimate	 goal	 of	 reproducible	 research	 is	 that	
complete	details	of	any	reported	results	and	the	computation	used	to	obtain	them	should	be	freely	
available,	so	that	others	following	the	same	procedures	and	using	the	same	data	can	obtain	identical	
results.	This	approach	 is	offered,	 for	example,	when	using	Rmarkdown	 -	where	data	analysis	 code	
written	in	the	R	statistical	programming	language	is	incorporated	into	a	text	document.	On	viewing,	
the	 code	 is	 run	 and	 the	 output	 (either	 textual	 or	 graphical)	 is	 substituted	 into	 the	 document.	



Distributing	documents	in	this	way,	together	with	sufficient	information	to	access	the	data	analysed	
facilitates	an	open	and	reproducible	approach	to	data	analysis	and	visualisation.	

A	strong	case	can	be	made	for	a	focus	on	this	topic	in	quantitative	geography,	geocomputation	and	
spatial	 science.	 The	practice	allows	others	 to	 scrutinise	not	only	 the	data	used	as	 the	basis	 for	an	
analysis,	 but	 also	 the	 approach	 to	 the	 analysis	 itself,	 creating	 a	 platform	 for	 greater	 scrutiny	 and	
accountability.	A	large	amount	of	work	involving	the	analysis	of	geospatial	data	influences	policy	in	
many	fields	-	health,	climate	change	and	crime	prevention	are	a	small	but	significant	set	of	examples.	

The	key	justification	of	a	reproducible	approach	is	precisely	that:	it	can	be	reproduced	and	validated	
by	others.	However,	there	are	additional	benefits:	Reproducible	analyses	can	be	compared:	different	
approaches	addressing	the	same	hypothesis	can	be	compared	on	the	same	data	set,	 to	assess	 the	
robustness	of	any	conclusions	drawn.	Also,	methods	used	are	portable:	code	can	be	obtained	from	
documents,	allowing	others	to	learn	from	other	people,	to	apply	the	code	to	other	data	sets	and	to	
adapt	 the	 code	 for	 related	problems.	 Finally,	 results	may	be	updated	 in	 situations	where	updated	
versions	of	data	are	published	(for	example	new	census	data)	and	methods	applied	to	to	the	original	
data	may	be	re-applied.	

Thus	there	are	several	arguments	for	reproducibility	in	quantitative	analysis	of	spatial	data	-	not	just	
for	 academics,	 and	 not	 just	 for	 the	 geocomputationally	minded,	 but	 also	 for	 public	 agencies	 and	
private	 consultancies	 charged	 with	 analysing	 data	 that	 may	 influence	 policy.	 Recent	 work	
(Vandewalle,	 Kovačević,	 and	Vetterli	 2009)	 has	 shown	 that	 papers	 in	 a	 number	 of	 fields	 adopting	
reproducible	approaches	have	higher	impact	and	visibility.	

Achieving	reproducibility	like	this	is	clearly	within	reach	in	some	situations,	although	there	are	also	
some	 challenges	 ahead,	 as	 the	 diversity,	 frequency	 and	 volume	 of	 geographically	 information	
increases.	Even	in	situations	where	personal	or	sensitive	information	is	analysed	it	could	be	argued	
that	there	are	advantages	to	having	‘domains	of	reproducibility’	–	that	is,	groups	of	people	who	are	
permitted	to	access	this	information	adopting	reproducible	practices	amongst	themselves	–	so	that	
internal	scrutiny,	and	updating	of	analyses	becomes	easier.			Adopting	reproducibility	calls	for	some	
changes	in	the	practice	of	both	analysts	-	in	adopting	reproducible	practices,	and	learning	new	skills,	
and	publishers	-	who	in	support	of	this	would	need	to	provide	resources	where	reproducible	document	
formats	may	 be	 submitted,	 handled,	 distributed	 and	 viewed	 by	 a	wide	 audience.	 	 However,	 such	
changes	are	already	taking	place	in	other	disciplines	–	for	example	in	the	journal	Biostatistics	–	so	why	
not	in	the	field	of	geocomputation?	

Chris	Brunsdon	
National	Centre	for	Geocomputation,	National	University	of	Ireland	Maynooth	

	

Big	Data,	Agent-Based	Modelling,	and	Smart	Cities:	A	Triumvirate	to	Rival	Rome	

Following	the	Big	Data	revolution	(Mayer-Schönberger	and	Cukier,	2013),	aspects	of	peoples’	lives	that	
have	 never	 before	 been	documented	 are	 being	 captured	 and	 analysed	 through	our	 use	 of	 smart-
phone	applications,	social	media	contributions	(Croitoru	et	al.,	2013;	Malleson	and	Andresen,	2015),	
public	transport	smart	cards	(Batty	et	al.,	2013),	mobile	telephone	activity	(Diao	et	al.,	2016),	debit	
card	 transactions,	 web	 browsing	 history,	 and	 so	 forth.	 Taken	 together,	 and	 supplemented	 with	
knowledge	about	the	physical	environment	(air	quality,	temperature,	noise,	etc.),	pedestrian	footfall	
or	 vehicle	 counters	 (Bond	 and	Kanaan,	 2015),	 these	data	 provide	 a	wealth	 of	 current	 information	
about	the	world,	especially	cities.	This	“data	deluge”	(Kitchin,	2013)	has	spawned	interest	in	‘smart	



cities’;	a	term	that	refers	to	cities	that	“are	increasingly	composed	of	and	monitored	by	pervasive	and	
ubiquitous	computing”	(Kitchin,	2014).	

One	aspect	to	smart	cities,	largely	absent	in	the	published	literature,	is	the	ability	to	forecast	as	well	
as	to	react.	Whilst	most	initiatives	inject	real-time	data,	these	data	rarely	are	used	to	make	real-time	
predictions	about	the	future.	Where	‘forecasting’	is	an	advertised	capability	of	a	smart	city	initiative,	
rarely	is	it	explained	in	any	detail.	This	might	be	due	to	the	proprietary	nature	of	many	initiatives	but	
it	 is	 equally	 likely	 that	 a	 lack	 of	 appropriate	 methods	 is	 at	 fault.	 Although	 ‘black	 box’	 artificial	
intelligence	methods	 are	 progressing	 rapidly,	 there	 is	 little	 evidence	 that	 these	 are	 being	 used	 to	
forecast	future	states	of	smart	cities.	

Perhaps	agent-based	modelling	offers	the	missing	component	for	predictive	smart	cities?	Agent-based	
models	(ABMs)	simulate	the	behaviour	of	the	individual	components	that	drive	system	behaviour,	so	
are	 ideally	 suited	 to	modelling	 cities.	 A	 drawback	with	 ABMs	 is	 that	 they	 require	 high-resolution,	
individual-level	data	to	allow	reliable	calibration	and	validation,	and	traditionally	these	have	been	hard	
to	come	by.	However,	in	the	age	of	the	smart	city,	this	no	longer	is	the	case.	Furthermore,	ABMs	are	
not	 ‘black	boxes’;	the	 individual	agents	are	 imbued	with	behavioural	 frameworks	that	are	(usually)		
based	on	sound	behavioural	theories.	This	makes	it	easier	to	dissect	the	models,	as	well	as	allowing	a	
controller	to	manipulate	the	behaviour	of	the	agents	as	required	for	a	particular	forecast.	In	addition,	
because	many	‘big’	data	sources	are	available	in	real	time,	there	is	the	opportunity	to	calibrate	models	
as	soon	as	new	data	become	available.	This	is	akin	to	forecasting	in	fields	such	as	meteorology,	where	
the	latest	weather	data	are	assimilated	into	running	models	to	improve	short-term	predictions.	This	
triumvirate	of	big	data,	agent-based	modelling,	and	dynamic	calibration	has	the	potential	to	become	
the	de	facto	tool	for	understanding	and	modelling	urban	systems.	

There	are,	however,	substantial	methodological	challenges	that	must	be	met,	 including	developing	
the	means	to	assimilate	the	data	 into	models.	Furthermore,	engagement	with	smart	devices	 is	not	
heterogeneous	across	the	population,	so	there	is	a	risk	that	those	individuals	who	choose	not	to	use	
‘smart’	technology	will	be	forgotten	about	in	simulations	and	planning	processes.	Simulations	that	are	
based	on	biased	data	have	the	potential	to	increase	biases	by	presenting	biased	results	that	are	then	
used	to	influence	policy.	For	example,	PredPol	is	an	extremely	popular	predictive	policing	tool	that	is	
being	purchased	by	police	forces	across	the	globe	in	order	to	predict	where	future	crimes	are	going	to	
take	place.	However,	policing	data	are	biased	towards	particular	minorities	as	a	result	of	where	most	
policing	activity	already	takes	place,	so	the	tool	has	the	potential	to	increase	those	biases	by	sending	
more	officers	to	areas	that	are	already	being	heavily	policed	(Lum	and	Isaac,	2016).	Any	smart	city	
modelling/forecasting	tool	must	be	able	to	mitigate	against	these	risks.	

To	conclude,	although	smart	city	initiatives	are	numerous,	very	few	can	evidence	an	ability	to	create	
reliable	 forecasts	 of	 future	 city	 states.	 However,	 advances	 in	 spatial	 methods	 that	 fall	 under	 the	
umbrella	of	‘geocomputation’	have	the	potential	to	create	reliable	forecasts	of	urban	dynamics	under	
a	variety	of	conditions.	There	are	ethical	issues	that	must	be	considered	but,	if	conducted	safely,	the	
triumvirate	of	agent-based	modelling,	big	data,	and	dynamic	calibration	is	extremely	attractive.	

Nick	Malleson	
School	of	Geography,	University	of	Leeds	

	

ABM	and	Geocomputation:	a	thinly	disguised	rant	



One	of	the	significant	changes	in	the	area	of	Geocomputation	over	the	past	20	years	has	been	a	shift	
in	 focus	 from	 top-down	 aggregate	 models	 to	 individual	 bottom-up	 approaches.	 	 This	 has	 been	
accompanied	by	an	 increased	 recognition	of	 the	 role	 that	 the	 individual	plays	 in	driving	key	 social	
processes	that	 form	a	significant	part	of	geographical	systems	(Batty,	2013,	O’Sullivan	et	al,	2012).		
Whilst	the	acknowledgement	that	individuals	are	important	components	of	these	systems	is	not	new	
in	itself,	the	ability	to	chart	the	consequences	of	individual	decisions	and	behaviours	on	geographical	
systems	is.		These	new	insights	have	been	made	possible	through	the	development	of	new	individual-
based	modelling	methodologies	 enriched	 through	 the	 proliferation	 of	 micro-level	 population	 and	
economic	data.		

An	individual-based	method	that	has	seen	great	uptake	by	researchers	within	Geocomputation	over	
the	past	20	years	is	agent-based	modelling	(ABM)	(Macal,	2016).	ABM	advocates	an	understanding	of	
social	and	spatial	phenomena	through	simulation	at	the	individual	level.	By	creating	heterogeneous	
individuals	who	can	interact	with	other	individuals	and	the	environment,	we	can	track	the	emergence	
of	new	patterns	or	trends	across	a	variety	of	spatial	and	temporal	scales.		The	emphasis	within	these	
models	on	 the	 individual	makes	ABM	a	natural	 framework	 to	apply	within	social	and	geographical	
systems	 as	 evidenced	 through	 the	 dazzling	 array	 of	 applications	 that	 are	 continually	 appearing,	
ranging	from	disaster	relief	(Crooks	and	Wise,	2013)	to	social	epidemiology	(El-Sayed	et	al,	2012).	This	
popularity	 has	 been	 cemented	 by	 increases	 in	 computer	 processing	 power,	 data	 storage,	
developments	 in	 computer	 programming	 languages	 and	 easily	 accessible	 frameworks	 that	 enable	
rapid	development	of	models	with	minimal	programming	experience.	

While	 ABM	 offers	 a	 potentially	 powerful	 way	 both	 to	 simulate	 and	 to	 understand	 geographical	
systems,	there	remain	several	 important	challenges	that	researchers	 in	ABM,	and	Geocomputation	
more	broadly,	need	to	address.		Firstly,	creating	an	agent-based	model	that	can	simulate	the	processes	
occurring	 in	 the	 real	 system	 requires	 the	 behaviours	 and	 actions	 of	 individuals,	 as	 well	 as	
environmental	 influences	 to	 be	 captured	 and	 represented.	 	 Current	 practice	 is	 lacking	 with	 the	
majority	of	‘behavioural’	frameworks	sharing	more	commonality	with	mathematics	and	econometrics	
than	psychology.		A	more	explicit	link	between	ABM	and	behavioural	frameworks	is	needed	if	we	are	
to	capture	the	complexity	around	decision-making	and	chart	their	consequences.		Secondly,	capturing	
this	level	of	complexity	requires	a	vast	amount	of	individual-level	data	covering	‘softer’	factors	such	
as	 feelings	and	opinions,	data	 that	more	 traditional	quantitative	 research	 (and	spatial	 science)	has	
ignored.		While	the	appearance	of	big	data	has	opened	up	new	avenues	of	research	allowing	highly	
complex	models	 to	be	 constructed	 that	 are	 enriched	by	new	 insights	 and	understanding,	 how	we	
extract	value	and	make	sense	of	these	new	forms	of	data	presents	a	considerable	challenge.	

A	final,	and	possibly	the	biggest	challenge	that	ABM	faces	is	that	of	calibration	and	validation.	Creating	
realistic	individual-based	models	requires	a	significant	amount	of	data	with	a	corresponding	amount	
required	to	confidently	calibrate	and	validate.		As	Heppenstall	et	al.	(2016)	note,	there	is	some	irony	
that	by	pursuing	the	disaggregation	of	data	to	the	individual	it	becomes	near	impossible	(at	present)	
to	 rigorously	 calibrate	 and	 validate	 such	 models.	 	 However,	 even	 if	 the	 data	 were	 available,	
appropriate	 methods	 have	 not	 yet	 been	 established	 nor	 developed	 for	 measuring	 and	 analysing	
individual	agents	that	are	part	of	a	 large	dynamic	and	non-linear	system	(Batty	and	Torrens,	2005;	
Torrens,	 2010).	 	 This	 absence	 of	 robust	 calibration	 and	 validation	 measures	 has	 precipitated	 the	
criticism	of	ABMs	as	‘toy	models’.		Until	researchers	can	fully	evaluate	these	models	against	real	world	
systems,	it	is	unlikely	that	they	will	make	the	transition	from	academia	into	policy-making.	

What	is	clear	is	that	researchers	now	have	the	data	and	tools	at	their	disposal	to	examine	geographical	
systems	 in	 unprecedented	 individual-level	 detail	 thus	 creating	 new	 knowledge	 and	 understanding	
about	how	 these	 systems	evolved	and	what	 the	consequences	of	 future	 individual	behaviours	are	



likely	 to	 be.	 The	 challenge	 for	 geocomputation	 is	 twofold:	 how	 can	we	use	 new	 forms	 of	 data	 to	
understand	 how	 real	 people	 shape	 and	 are	 shaped	 by	 geographical	 processes;	 and	 how	 can	 we	
realistically	simulate	these	processes	within	our	models?	

Alison	Heppenstall	
School	of	Geography,	University	of	Leeds	

	

Breaking-out	of	the	ivory	tower	

Over	the	past	five	years,	a	growth	in	geocomputational	research	has	taken	place	away	from	academia,	
with	many	 innovative	new	developments	driven	primarily	by	 the	commercial	 sector.	 In	part	 this	 is	
their	response	to	the	opportunities	arising	through	the	emergence	of	big	(geo)data	in	industry.	These	
new	 forms	 of	 data	 challenge	 much	 of	 the	 pre-existing	 storage	 and	 processing	 infrastructure	
established	at	a	time	where	contemporary	“big	data”	did	not	exist.	Unlike	the	traditional	tasks	of	a	
database	where	a	schema	would	be	pre-defined	and	known,	many	applications	exploring	complex	
data	sets	require	more	flexible	and	adaptive	technologies,	and	platforms	such	as	Hadoop	have	been	
optimised	for	these	purposes.	There	has	been	additional	innovation	from	disciplines	such	as	computer	
science	 around	 methods	 that	 use	 parallel	 optimisation,	 artificial	 intelligence,	 and	 supervised	 or	
unsupervised	 learning	 to	 translate	 data	 into	 useful	 insight.	 These	 methods	 may	 present	 a	 new	
epistemological	 approach	 within	 social	 science	 research	 (Kitchin,	 2014)	 that	 challenges	 the	
frameworks	of	classical	statistical	inference	long	established.	

Academia	 has	 been	 slow	 to	 keep	 pace	 and	 has	 not	 developed	mechanisms	 that	 provide	 effective	
bidirectional	dissemination	of	expertise	and	knowledge	with	 industrial	partners.	This	 is	 regrettable	
because	the	potential	benefits	are	not	negligible.	Beyond	the	pragmatic	needs	for	innovation	within	
the	contemporary	data	economy,	academia	should	be	trying	to	engage	more	intensively	with	research	
activities	of	industry;	conversely,	industry	should	not	underestimate	the	advantages	of	partnering	with	
universities.	Within	the	UK,	the	ESRC	funded	Consumer	Data	Research	Centre	(www.cdrc.ac.uk)	makes	
an	important	step	towards	opening-up	commercial	data	to	academic	users	through	secure	data	access	
facilities.	
	
There	has	been	significant	growth	 in	data	science	employment	 in	roles	requiring	students	who	are	
geographically	 trained.	 For	 academia,	 this	 provides	 a	 significant	 constraint	 in	 attracting	 the	most	
talented	researchers	and	teachers	(Rey,	2009).	Although	a	challenge,	the	academic	sector	needs	to	do	
more	 to	 sell	 the	 benefits	 of	 research	 roles	 that	 include	 greater	 autonomy,	more	 control	 over	 the	
destination	 and	 ownership	 of	 the	 outputs	 (including	 code),	 and	 the	 opportunity	 to	 work	
collaboratively	across	institutions	without	the	shackles	of	protecting	commercial	interest.	We	take	the	
view	that	academia	needs	to	assume	a	more	serious	role	as	an	incubator	for	innovation,	where	the	
knowledge,	products	and	expertise	developed	as	part	of	research	activities	can	better	be	captured	
and	have	their	exploitation	supported	in	a	way	that	generates	a	financial	benefit	to	the	researcher	or	
teams	involved.	At	the	same	time,	academic	institutions	need	to	think	carefully	about	how	intellectual	
property	 generated	 by	 staff	 is	 captured	 and	 how	 these	 benefits	 may	 be	 shared,	 as	 well	 as	 how	
potential	negative	effects	such	as	a	reduction	of	open	source	development	or	reduced	collaboration	
could	be	mitigated.		

An	increased	interaction	between	industry	and	academia	would	make	the	latter	more	relevant	to	the	
former,	and	the	former	more	useful	and	accessible	to	the	latter,	both	to	their	mutual	gain.	We	argue	
that	the	academic	geocomputation	community	needs	to	engage	more	fully	with	some	of	the	most	



recent	developments	in	the	nascent	field	of	Data	Science.	As	others	have	argued	elsewhere	(Johnson,	
2014),	 this	 conversation	 can	 be	 strengthened	 through	 training	 and	 education.	 A	 more	 targeted	
delivery	 of	 core	 geocomputation	 concepts	 and	methods	 in	 the	 context	 of	 the	Data	 Science	world	
would	 demonstrate	 the	 value	 of	 incorporating	 space	 and	 geographical	 context	 into	 cases	 where	
geography	is	relevant	to	the	(data)	question	at	hand.	A	close	inspection	of	some	of	the	main	textbooks	
(Schutt	 and	 O’Neil,	 2013;	 Peng	 and	 Matsui,	 2015;	 Pierson	 et	 al.,	 2015;	 EMC,	 2015)	 and	 courses	
(Franklin,	2014;	Irizarry	and	Hicks,	2016,	John	Hopkins	University,	2016)	on	Data	Science	reveals	there	
is	 a	 growing	 body	 of	 elements	 that	 remain	 remarkably	 consistent	 across	 all	 of	 them.	 This	 “basic	
curriculum”	 of	 Data	 Science	 broadly	 is	 composed	 of	 the	 following	 three	 areas:	 computational	
tools/software	engineering,	statistical	methods,	supervised	and	unsupervised	machine	learning,	and	
data	visualization.	In	all	of	these,	there	is	little	to	no	mention	of	explicitly	spatial	methods	or	wider	
considerations	concerning	their	applications.	At	best,	what	we	find	are	some	examples	of	elementary	
mapping.		

To	address	this	deficiency,	we	propose	a	curriculum	of	what	we	term	Geographic	Data	Science	(GDS).	
The	main	elements	that	we	believe	could	extend	Data	Science	into	an	explicitly	spatial	domain	are	the	
following:	spatial	databases	and	file	formats	(e.g.	GeoJSON,	PostGIS);	Exploratory	Spatial	Data	Analysis	
(ESDA),	in	particular	local	measures;	geodemographic	analysis	and	regionalization	techniques;	spatial	
econometrics	and	geographically	weighted	regression;	point	pattern	analysis;	and	cartography.	These	
are	not	typical	of	a	standard	undergraduate	method	course	in	the	social	sciences	yet	they	represent	
the	sorts	of	techniques	that	need	to	be	learned	if	future	academics	are	to	have	the	skillsets	that	are	
needed	to	engage	with	geocomputation	within	and	beyond	our	ivory	towers.		

Alex	Singleton	and	Daniel	Arribas-Bel	
Department	of	Geography	and	Planning,	University	of	Liverpool	

	

Geocomputation:	conclusions,	in	way	of	catching	breath	

Looking	over	the	abstracts	from	the	first	GeoComputation	conference,	two	things	leap	out:	the	ahead-
of-the-curve	 methodologies	 (machine	 learning;	 networks;	 web	 GIS;	 ABM;	 data-mining)	 and	 the	
breadth	of	applications	areas.	Geocomputation	has	been	somewhat	the	victim	of	its	own	foresight	in	
both:	 there	 are	 now	 tens	 of	 conferences	 in	 these	methods	 and	 computational	 application	 areas.	
Nevertheless,	one	joy	of	the	series	is	still	being	exposed	to	that	breadth	of	techniques,	both	new	and	
from	other	application	areas.		

Moreover,	as	Gahegan	notes,	the	idea	of	geocomputation	has	proven	even	more	important.	Globally,	
staff,	courses,	and	institutions	are	labelled	geocomputational,	or	feel	part	of	the	subject.	The	raison	
d’etre	of	the	series	was	to	create	a	space	for	computation	when	quantitative	geography	was	struggling	
against	the	“cultural	turn”	in	geography.	In	many	ways,	its	most	important	legacy	is	to	allow	people	to	
hold	their	heads	up	and	say	“look,	others	elsewhere	do	this	stuff;	we	should	invest”.		

Nevertheless,	in	a	world	that	has	finally	caught	up,	and	where	analysis	and	visualisation	of	spatial	data	
are	everywhere,	it	behoves	us	to	ask	“what	now”	for	geocomputation?		

First,	there	are	issues	to	address.	Our	community	gender	balance	is	still	poor	and	the	traditional	Anglo-
American-Antipodean	 focus	 of	 the	 conferences	 is	 looking	 increasingly	 outdated.	 On	 teaching,	
Singleton	 and	Arribas-Bel	 highlight	 the	 opportunity	 for	 clarifying	 geocomputation’s	 unique-selling-
points;	we	equally	need	to	aim	earlier,	convincing	children	that	coding	 is	about	more	than	making	
millions	 from	an	 app	 and	 can	be	used	 to	 aid	 society.	 Finally,	we	need	 to	manage	our	 burgeoning	



knowledge	 (>1,350,000	 academic	 papers	 p.a.;	 Björk	 et	 al.	 2009;	 many	 useful	 to	 geocompers).	
Brunsdon	 highlights	 Open	 Source	 data	 and	 techniques,	 and	 we	 should	 consider	 knowledge	
management	to	avoid	re-creation	and	to	identify	which	new	and	old	techniques	are	useful,	as	well	as	
their	pitfalls.		

More	positive	are	our	potential	contributions	to	ongoing	efforts	in	core	areas.	Industry,	Singleton	and	
Arribas-Bel	note,	is	now	investing	in	geocomputation	far	more	than	academia	but	we	can	still	bring	
three	things	to	the	table.	Firstly,	rigor:	we	understand	how	analysis	works	 in	ways	easily	 forgotten	
outside	 academia;	 those	 three	 spatial	 data	 daemons	–	 the	Modifiable	Areal	Unit	 Problem,	 Spatial	
Autocorrelation,	and	the	Ecological	Fallacy	–	still	catch-out	the	naïve,	as,	in	modelling,	do	Equifinality	
and	 Error	 Propagation.	 Secondly,	 sympathy:	 current	 solutions	 are	 driven	 by	 those	 with	 a	 narrow	
understanding	of	the	world.	Geocomputationalists	are	uniquely	trained	in	the	technical	skills	needed,	
but	also	a	nuanced	understanding	of	global	 systems.	Thirdly,	our	breadth	brings	 imagination:	 free	
from	traditional	subject	boundaries,	we	can	make	unusual	links	and	identify	interesting	opportunities.		

Finally,	we	need	to	detail	the	future,	as	21	years	ago,	and	get	at	it,	considering	where	spatially	sensitive	
computing	can	make	the	world	a	safer,	sustainable,	and	more	satisfying	place.	Questions	surround	
data	understanding	and	use:	 Comber	 highlights	 re-negotiation	of	 significance	 in	 a	 Big	Data	world,	
while	Malleson	notes	the	potential	for	dynamic	data	(and	we	might	note	for	global	social	modelling);	
both	demand	thought	on	the	social,	political,	and	analytical	uses	of	data.	Beck,	 in	1987,	appositely	
noted	the	important	question	is	not	how	we	predict	the	future	using	present	parameters,	but	how	we	
pick	those	needed	to	make	it	a	better	one.	We	also	need	to	think	more	about	how	we	track	and	display	
error	and	uncertainty	associated	with	dynamic	systems.	As	Heppenstall	requests,	human	experience	
needs	 centring	 in	 our	 work:	 advances	 are	 waiting	 in	 capturing	 the	 emotional	 and	 belief-centred	
relationships	between	society	and	space.	We	also	need	to	help	develop	a	new	politics	of	public	duty	
and	support	in	a	world	led	increasingly	by	individual-level	data	and	algorithms.	As	Longley	notes,	space	
and	place	are	still	key,	but	need	updating	with	work	on	shared	virtual	and	augmented	realities,	and	
their	crossovers	with	the	internet	of	things	and	telepresences.	There’s	work	needed	on	the	emergent	
features	of	 interconnected	human	systems	–	parallel	economies	and	the	 influence	of	new	and	old	
media	most	urgently	–	but	there’s	deep	potential	in	understanding,	visualising,	and	embedding	the	
human	experience	as	a	node	 in	a	complex	of	 interconnected	flows.	 In	AI,	 interactions	with	bots	 in	
complex	 social	 spaces,	online	and	off,	 need	elucidating,	 and	geocomputation	has	a	 role	 to	play	 in	
moving	from	machine	learning	to	reasoning,	as	we	attach	structures	and	metaphors	about	the	world	
to	 recognised	 objects.	 Finally,	 we	 have	 a	 place	 in	 sustainability:	 from	 resource	 optimisation	 to	
modelling	planetary	evolution	and	terraforming.	In	each	area:	human	dynamics;	experiences;	uses	of	
space;	and	interactions	with	the	environment,	we	need	those	core	principles:	rigor,	sympathy,	and	
imagination,	which	promise	insight	and	innovation	in	an	exciting	world	of	opportunities.	If	the	last	21	
years	has	seen	the	world	catching	up	with	us,	the	next	21	years	should,	with	a	fair	wind	and	a	strong	
heart,	see	us	carry	the	world	onwards.		

Andy	Evans	
International	Geocomputation	Conference	Series	Steering	Group	
University	of	Leeds	
	

	 	



References	

Akhter	S,	Aida	K,	Chemin	Y,	2010,	“GRASS	GIS	on	high	performance	computing	with	MPI,	OpenMP	
and	Ninf-G	programming	framework”	International	Archives	of	the	Photogrammetry,	Remote	
Sensing	and	Spatial	Information	Science	38,	580–585		

Anselin	L,	1995,	“Local	indicators	of	spatial	association	–	LISA”	Geographical	Analysis	27	93–115	

Antenucci	J,	1989,	Technical	updates	of	geographic	information.	In	National	Association	of	Counties	
Conference	Workshop	(Cincinnati,	OH)	

Armstrong	MP,	1995,	“Is	there	a	role	for	high	performance	computing	in	GIS?”	Journal	of	the	Urban	
and	Regional	Information	Systems	Association	7	7–10	

Asanovic	K,	Bodik	R,	Catanzaro	BC,	Gebis	JJ,	Husbands	P,	Keutzer	K,	Patterson	DA,	Plishker	WL,	Shalf	J	
W,	Williams	S,	Yelick	KA,	2006,	“The	landscape	of	parallel	computing	research:	A	view	from	
Berkeley”	Technical	Report	UCB/EECS-183	(Electrical	Engineering	and	Computer	Sciences	
Department,	University	of	California,	Berkeley)	

Barni	M,	Perez-Gonzalez	F,	Comesaña	P,	Bartoli	G,	2007,	“Putting	Reproducible	Signal	Processing	
into	Practice:	A	Case	Study	in	Watermarking.”	2007	IEEE	International	Conference	on	Acoustics,	
Speech	and	Signal	Processing	(Honolulu,	HI)	doi:	10.1109/ICASSP.2007.367306	

Batty	M,	2013,	The	New	Science	of	Cities	(Cambridge	MA,	MIT	Press)	

Batty	M,	Manley	E,	Milton	R,	Reades	J,	2013,	“Smart	London”,	in	Bell	S	and	Paskins	J	(eds.)	Imagining	
the	Future	City:	London	2062	(London,	Ubiquity	Press)	31–40	

Batty	M,	Torrens,	PM,	2005,	“Modelling	and	Prediction	in	a	Complex	World”	Futures	37	745–766	

Beck	MB,	1987,	"Water	quality	modeling:	A	review	of	the	analysis	of	uncertainty"	Water	Re-source	
Research	23(8)	1393–1442	

Björk	B-C,	Roos	A,	Lauri	M,	2009	"Scientific	journal	publishing:	yearly	volume	and	open	access	
availability",	Information	Research	14(1)	Paper	391	http://InformationR.net/ir/14-1/paper391.html	
[Accessed	April	5	2017]	

Black	D,	1984,	Investigation	of	the	possible	increased	incidence	of	cancer	in	West	Cumbria.	Report	of	
the	Independent	Advisory	Group	(London,	HMSO)		

Bond	R,	Kanaan	A,	2015,	“MassDOT	Real	Time	Traffic	Management	System”,	in	Geertman	S,	Ferreira	
J,	Goodspeed	R,	Stillwell	J	(eds.),	Planning	Support	Systems	and	Smart	Cities	(Cham,	Switzerland,	
Springer)	471–488	

Brunsdon	C,	2016,	“Quantitative	methods	II	Issues	of	inference	in	quantitative	human	geography”	
Progress	in	Human	Geography	doi	10.1177/0309132516648020	

Brunsdon	C,	Fotheringham	AS,	Charlton	M,	1996,	“Geographically	weighted	regression:	a	method	for	
exploring	non-stationarity”	Geographical	Analysis	28	281–98	

Brunsdon	C,	Singleton	A,	(ed.)	2014,	Geocomputation:	A	Practical	Primer	(Sage,	London)	

Brunsdon	C,	Singleton	A,	2015,	“Reproducible	Research:	Concepts,	Techniques	and	Issues,”	in	
Brunson	C,	Singleton	A	(eds.)	Geocomputation:	A	Practical	Primer	(London,	Sage)	254–64	



Buckheit	JB,	Donoho	DL,	1995,	“WaveLab	and	Reproducible	Research”	Technical	Report	474	
(Department	of	Statistics,	Stanford	University)	

Casetti	E,	1972,	“Generating	models	by	the	expansion	method:	applications	to	geographic	research”	
Geographical	Analysis	4	81–91	

Claerbout	J,	1992,	“Electronic	Documents	Give	Reproducible	Research	a	New	Meaning”	Society	of	
Exploration	Geophysicists	Conference,	New	Orleans	http://dx.doi.org/10.1190/1.1822162	[Accessed	
March	24	2017]	

Comber	A,	Brunsdon	CF,	Charlton	M,	Harris	P,	2016,	“Geographically	weighted	correspondence	
matrices	for	local	change	analyses	and	error	reporting:	mapping	the	spatial	distribution	of	errors	and	
change”	Remote	Sensing	Letters,	DOI:	dx.doi.org/10.1080/2150704X.2016.1258126	

Couclelis	H,	1998,	“Geocomputation	and	space”	Environment	and	Planning	B	25	41–47			

Croitoru,	A,	Crooks	A,	Radzikowski	J,	Stefanidis	A,	2013,	“Geosocial	gauge:	A	system	prototype	for	
knowledge	discovery	from	social	media”	International	Journal	of	Geographical	Information	
Science	27	2483–2508	

Crooks	AT,	Wise	S,	2013,	“GIS	and	Agent-Based	models	for	Humanitarian	Assistance”	Computers,	
Environment	and	Urban	Systems	41	100–111	

Diao	M,	Zhu	Y,	Ferreira	J,	Ratti	C,	2016,	“Inferring	individual	daily	activities	from	mobile	phone	
traces:	A	Boston	example”	Environment	and	Planning	B:	Planning	and	Design	43	920–940	

El-Sayed	AM,	Scarborough	P,	Seemann	L,	Galea	S,	2012,	“Social	network	analysis	and	agent-based	
modelling	in	social	epidemiology”	Epidemiologic	Perspectives	and	Innovations	9	1		

EMC,	Education	Services,	2015,	Data	Science	and	Big	Data	Analytics:	Discovering,	Analyzing,	
Visualizing	and	Presenting	Data	(New	York,	Wiley)	

Fischer	MM,	2006,	“Computational	neural	networks	—	tools	for	spatial	data	analysis”,	in	Fischer	MM	
(ed.)	Spatial	Analysis	and	GeoComputation:	Selected	Essays	(Berlin,	Springer) 79–102	

Forer	P,	1978,	“A	Place	for	Plastic	Space?”	Progress	in	Human	Geography	2	230–267	

Fotheringham	AS,	Brunsdon	C,	Charlton	M,	2002,	Geographically	Weighted	Regression:	the	analysis	
of	spatially	varying	relationships	(Chichester,	Wiley)	

Franklin	M,	2014,	“Introduction	to	Data	Science	-	UC	Berkeley	2014”	
http://amplab.github.io/datascience-sp14/	[Accessed	March	24	2017]	

Gahegan	M,	1999,	“Guest	Editorial:	What	is	Geocomputation?”	Transactions	in	GIS	3	203–206	

Gahegan	M,	2000,	“On	the	application	of	inductive	machine	learning	tools	to	geographical	
analysis”	Geographical	Analysis	32	113–139	

Gentleman	R,	Temple	Lang	D,	2004,	“Statistical	Analyses	and	Reproducible	Research”	Bioconductor	
Project	Working	Papers	Working	Paper	2	http://biostats.bepress.com/bioconductor/paper2	
[Accessed	March	24	2017]	

Gollini	I,	Lu	B,	Charlton	M,	Brunsdon	C,	Harris	P,	2015,	“GWmodel:	An	R	Package	for	exploring	spatial	
heterogeneity	using	geographically	weighted	models”	Journal	of	Statistical	Software	63	1–50	



Goodchild	MF,	1992,	“Geographical	information	science”	International	Journal	of	Geo-Information	
Systems	6	31–45	

Gorr	WL,	Olligschlaeger	AM,	1994,	“Weighted	spatial	adaptive	filtering:	Monte	Carlo	studies	and	
application	to	illicit	drug	market	modelling”	Geographical	Analysis	26	67–87	

Gould	P,	1970,	“Is	statistix	inferens	the	geographical	name	for	a	wild	goose?”	Economic	geography	
46	439–448	

Healey	R,	Dowers	S,	Gittings	B,	Mineter	MJ,	(eds.)	1997,	“Parallel	Processing	Algorithms	For	GIS”	
(CRC	Press,	London)	

Heppenstall	A,	Malleson	N,	Crooks	AT,	2016,	“’Space,	the	Final	Frontier’:	How	Good	are	Agent-based	
Models	at	Simulating	Individuals	and	Space	in	Cities?”	Systems	4	9		

Irizarry	R,	Hicks	S,	2016,	“Introduction	to	Data	Science:	BIO	260	and	CSCI	E107	-	Harvard	University”	
http://datasciencelabs.github.io/2016/	[Accessed	March	24	2017]	

John	Hopkins	University,	2016,	“Coursera	Data	Science	Specialization”	
https://www.coursera.org/specializations/jhu-data-science	[Accessed	March	24	2017]	

Johnston	RJ,	Gregory	D,	Pratt	G,	Watts	M,	(eds.)	2000,	The	Dictionary	of	Human	Geography	(4th	
edition)	(Blackwell,	Oxford)		

Jones	JP	III,	Casetti	E,	1992,	Applications	of	the	Expansion	Method	(London,	Routledge)	

Kitchin	R,	2013,	“Big	data	and	human	geography:	opportunities,	challenges	and	risks”	Dialogues	in	
Human	Geography	3	262–267	

Kitchin	R,	2014,	“The	Real-Time	City?	Big	Data	and	Smart	Urbanism”	GeoJournal	79	1–14		

Kitchin	R,	2014,	The	Data	Revolution:	Big	Data,	Open	Data,	Data	Infrastructures	and	Their	
Consequences	(London,	Sage)	

Koenker	R,	1996,	“Reproducible	Econometric	Research”	(Department	of	Econometrics,	University	of	
Illinois)	

Longley	P,	2000,	“Geocomputation”,	in	Johnston	RJ,	Gregory	D,	Pratt	G,	Watts	M	(eds.)	Dictionary	of	
Human	Geography	(Fourth	Edition)	(Oxford,	Blackwell)	296–7.	

Lu	B,	Harris	P,	Charlton	M,	Brunsdon	C,	2014,	“The	GWmodel	R	package:	further	topics	for	exploring	
spatial	heterogeneity	using	geographically	weighted	models”	Geo-spatial	Information	Science	17	85–
101		

Lum	K,	Isaac	W,	2016,	“To	predict	and	serve?”	Significance	13	14–19	

Lynch	MP,	2016,	The	Internet	of	Us:	Knowing	More	and	Understanding	Less	in	the	Age	of	Big	Data	
(Liveright,	New	York)	

Macal	CM,	2016,	“Everything	You	Need	to	Know	About	Agent-based	Modelling	and	Simulation”	
Journal	of	Simulation	10	144–156	

Malerba	D,	Esposito	F,	Lanza	A,	Lisi	FA,	Appice	A,	2003,	“Empowering	a	GIS	with	inductive	learning	
capabilities:	the	case	of	INGENS”	Computers,	Environment	and	Urban	Systems	27	265–281	



Malleson	N,	Andresen	MA,	2015,	“The	impact	of	using	social	media	data	in	crime	rate	calculations:	
Shifting	hot	spots	and	changing	spatial	patterns”	Cartography	and	Geographic	Information	
Science	42	112–121	

Mather	P	and	Openshaw	S,	1974,	“Multivariate	methods	and	geographical	data”	Journal	of	the	Royal	
Statistical	Society	Series	D	23	283–308		

Mayer-Schönberger	V,	Cukier	K,	2013,	Big	Data:	A	Revolution	That	Will	Transform	How	We	Live,	
Work	and	Think	(London,	John	Murray)	

Miller	HJ,	Jiawei	H,	(eds.)	2009,	Geographic	data	mining	and	knowledge	discovery	(CRC	Press,	New	
York).	

Needle	D,	2015,	Big	Data’s	Value	Much	Larger	than	Specific	Business	Questions.	http://data-
informed.com/big-datas-value-much-larger-than-specific-business-questions	[Accessed	February	6	
2017]	

O’Sullivan	D,	Millington	J,	Perry	G,	Wainwright	J,	2012,	“Agent-Based	Models	–	Because	They’re	
Worth	It?”	in	Heppenstall	AJ,	Crooks	AT,	Batty	M,	See	LM	(eds.)	Agent-based	Models	of	Geographical	
Systems	(New	York,	Springer)	

Olsson	G	1969	“Inference	problems	in	locational	analysis”,	in	Cox	K,	Golledge	RG	(eds.)	Behavioral	
Problems	in	Geography,	Northwestern	Studies	in	Geography	17	14–34	(Department	of	Geography,	
Northwestern	University,	Evanston,	IL)	

Openshaw	S,	1991,	“A	view	on	the	GIS	crisis	in	geography,	or,	using	GIS	to	put	Humpty-Dumpty	back	
together	again”	Environment	and	Planning	A	23	621–628			

Openshaw	S,	Abrahart	RJ,	1996,	“GeoComputation”,	presented	at	the	First	international	Conference	
on	GeoComputation:	http://www.geocomputation.org/1996/abs072.htm	[Accessed	March	24	2017]	

Openshaw	S,	Charlton	M,	Wymer	C,	Craft	A,	1987,	“A	mark	I	geographical	analysis	machine	for	the	
automated	analysis	of	point	data	sets”	International	Journal	of	Geographical	Information	Systems	1	
359–77	

Peng	R,	Matsui	E,	2015,	The	Art	of	Data	Science.	https://leanpub.com/artofdatascience	[Accessed	
March	24	2017]	

Pierson	L,	Swanstrom	R,	Anderson	C,	2015,	Data	Science	for	Dummies	(New	York,	Wiley)	

Pijanowski	BC,	Brown	DG,	Shellito	BA,	Manik	GA,	2002,	“Using	neural	networks	and	GIS	to	forecast	
land	use	changes:	a	land	transformation	model”	Computers,	Environment	and	Urban	Systems	26	
553–575	

Pradhan	B,	2013,	“A	comparative	study	on	the	predictive	ability	of	the	decision	tree,	support	vector	
machine	and	neuro-fuzzy	models	in	landslide	susceptibility	mapping	using	GIS”	Computers	&	
Geosciences	51	350–365		

Rey	SJ,	2009,	"Show	me	the	code:	spatial	analysis	and	open	source"	Journal	of	Geographical	Systems	
11	191–207	

Rogan	J,	Franklin	J,	Stow	D,	Miller	J,	Woodcock	C,	Roberts	D,	2008,	“Mapping	land-cover	
modifications	over	large	areas:	A	comparison	of	machine	learning	algorithms”	Remote	Sensing	of	
Environment	112	2272–2283	



Rogerson	P,	1999,	“The	detection	of	clusters	using	a	spatial	version	of	the	chi-square	goodness-of-fit	
statistic”	Geographical	Analysis	31	130–47	

Satish	P,	2015,	“Efficient	parallel	and	distributed	algorithms	for	GIS	polygon	overlay	processing”	(PhD	
Dissertation,	Georgia	State	University).		http://scholarworks.gsu.edu/cs_diss/98		[accessed	Jan	14th	
2017]	

Schmidhuber	J,	2015,	"Deep	learning	in	neural	networks:	An	overview"	Neural	networks	61	85–117	

Schutt	R,	O’Neil	C,	2013,	Doing	Data	Science:	Straight	Talk	from	the	Frontline	(Sebastopol,	CA,	
O’Reilly)	

Schuurman	N,	2000,	“Trouble	in	the	heartland:	GIS	and	its	critics	in	the	1990s”	Progress	in	Human	
Geography	24	569–590	

Shi	X,	Kindratenko	V,	Yang	C,	(eds.)	2013,	Modern	Accelerating	Technologies	for	GIScience	(Springer,	
New	York)	

Stojanovic	N,	Stojanovic	D,	2013,	“High-performance	computing	in	GIS:	Techniques	and	applications”	
International	Journal	of	Reasoning-based	Intelligent	Systems	5	42–48	

Torrens	PM,	2010,	“Agent-based	Modeling	and	the	Spatial	Sciences”	Geography	Compass	4	428–448	

Vandewalle	P,	Kovačević	J,	Vetterli	M,	2009,	“Reproducible	Research	in	Signal	Processing.”	IEEE	
Signal	Processing	Magazine	26	37–47	

Wiley	EO,	McNyset	KM,	Peterson	AT,	Robins	CR,	Stewart	AM,	2003,	“Niche	modeling	perspective	on	
geographic	range	predictions	in	the	marine	environment	using	a	machine-learning	algorithm”		
Oceanography	16	120–127		

Wu	N,	Silva	EA,	2010,	“Artificial	intelligence	solutions	for	urban	land	dynamics:	a	review”	CPL	
bibliography	24	246–265	

Yann	L-C,	Bengio	Y,	Hinton	J,	2015,	"Deep	learning"	Nature	521	436–444	

	


