
	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 189	

Using Keystroke Analytics to Improve Pass–Fail Classifiers 

Kevin	Casey	
Maynooth	University,	Ireland	

kevin.casey@nuim.ie	

ABSTRACT.	Learning	analytics	offers	insights	into	student	behaviour	and	the	potential	to	detect	
poor	performers	before	they	fail	exams.	If	the	activity	is	primarily	online	(for	example	computer	
programming),	 a	 wealth	 of	 low-level	 data	 can	 be	 made	 available	 that	 allows	 unprecedented	
accuracy	 in	predicting	which	students	will	pass	or	 fail.	 In	 this	paper,	we	present	a	classification	
system	 for	 early	 detection	 of	 poor	 performers	 based	 on	 student	 effort	 data,	 such	 as	 the	
complexity	of	the	programs	they	write,	and	show	how	it	can	be	improved	by	the	use	of	low-level	
keystroke	analytics.	

Keywords:	 Learning	 analytics,	 keystroke	 analytics,	 data	 mining,	 virtual	 learning	 environments,	
student	behaviour,	early	intervention	

1 INTRODUCTION 

High	failure	rates	in	undergraduate	Computer	Science	courses	are	a	common	problem	across	the	globe	
(Beaubouef	&	Mason,	2005;	Biggers,	Brauer,	&	Yilmaz,	2008).	These	poor	progression	rates,	combined	
with	 the	declining	numbers	of	 students	enrolling	 in	 information	and	communications	 technology	 (ICT)	
programmes	(Lang,	McKay,	&	Lewis,	2007;	Lister,	2008;	Slonim,	Scully,	&	McAllister,	2008)	has	led	to	a	
crisis	 for	 ICT	companies	 looking	for	graduates.	Estimates	vary	widely,	but	 in	the	US	for	example,	there	
were	between	400,000	 (Davis,	 2011)	 and	1.25	million	 (Thibodeau,	 2011)	unfilled	 IT	 jobs	 in	2011,	 at	 a	
time	when	the	US	unemployment	rate	was	running	at	9%.	

Against	this	backdrop,	learning	analytics	(Siemens	&	Long,	2011)	has	become	more	widespread	and	has	
the	potential	to	make	significant	contributions	to	understanding	learner	behaviour,	with	the	caveat	that	
high-quality,	useful	data	is	necessary.	Education	support	systems	such	as	virtual	learning	environments	
(VLEs)	and	learning	management	systems	(LMSs)	have	the	potential	to	generate	the	necessary	data.	This	
learner-produced	data	can	then	provide	valuable	insight	into	what	is	actually	happening	in	the	learning	
process,	 and	 suggest	 ways	 in	 which	 educators	 can	 make	 improvements;	 for	 example,	 identifying	
students	at	risk	of	dropping	out	or	needing	additional	support	in	the	learning	process.	

Accurate	student	performance	prediction	algorithms	can	provide	the	opportunity	to	determine	when	to	
intervene	 before	 a	 student	 reaches	 a	 level	 of	 performance	 that	 they	 cannot	 recover	 from.	 For	 these	
algorithms	 to	 be	 useful	 to	 the	 educator,	 they	must	 be	 both	 accurate	 and	 timely	 (i.e.,	 they	must	 give	
accurate	 results	 early	 in	 the	 semester).	 However,	 the	 accuracy	 of	 such	 algorithms	 is	 based	 on	 the	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 190	

availability	 of	 data	 and,	 very	 often,	 sufficient	 data	 does	 not	 exist	 until	 late	 in	 the	 semester.	 This	 is	 a	
recurring	 problem	with	 such	 algorithms	 in	 an	 early	 intervention	 scenario.	 If	 they	 are	 based	 solely	 on	
student	effort	in	the	course,	then	the	predictions	will	be	unreliable	in	the	early	stages	of	the	semester.	
To	improve	reliability	in	these	early	stages,	keystroke	analysis	was	employed,	specifically	studying	how	
students	typed	as	they	programmed.	This	approach	has	the	advantage	of	yielding	significant	amounts	of	
data	early	in	the	semester	and	has	the	potential	to	improve	the	timeliness	of	the	classifier.	

In	 this	paper,	 the	utility	of	keystroke	analytics	 for	performance	prediction	 is	evaluated.	With	accurate	
low-level	 keystroke	 timings	 for	 programmer	 activities,	 the	 following	 two	 research	 questions	 are	
addressed:	

RQ1:		 Is	 there	 a	 correlation	 between	 certain	 types	 of	 keystroke	 metric	 and	 programmer	
performance?	

RQ2:		 Can	 keystroke	 metrics	 be	 used	 to	 enhance	 the	 accuracy	 of	 pass–fail	 classifiers,	
particularly	early	in	the	semester?	

The	 rest	 of	 this	 paper	 is	 organized	 as	 follows.	 In	 Section	 2	 (Prior	Work),	 related	work	 is	 discussed.	 In	
Section	 3	 (Dataset	 and	 Educational	 Context)	 the	 VLE,	 which	 yielded	 the	 data	 upon	 which	 the	
experimental	work	is	based,	is	presented.	This	section	also	discusses	the	type	of	data	collected	and	the	
software	architecture	of	the	system.	Section	4	(Methodology)	outlines	the	pass–fail	classifier	approach	
and	how	keystroke	analytics	are	used.	Section	5	(Results)	presents	the	results	 from	analysis.	Section	6	
(Discussion)	 examines	 how	 generalizable	 the	 results	 are,	 and	 discusses	 potential	 directions	 for	 future	
work.	Section	7	(Conclusion)	summarizes	the	results	of	the	work.	

2 PRIOR WORK 

In	 the	 past	 few	 years,	 many	 universities	 have	 begun	 to	 focus	 on	 student	 retention.	 In	 computer	
programming,	much	 effort	 has	 been	 put	 into	 changing	 the	 curriculum;	 for	 example,	 introducing	 pair	
programming	(Teague	&	Roe,	2007)	and	problem-based	learning	(O’Kelly	et	al.,	2004a;	O’Kelly,	Mooney,	
Bergin,	Gaughran,	&	Ghent,	2004b).	With	the	evolution	of	learning	analytics,	it	has	become	possible	to	
explore	the	effect	of	such	curriculum	changes,	and	student	behaviour	 in	general,	at	an	unprecedented	
level	of	detail.	

Casey	 and	Gibson	 (2010)	 examined	 data	 from	Moodle	 (one	 of	 the	most	widespread	 VLEs)	 for	 fifteen	
computer	science	modules	in	three	different	courses.	The	data	stored	in	the	system	about	the	activities	
of	 both	 teachers	 and	 students	 is	 typically	who	performed	 the	 action,	what	 action,	when,	 and	where.	
They	found	some	interesting	correlations	that	link	with	high	performance,	such	as	daily	module	logins,	
the	amount	of	material	reviewed,	or	Moodle	usage	over	a	weekend.	In	addition,	they	found	extremely	
high	 student	 activity	 levels	 on	 Moodle	 for	 certain	 modules	 are	 sometimes	 a	 negative	 indicator	 for	
student	performance.	This	negative	correlation,	which	has	been	found	in	subsequent	larger	scale	studies	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 191	

(Pardos,	Bergner,	Seaton,	&	Pritchard,	2013;	Champaign	et	al.,	2014)	could	be	used	to	detect	students	
with	difficulties	ahead	of	time,	providing	an	excellent	opportunity	for	early	intervention.	

Purdue	University	designed	an	early	 intervention	solution	 for	collegiate	 faculty	entitled	Course	Signals	
(Arnold	 &	 Pistilli,	 2012).	 Course	 Signals	 is	 a	 student	 success	 system	 that	 allows	 faculty	 to	 provide	
meaningful	 feedback	to	students	based	on	predictive	models,	and	to	determine	which	students	might	
be	 at	 risk.	 The	 solution	 helps	 to	 promote	 the	 integration	 between	 the	 student	 and	 the	 institution	 in	
different	ways:	 faculty	members	send	personalized	mails	 to	students	regarding	their	performance	 in	a	
given	course	and	encourage	students	to	join	college	activities.	A	predictive	student	success	algorithm	is	
run	on	demand	by	instructors.	It	has	four	components:	performance,	effort,	prior	academic	history,	and	
student	characteristics.	

Some	 researchers	 have	 highlighted	 cognitive	 overload	 as	 a	 potential	 cause	 for	 why	 learning	
programming	 is	 so	 difficult	 (Yousoof,	 Sapiyan,	 &	 Kamaluddin,	 2007).	 Cognitive	 load	 provides	 a	
compelling	 argument	 as	 to	why	 so	many	 students	 fail	 to	master	 it.	 The	 theory,	 although	not	without	
criticism,	 also	 provides	 pointers	 on	 how	 to	 address	 these	 problems.	 It	 is	 broadly	 accepted	 that	 an	
effective	 working	 memory	 is	 critical	 to	 academic	 performance	 (Yuan,	 Steedle,	 Shavelson,	 Alonzo,	 &	
Oppezzo,	2006).	Limited	to	approximately	seven	items	at	a	time,	working	memory	is	a	short-term	area	
of	 memory	 positioned	 between	 sensory	memory	 and	 long-term	memory	 (Miller,	 1956).	 This	 area	 of	
memory	is	where	cognitive	processing	takes	place	and	is	generally	equated	with	consciousness.	

Because	 cognitive	 processes	 occur	 in	 this	 area	 of	memory,	 the	 two	 limitations,	 limited	 duration	 and	
limited	capacity,	can	be	seen	as	fundamental	limitations	of	our	cognitive	processing	ability.	The	capacity	
limitation	can	be	overcome	by	schema	formation	—	the	grouping	together	of	related	items	into	a	single	
item.	 These	 groupings	 can	 often	 be	 hierarchic	 in	 nature	with	 lower-level	 groupings	 themselves	 being	
grouped	together	to	form	higher-level	groupings.	

As	a	result	of	this	grouping	(often	called	chunking),	being	asked	to	remember	a	sequence	of	letters	such	
as	[t,q,b,f,j,o,t]	can	be	just	as	challenging	to	working	memory	as	remembering	a	sequence	of	words	(such	
as	 [the,	 quick,	 brown,	 fox,	 jumped,	 over,	 the]).	 This	 is	 despite	 the	 fact	 that	 there	 is	 much	 more	
information	in	the	second	list.	In	fact,	if	one	were	familiar	with	the	phrase,	then	remembering	the	nine-
word	 list	 [the,	quick,	brown,	 fox,	 jumped,	over,	 the,	 lazy,	dog]	would	 place	 a	 lower	 demand	 on	 one’s	
working	memory	than	remembering	seven	arbitrary	letters	of	the	alphabet.	

Given	that	chunking	ability	could	play	a	significant	role	 in	a	 learner’s	ability	to	master	programming,	 it	
would	be	advantageous	to	measure	it	from	the	data	available.	For	this,	we	turn	to	the	area	of	keystroke	
dynamics	—	the	study	of	patterns	 in	a	user’s	 typing.	Keystroke	dynamics	has	a	number	of	application	
areas,	 from	 user	 authentication	 (Bergadano,	 Gunetti,	 &	 Picardi,	 2003;	 Dowland	 &	 Furnell,	 2004)	 to	
affective	computing	 (Epp,	 Lippold,	&	Mandryk,	2011).	Of	particular	 interest	 in	 this	paper	 is	 the	use	of	
keystroke	 dynamics	 to	 estimate	 a	 learner’s	 chunk	 recall	 times	 (Thomas,	 Karahasanovic,	 &	 Kennedy,	
2005).	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 192	

Central	to	the	work	of	Thomas	et	al.	(2005)	is	the	notion	of	keystroke	digraph	latencies,	the	time	taken	
for	pairs	of	consecutive	keystrokes.	Specifically	this	is	from	the	timestamp	for	the	keydown	event	for	the	
first	keystroke	to	the	timestamp	for	the	keydown	event	for	the	second	keystroke.	By	categorizing	single	
keystrokes	into	five	different	categories	and	digraphs	into	three	different	categories	(as	seen	in	Table	1),	
the	 authors	 correlate	 digraph	 times	with	 programming	 performance.	Of	 particular	 interest	 are	 type-E	
digraphs,	which	are	far	more	likely	to	occur	at	the	beginning	of	a	keyword	and	at	the	end	of	a	keyword.	
These	times	coincide	with	when	the	learner	is	recalling	the	next	token	to	type	and	so	can	be	used	as	a	
measure	for	the	learner’s	chunk	recall	ability.	

Table	1:	Keystroke	digraph	types	
Keystroke	Types	

A	 Alphabetic	characters	
N	 Numeric	characters	
C	 Control	keys	(Ctrl,	ALT...)	
B	 Browsing	keys	(left,	HOME,	PgUp...)	
O	 All	other	keys	

Digraph	Types	
A,N,C,B,O	 Both	keys	in	digraph	are	same	type	

H	 One	keystroke	type	is	type	B	
E	 Both	keystrokes	types	are	different	&	neither	is	type	B		

	
With	reference	to	Table	1,	consider	the	student	typing	the	following	line	of	code:	MOV AL,BL.	In	Figure	
1,	the	digraphs	that	arise	can	be	seen.	

	
Figure	1.	Digraph	construction.	

In	 the	 example,	 there	 are	 three	 tokens	 (chunks).	 The	 first	 type-E	 digraph	 is	 composed	 of	 whatever	
character	precedes	the	first	“M”	on	the	line	(usually	a	newline	character,	marked	by	1	in	the	example)	
and	the	“M”	itself.	The	next	type-E	digraph	is	composed	of	the	“V”	and	the	subsequent	space	character.	
There	 follow	 four	more	 type-E	 digraphs,	 the	 last	 being	 composed	 of	 the	 letter	 L	 and	 the	 subsequent	
character	(usually	a	newline	—	marked	by	2	in	the	example).	In	total,	for	the	three	tokens	on	the	line	of	
code,	there	are	six	type-E	digraphs,	two	for	each	token.	

Of	 all	 of	 the	 digraphs,	 type-E	 digraphs	 are	 of	 particular	 interest,	 because	 they	 measure	 the	 latency	
between	 keystrokes	 at	 the	 beginning	 and	 end	 of	 a	 token	 (or	 keyword).	 Other	 digraphs	 are	 less	
interesting	 from	 a	 cognitive	 load	 point	 of	 view.	 For	 example	 type-A	 digraphs,	 measure	 the	 latency	
between	keystrokes	in	the	middle	of	a	keyword	(essentially	just	giving	a	measure	of	typing	speed),	while	
type-H	digraphs	are	typically	associated	with	editing.	 It	 is	only	type-E	digraphs	that	measure	keystroke	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 193	

latency	 at	 the	 beginning	 and	 end	 of	 a	 token	 as	 the	 student	 types,	 and	 thus	 yields	 some	 information	
about	how	long	it	takes	the	student	to	decide	upon	or	recall	the	next	token.	

Thomas	et	al.	(2005)	present	a	solid	theoretical	foundation	for	linking	the	type-E	digraph	measurements	
with	 cognitive	performance.	 In	 two	 separate	 studies,	one	 in	 Java,	 the	other	 in	Ada,	 they	examine	 the	
correlation	 between	 the	 measured	 type-E	 digraph	 times	 and	 the	 student	 performance	 in	 related	
examinations.	For	this,	they	report	Spearman	correlations	of	–0.516	and	–0.276	respectively.	There	were	
other	 differences	 in	 the	 studies	 to	 explain	 the	 results,	 such	 as	 programmer	 skill	 level	 and	 general	
experimental	conditions.	

A	smaller	scale	study	on	predicting	student	performance	from	keystroke	metrics	was	performed	by	Liu	
and	Xu	(2011).	The	study	considered	only	keystroke	frequency	and	not	the	type-E	digraphs	mentioned	
previously.	The	authors’	results	were	inconclusive.	Indeed,	they	note	that	while	many	better	coders	type	
fast,	some	poor	coders	also	exhibited	a	rapid	keystroke	frequency.	

Longi	et	al.	(2015)	also	use	keystroke	metrics	so	solve	a	slightly	different	problem,	that	of	identifying	a	
programmer	 from	 their	 keystroke	 timings.	 The	 authors	 used	 a	 number	 of	 approaches,	with	 the	most	
complex	 being	 to	 build	 a	 profile	 of	 the	 digraph	 timings	 for	 each	 programmer.	 A	 nearest	 neighbour	
classifier	was	 then	used	 to	 identify	 an	 unknown	programmer	 by	matching	 the	 digraph	 timings	 to	 the	
database	 of	 digraphs	 of	 known	 programmers.	 One	 of	 the	 more	 relevant	 findings	 is	 that,	 while	 a	
significant	 number	 of	 keystrokes	 are	 required	 for	 accurate	 classification,	 the	 typical	 student	 can	
accumulate	 the	 requisite	 number	 of	 keystrokes	 over	 just	 a	 couple	 of	weeks	 of	 programming	 activity.	
Although	 the	 focus	 of	 Longi	 et	 al.’s	 paper	 is	 on	 programmer	 identification	 and	 not	 performance	
prediction,	 this	 finding	 hints	 that	 keystroke	 metrics	 could	 be	 a	 useful	 early	 indicator	 in	 a	 semester,	
yielding	significant	data	after	just	a	couple	of	weeks.	

Other	related	research	examines	the	role	of	writing	speed	in	classification.	Ochoa	et	al.	(2013)	report	on	
successfully	 using	 handwriting	 speed	 (using	 a	 digital	 pen)	 to	 distinguish	 between	 experts	 and	 non-
experts	 in	 a	 collaborative	 environment	 solving	 mathematical	 problems.	 This	 work	 underlines	 the	
usefulness	of	such	low-level	features	in	solving	classification	problems.	

An	interesting	project,	similar	 in	many	ways	to	the	VLE	discussed	in	this	paper,	 is	the	Blackbox	project	
(Brown,	 Kölling,	McCall,	 &	 Utting,	 2014)	 where	 users	 of	 the	 popular	 BlueJ	 IDE	 can	 opt	 to	 contribute	
analytics	on	their	programming.	Brown	et	al.	(2014)	report	that	over	one	hundred	thousand	users	have	
signed	up.	While	 the	project	has	 the	potential	 to	yield	data	on	an	unprecedented	scale,	 the	scale	has	
forced	the	authors	into	the	decision	not	to	record	low-level	events	such	as	mouse	clicks	and	keystrokes	
because	they	would	be	too	voluminous.	

Romero-Zaldivar,	Pardo,	Burgos,	and	Kloos	(2012)	report	on	a	successful	trial	examining	the	viability	of	
virtual	 machines	 within	 a	 learning	 analytics	 context.	 The	 authors	 describe	 how	 they	 equipped	 each	
student	in	a	second-year	undergraduate	engineering	course	with	an	instrumented	virtual	machine.	This	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 194	

virtual	machine	recorded	data	as	 the	students	used	 it,	and	submitted	 it	 to	a	central	 server.	While	 the	
analytics	are	also	high-level,	the	authors	do	note	that	useful	actionable	 information	was	obtained	that	
could	 be	 fed	 back	 into	 the	 teaching	 process.	 Specifically,	 they	 were	 able	 to	 observe	 that	 hardly	 any	
students	used	a	particular	tool	(the	debugger)	during	the	course.	

Berland,	 Martin,	 Benton,	 Petrick	 Smith,	 and	 Davis	 (2013)	 discuss	 the	 importance	 of	 tinkering	 in	 the	
learning	process.	To	measure	it,	they	capture	the	various	states	of	a	program	as	a	student	edits	it.	The	
authors	 then	 analyze	 how	 students	 move	 though	 the	 state	 space	 of	 potential	 programs.	While	 they	
found	 that	 different	 students	 took	 diverse	 paths,	 they	 were	 able	 to	 identify	 three	 phases	 to	 their	
learning.	The	result	of	their	work	is	the	EXTIRE	framework,	which	characterizes	the	transitions	that	take	
place	 during	 tinkering.	 Other	 research	 concentrates	 on	 measuring	 the	 efficacy	 of	 tutoring	 software	
determining	how	robust	learning	is	in	an	online	tutor	(Baker,	Gowda,	&	Corbett,	2010,	2011),	knowledge	
that	can	then	be	fed	back	into	the	instructional	design	process.	

Ahadi,	 Lister,	 Haapala,	 and	 Vihavainen	 (2015)	 outline	 a	 promising	 classifier	 (based	 on	 decision	 trees)	
approach	to	predicting	low-performing	and	high-performing	programming	students.	Based	on	a	number	
of	 features,	 the	most	 effective	 being	 how	 the	 students	 performed	 on	 a	 subset	 of	 Java	 programming	
exercises	 they	were	 given	 during	 the	 course.	 Using	 this	 approach,	 the	 authors	 report	 an	 accuracy	 of	
between	70%	and	80%.	

The	sheer	volume	of	data	generated	by	learning	analytics	can	be	daunting.	Scheffel	et	al.	(2012)	describe	
a	method	of	data	distillation,	namely	the	extraction	of	key	actions	and	key	action	sequences	in	order	to	
leave	behind	meaningful	data.	The	authors	outline	how	 the	 contextualized	attention	metadata	 (CAM)	
from	a	substantial	university	course	in	C	programming	is	collected	and	then	distilled	using	TF-IDF.	

One	notable	 feature	of	 the	VLE	system	presented	 in	 this	paper	 is	 the	potential	 for	 real-time	analytics.	
Edwards	 (2013)	 notes	 that	 many	 systems	 such	 as	 GRUMPS	 as	 used	 by	 Thomas	 et	 al.	 (2005)	 do	 not	
operate	in	real	time.	Our	VLE	presented	in	Section	3,	however,	has	the	potential	to	operate	in	real-time	
with	minimal	work	 and,	 as	 such,	 has	 the	 potential	 to	 be	 a	 useful	 tool	 in	 the	 context	 of	 a	 laboratory	
session,	where	a	tutor	could	intervene	if	a	student	was	deemed	to	be	struggling.	

Finally,	as	the	keystroke	metrics	discussed	 in	this	paper	may	allow	the	detection	of	cognitive	overload	
for	some	students,	it	is	worth	considering	how	best	to	intervene	or	adapt	teaching	to	cognitive	overload.	
Yousoof	et	al.	(2007)	provide	some	guidance,	arguing	for	the	use	of	visualizations,	in	particular	Concept	
Maps,	to	assist	students	suffering	from	cognitive	overload.	Garner	(2002)	suggests	an	approach	of	giving	
partially	 complete	 programs	 to	 students	 to	 reduce	 cognitive	 load.	 Caspersen	 and	 Bennedsen	 (2007)	
outline	 a	 cognitive	 load	 theory	 based	 foundation	 for	 an	 introductory	 programming	 course.	 It	 is	 also	
worth	looking	beyond	research	that	seeks	to	address	cognitive	load.	Other	areas	of	research,	such	as	the	
provision	 of	 enhanced	 error	 messages	 (Becker,	 2015;	 Becker	 et	 al.,	 2016),	 do	 not	 directly	 deal	 with	
cognitive	overload,	but	do	have	the	potential	to	reduce	the	cognitive	strain	on	the	novice	programmer.	
Additionally,	 a	 hints-based	 system	 can	 be	 employed	 to	 assist	 students.	 This	 has	 the	 added	 benefit	 of	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 195	

providing	further	information	on	student	behaviour	as	the	students	use	these	hints	(Feng,	Heffernan,	&	
Koedinger,	2006;	Beal,	Walles,	Arroyo,	&	Woolf,	2007).	

3 DATASET AND EDUCATIONAL CONTEXT 

From	 2012	 to	 2015	 at	 Dublin	 City	 University,	 a	 new	 specialized	 platform	 for	 module	 delivery	 was	
developed	and	trialed	 for	second	year	undergraduate	computer	science	students	on	one	of	 their	core	
programming	 modules	 (Computer	 Architecture	 and	 Assembly	 Language	 Programming).	 This	 platform	
handled	 both	 module	 content	 and	 general	 learning	 activities	 within	 the	 module,	 all	 through	 a	 web-
browser	(Figure	2).	While	content	delivery	is	standard	practice,	easily	handled	by	mainstream	VLEs	such	
as	 Moodle,	 the	 customized	 platform	 allowed	 for	 far	 more	 fine-grained	 analysis	 of	 how	 students	
consume	 material;	 for	 example,	 being	 able	 to	 determine	 how	 much	 time	 students	 are	 spending	 on	
individual	lecture	slides.	

The	 second	 aspect	 of	 the	 platform	 —	 hosting	 general	 learning	 activities	 —	 is	 possible	 because	 the	
module	is	 largely	about	programming.	We	have	been	able	to	move	the	tools	that	typically	would	have	
been	used	on	the	desktop	into	the	browser	 itself,	allowing	students	to	program	wherever	they	have	a	
web-browser,	with	 no	 need	 to	 install	 additional	 software.	 As	 students	 interact	with	 the	 system,	 fine-
grained	data	on	their	interactions	is	recorded	centrally	with	a	view	to	improving	the	learning	experience.	
The	fact	that	so	much	day-to-day	course	activity	is	taking	place	on	an	instrumented	platform	allows	for	
unprecedented	opportunities	in	learning	analytics	and	personalized	content	delivery.	

Of	 course,	 because	 relevant	 student	 activity	 outside	 the	 platform	 cannot	 be	measured,	 the	 question	
naturally	 arises	 as	 to	 how	much	 student	 effort	 in	 the	module	 is	 being	 captured	by	 the	platform.	 It	 is	
entirely	plausible	that	students	are,	for	example,	reading	lecture	slides	from	a	printout,	an	activity	that	
we	cannot	measure.	However,	the	slides	that	students	view	are	HTML5-based	and	are	not	particularly	
easy	to	print.	This	combined	with	the	data	we	have	suggests	that	most	students	browse	slides	online.	
When	it	comes	to	measure	coding	effort,	the	only	place	students	can	compile	and	run	their	programs	is	
within	 the	platform.	There	 is	no	alternative.	Thus,	we	are	more	confident	 that	 the	entirety	of	student	
effort	in	this	regard	is	being	captured.	

3.1 Implementation Details 

The	 VLE	 in	 question	 is	 implemented	 as	 a	 client-side	 Typescript/Javascript	 program.	 Students	
authenticate	 with	 the	 system	 using	 their	 campus	 login.	 The	 client-side	 application	 interacts	 with	 a	
CoreOS	 hosted	 server1	 to	 retrieve	 learning	materials	 such	 as	 course	 notes	 and	 weekly	 lab	 exercises.	
Usage	 data	 is	 collected	 by	 the	 Javascript	 client	 in	 JSON	 format,	 periodically	 compressed	 using	 a	
Javascript	zlib	library	and	posted	to	the	server	via	a	RESTful	interface.	To	reduce	load	on	the	server,	the	
data	remains	compressed	until	analysis	is	required.	Keystroke	data	is	only	ever	recorded	for	keystrokes	
inside	the	code	editor	window	and	is	captured	using	Javascript	keyboard	events	(onKeyUp,	onKeyDown).	
																																																													
1	Using	Docker	containers	running	Node.js.	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 196	

This	keystroke	data	is	aggregated	into	blocks,	each	block	beginning	with	a	Unix	timestamp	and	for	each	
keystroke	event,	the	key	and	the	offset	from	that	time	is	recorded.	

The	 application	 simulates	 an	 8-bit	 x86	microprocessor	 with	 a	 restricted	 amount	 of	 memory.	 Loosely	
based	 on	 Baur’s	 (2006)	 Microprocessor	 Simulator,	 a	 Microsoft	 Windows	 application,	 the	 simulator	
allows	students	to	create	small	assembly	programs,	compile	them,	and	execute	them.	As	programs	are	
executed,	students	can	see	a	visual	representation	of	CPU	registers,	memory,	and	a	host	of	connected	
devices.	Students	can	either	 run	programs	 freely	 (adjusting	 their	speed	via	slider)	or	can	step	through	
the	programs	instruction	by	instruction.	Being	browser-based,	the	application	can	be	run	in	any	OS	with	
a	reasonable	web	browser,	though	only	Chromium	browser	was	supported	actively.	Students	could	save	
their	work	and	sessions	on	any	computer,	and	resume	sessions	when	they	logged	in	elsewhere.	

	

	
Figure	2:	VLE	for	Assembly	Language	Programming.	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 197	

Figure	2	shows	some	of	the	elements	of	the	platform	in	action.	The	menu	system	can	be	seen	across	the	
top	of	 the	web	page.	 Students	 can	access	different	 features	of	 the	 simulator,	 view	 course	notes,	 and	
submit	 work	 for	 grading	 from	 this	 menu.	 Shown	 on	 the	 screen,	 there	 are	 a	 few	 commonly	 used	
windows.	On	the	top-left,	a	register	status	window	can	be	seen.	In	this	window,	the	current	state	of	the	
various	registers	inside	the	virtual	CPU	can	be	seen.	To	the	right	of	this	is	a	configuration	window	where	
the	speed	of	the	CPU	and	the	frequency	of	interrupts	can	be	set.	In	the	middle	of	the	screen,	the	code	
editor	window	is	shown.	This	is	the	window	where	students	type	their	programs.	At	the	bottom-left,	a	
memory	window	shows	the	current	state	of	memory	in	the	virtual	machine.	Finally,	on	the	bottom-right,	
a	two-digit	seven-segment	display	is	shown.	This	is	a	good	example	of	a	virtual	device	that	students	can	
write	programs	to	control.	

Learning	materials	were	integrated	into	the	platform.	A	series	of	20	lessons,	 identical	to	lecture	slides,	
were	 made	 available	 in	 the	 platform.	 Students	 were	 encouraged	 to	 break	 away	 from	 the	 learning	
materials	to	try	concepts	out	in	the	simulator,	hence	the	tight	coupling	between	the	simulator	and	the	
learning	 material.	 Additionally,	 8	 lab	 exercises	 were	 also	 available.	 The	 labs	 and	 lessons	 were	
represented	as	HTML5	slides	using	the	popular	Reveal.js	library	(Ferreira,	2013).	Although	it	was	decided	
against	it	at	the	time,	due	to	the	experimental	nature	of	the	software,	the	learning	materials	could	have	
been	decoupled	from	the	simulator	and	analytics	collected	on	the	server	side	via	a	Tin-Can	API	(Kelly	&	
Thorn,	2013).	

3.2 Module Structure and Grading 

The	 module	 in	 question,	 Computer	 Architecture	 and	 Assembly	 Language,	 runs	 over	 a	 twelve-week	
semester.	 There	 are	 36	 hours	 of	 lectures	 with	 24	 hours	 of	 lab	 time.	 The	 learning	 outcomes	 are	 as	
follows:	

LO1.	Understand	the	operation	of	CPU	registers	
LO2.	Describe	how	data	is	written	to	and	read	from	memory	
LO3.	Calculate	the	numerical	limits	of	memory	and	registers	
LO4.	Verify	ALU	operations	by	understanding	the	importance	of	the	flags	
LO5.	Write	8086	Assembly	Procedures	
LO6.	Design,	Code,	and	Test	Interrupt	Driven	8086	Assembly	programs	

	
The	module	 is	delivered	to	2nd	year	undergraduate	computer	science	students	 in	 the	 first	semester	of	
the	academic	year.	Continuous	assessment	accounts	for	40%	of	the	final	grade	while	a	final	end	of	term	
exam	accounts	for	60%	of	the	grade.	The	continuous	component	is	broken	up	into	two	graded	lab	exams	
that	take	place	on	the	platform.	The	final	end	of	term	exam	is	a	written	exam	and	covers	a	mixture	of	
theory	and	practical	coding.	It	is	worth	highlighting	that	when	performance	prediction	is	discussed	in	the	
context	of	this	paper,	it	is	the	student	performance	in	the	final	written	exam	and	not	the	overall	grade	
that	 is	 being	 predicted.	 This	 has	 the	 effect	 of	 eliminating	 the	 lab	 exams	 from	 the	 prediction	 and	
strengthens	 the	 results	 presented,	 in	 that	 the	 activity	 on	 the	 VLE	 is	 being	 used	 to	 predict	 the	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 198	

performance	in	an	end-of-year	written	exam	(and	not	a	combination	of	a	written	exam	and	lab	exams	
taken	within	the	VLE).	

3.3 Dataset 

At	the	beginning	of	each	semester	that	the	module	takes	place,	students	are	introduced	to	the	platform.	
It	is	explained	that	all	data	can	be	removed	at	the	end	of	semester	on	request	(an	opt-out	policy).	After	
a	 three-month	 waiting	 period	 following	 the	 end	 of	 the	 semester	 to	 allow	 for	 such	 requests,	 any	
remaining	data	is	anonymized.	For	the	2013/2014	semester’s	data	upon	which	this	work	is	based,	data	
from	111	students	remained	after	opt-outs	(in	this	case	none).	

A	substantial	array	of	data	was	collected.	Due	to	the	volume	of	data,	much	of	it	was	aggregated	on	the	
client-side	and	periodically	sent	to	the	server.	Some	of	the	data	collected	included:	time	spent	on	each	
slide	of	 the	 learning	materials,	 IP	address,	 keystroke	 timings,	 successful	 compiles	 (recording	a	copy	of	
the	source	code	for	each),	failed	compiles	(again	recording	the	source	code)	and	GUI	interactions	such	
as	menu	clicks	and	window	opening/closing.	

To	get	a	feel	for	the	volume	of	data	and	the	general	pattern	of	activity	on	the	platform,	Figure	3	shows	
an	 activity	 diagram.	 This	 is	 the	 number	 of	 transactions	 observed	 from	 the	 students	 throughout	 the	
semester.	 Each	 line	 in	 the	 activity	 graph	 represents	 a	 single	 student.	 The	 data	 has	 been	 divided	 into	
discrete	periods,	representing	the	 lab	sessions	and	the	time	between	those	sessions.	This	concept	has	
been	 added	 to	 the	 dimensions	 as	 activity	 during	 labs	 and	 outside	 labs.	 The	 total	 number	 of	 events	
extracted	 from	 the	 raw	 data	 for	 all	 students	 is	 9,142,065,	 which	 together	 form	 a	 substantial	 digital	
footprint	that	represents	student	interaction	with	the	system.	

	
Figure	3:	Student	activity	on	a	weekly	basis.	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 199	

As	 can	 be	 seen	 from	 Figure	 3,	 the	 extent	 to	 which	 students	 on	 the	 module	 are	 assessment-driven	
becomes	clear.	There	are	three	significant	spikes	in	activity.	These	correspond	to	just	before	the	first	lab	
exam,	the	second	lab	exam,	and	the	final	written	exam.	For	each	of	the	two	lab	exams,	a	smaller	spike	in	
activity	can	be	seen	just	to	the	right.	This	corresponds	to	the	activity	during	the	 lab	exam	itself.	While	
the	observation	of	assessment-driven	behaviour	has	previously	been	observed	(Breslow	et	al.,	2013),	it	
is	 illuminating	 to	 see	 analytical	 data	 supporting	 the	 observation	 and	 highlighting	 the	 extent	 of	 the	
phenomenon	for	this	particular	module.	

4 METHODOLOGY 

4.1 Pass–Fail Classifier 

We	 consider	 the	 prediction	 of	 a	 student’s	 performance	 in	 this	 course’s	 final	 written	 examination	
(pass/fail)	 given	 a	 number	 of	 important	 factors.	 The	 features	 or	 dimensions	 used	 for	 the	 prediction	
algorithm	 are	 simple	 features	 gathered	 from	 processing	 student	 interaction	 with	 the	 platform.	 The	
output	 of	 this	 prediction	 algorithm	 is	 whether	 a	 student	 fails	 or	 passes	 a	 course.	 The	 input	 to	 the	
prediction	 algorithm	 represents	 one	 or	 more	 observations	 regarding	 the	 student’s	 activity	 on	 the	
platform	 such	 as	 the	 number	 of	 successful	 and	 failed	 compilations,	 on-campus	 vs.	 off-campus	
connections,	and	time	spent	on	the	platform.	The	features	used	are	presented	in	Table	2.	

Table	2:	Features	used	for	the	basic	classifier	
 

1. Number	of	successful	compilations	
2. Successful	compilations	average	

complexity	
3. Number	of	failed	compilations	
4. Failed	compilations	average	

complexity	
5. Ratio	between	on-campus	and	off-

campus	connections	
6. Number	of	connections	
7. Time	spent	on	the	platform	
8. Time	spent	on	slides	within	the	

platform	
9. Time	spent	typing	in	platform	
10. Time	idle	in	platform	
11. Slides	coverage	
12. Number	of	slides	visited	
13. Number	of	slides	opened	
14. Number	of	transactions	(activity)	
15. Number	of	transactions	during	labs	
16. Number	of	transactions	outside	labs	
17. Number	of	transactions	in	the	

platform	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 200	

The	complexity	of	the	programs	compiled	was	also	measured	and	added	to	the	dimensions	vector.	This	
metric	 has	 been	 calculated	 by	 removing	 the	 comments	 from	 each	 program	 compiled,	 running	 a	
compression	algorithm	and	measuring	the	length	of	the	compression	for	each	program.	This	technique,	
examined	in	detail	by	Jbara	and	Feitelson	(2014)	is	a	useful	proxy	for	code	complexity.	

The	 data	 listed	 in	 Table	 2	 contain	 attributes	 with	 a	 mixture	 of	 scales	 for	 different	 quantities.	 The	
machine	 learning	methods	used	either	expect	or	are	more	effective	 if	 the	data	attributes	all	have	 the	
same	scale.	The	two	scaling	methods	applied	on	the	data	were	normalization	and	standardization.	

In	 addition,	 the	 number	 of	 features	 or	 dimensions	 was	 reduced	 in	 order	 to	 verify	 whether	 feature	
reduction	 improves	 the	 prediction	 accuracy.	 Feature	 engineering,	 the	 judicious	 selection	 and	 pre-
processing	of	such	features,	 is	one	of	the	most	challenging	and	 important	phases	for	such	data-driven	
algorithms	 e.g.,	 IBM	Watson,	 Google	 Knowledge	 Graph	 (Anderson	 et	 al.,	 2013).	 To	 achieve	 this,	 the	
SelectKBest	 method	 from	 Scikit-learn	 was	 used	 in	 conjunction	 with	 the	 Chi-squared	 statistical	 test	
(Kramer,	2016,	p.	49).	

4.2 Classifier Options 

Many	different	classifiers	could	be	used	for	the	prediction	algorithm.	Often	the	choice	of	which	classifier	
to	 use	 is	 not	 clear,	 but	 there	 is	 a	 general	 paradigm	 for	 picking	 the	 appropriate	 classifier	 to	 obtain	
universal	performance	guarantees.	Specifically,	it	is	desired	to	select	a	function	from	the	set	of	classifiers	
that	 has	 a	 small	 error	 probability.	 Effectively,	 the	 approach	 is	 to	 use	 training	 data	 to	 pick	 one	 of	 the	
functions	from	the	set	to	be	used	as	a	classifier.	Using	this	training	data,	the	classifier	with	the	minimum	
empirical	error	probability	is	selected.	

The	bag	of	classifiers	used	is	composed	of	linear	regression,	a	logistic	regression,	Gaussian	naive	Bayes,	
multinomial	 naive	 Bayes,	 Bernoulli	 naive	 Bayes,	 support	 vector	 machine	 with	 radial	 basis	 function	
kernel,	K-neighbours	(with	K=12),	and	decision	tree	classifiers.	To	compare	and	evaluate	different	pre-
processing	techniques	and	models,	a	cross-validation	approach	was	employed.	For	this	particular	study,	
a	variant	called	“k-fold	cross-validation”	(Refaeilzadeh,	Tang,	&	Liu,	2009)	was	used	in	order	to	compare	
the	classifiers	in	the	set.	

The	 classifiers	 were	 all	 supplied	 by	 the	 Scikit-learn	 library	 embedded	 in	 a	 Jupyter/IPython	 notebook	
(Ragan-Kelley	 et	 al.,	 2014).	 Logged	 data	 was	 decompressed	 and	 preprocessed	 using	 a	 custom	 set	 of	
Python	 scripts	 and	 stored	 in	 a	 JSON	 format	 to	 be	 loaded	 later	 by	 the	 machine	 learning	 component	
written	using	Scikit-learn.	As	the	decision	tree	classifier	in	Scikit-learn	is	the	best	performing	one	in	later	
sections,	it	is	worth	noting	that	the	Scikit	implementation	is	an	optimized	version	of	CART	(classification	
and	regression	trees;	Breiman,	Friedman,	Olshen,	&	Stone,	1984),	which	is	quite	similar	to	C4.5	(Quinlan,	
1996).	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 201	

4.3 Utilizing Keystroke Data 

To	 examine	 the	 viability	 of	 using	 keystroke	metrics	 to	 improve	 the	 performance	 classifier,	 the	 time-
stamped	 keypress	 events	were	 examined	 and	 the	 various	 digraph	 timings	 derived	 from	 them.	 Type-E	
digraphs	discussed	in	Section	2	were	the	main	focus	here.	During	student	activity	on	the	platform,	the	
keystroke	 timings	 were	 recorded	 within	 the	 code-editor	 window	 and	 stored	 on	 the	 server	 in	 a	
compressed	 form.	Using	 a	 simple	 Python	 script,	 the	 average	 Type-E	 digraphs	 timing	 for	 each	 student	
was	computed	and	then	normalized	within	the	test	group.	This	was	then	used	as	the	keystroke	feature	
for	the	classification	algorithm,	updating	with	the	new	data	for	each	week	the	classifier	was	run.	

One	of	 the	 issues	 faced	with	these	digraphs	was	that	of	outliers.	For	example,	during	coding	sessions,	
students	are	encouraged	to	interrupt	their	typing	to	sketch	out	ideas	or	to	consult	notes.	Similar	to	the	
approach	taken	by	Dowland	and	Furnell	(2004)	and	Longi	et	al.	(2015),	a	data	pre-processing	stage	was	
applied	to	address	these	outliers.	An	upper	bound	of	2	seconds	on	the	digraphs	was	applied,	eliminating	
all	digraphs	with	latencies	greater	than	this.	Once	this	threshold	had	been	applied,	a	final	step	was	taken	
of	 eliminating	 the	 bottom	 and	 top	 10%	 outliers.	 To	 address	 the	 first	 research	 question,	 these	 type-E	
digraphs	were	considered	in	 isolation	first,	ensuring	a	correlation	with	end-of-year	exam	performance.	
Then,	these	digraphs	were	used	as	additional	feature	in	the	pass–fail	classifier	to	determine	if	they	could	
enhance	the	accuracy	of	the	classifier,	in	particular	early	in	the	semester.	

5 RESULTS 

5.1 Basic pass–fail classifier 

The	 receiver	 operating	 characteristic	 (ROC),	 or	 ROC	 curve,	 is	 a	 graphical	 plot	 that	 illustrates	 the	
performance	of	a	binary	classifier	system	as	its	discrimination	threshold	is	varied.	In	addition,	leveraging	
a	 ROC	 area	 under	 the	 curve	 (ROC	 AUC)	 scoring	 function	 shows	 a	 reliable	 prediction	 accuracy	 score	
clearly	 greater	 than	 69%	 for	 the	 decision	 tree	 classifier,	 doing	 an	 arithmetic	mean	 for	multiple	 cross-
validation	folders.	Figure	4	shows	this	classifier	in	action	as	the	semester	progresses.	
	

	

	

	

	
	
	
	
	
	
	
	

	
	

Figure	4:	Prediction	accuracy	on	a	weekly	basis.	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 202	

Of	 note	 in	 Figure	 4	 is	 the	 way	 in	 which,	 as	 the	 semester	 progresses,	 the	 accuracy	 of	 the	 classifier	
improves.	There	are	two	related	issues	here.	The	first	is	that,	naturally,	the	classifier	improves	as	more	
data	 in	 the	 form	 of	 analytics	 from	 student	 activities	 arrives.	 The	 second	 is	 that	 student	 activity	 is	
generally	 back-loaded,	 in	 that	 they	 reserve	 most	 of	 their	 activity	 until	 just	 before	 the	 exam,	 so	 a	
significant	amount	of	data	is	generated	very	late	in	the	semester.	This	closely	matches	what	is	observed	
in	the	activity	graph	in	Figure	3.	

5.2 Linking Keystroke Metrics to Student Performance 

In	order	to	answer	RQ1,	it	was	necessary	to	correlate	digraph	measurements	with	student	performance	
in	the	written	exam.	These	digraph	latency	measurements	are	all	based	on	the	same	set	of	111	students	
over	a	17-week	period.	There	is	a	written	examination	at	the	end	of	this	period	and	after	this	exam,	the	
correlation	 between	 the	 type-E	 digraphs	 observed	 and	 the	 student	 examination	 performance	 was	
examined.	 Roughly	 in	 line	 with	 the	 observations	 of	 Thomas	 et	 al.	 (2005),	 peak	 correlation	 of	 –0.412	
(with	a	p-value	of	6.84x10-6)	was	observed.	

Table	3:	Correlation	with	exam	performance	
Week	 Correlation	 P-value	
0	 –0.244	 p	<<	0.05		
1	 –0.186	 5.09x10-2	
2	 –0.245	 p	<<	0.05	
3	 –0.321	 p	<<	0.05	
4	 –0.345	 p	<<	0.05	
5	 –0.346	 p	<<	0.05	
6	 –0.395	 p	<<	0.05	
7	 –0.378	 p	<<	0.05	
8	 –0.376	 p	<<	0.05	
9	 –0.381	 p	<<	0.05	
10	 –0.411	 p	<<	0.05	
11	 –0.412	 p	<<	0.05	
12	 –0.412	 p	<<	0.05	
13	 –0.411	 p	<<	0.05	
14	 –0.400	 p	<<	0.05	
15	 –0.401	 p	<<	0.05	
16	 –0.400	 p	<<	0.05	

	
In	Table	3,	the	correlation	between	the	digraph	measurements	observed	up	to	a	particular	week	and	the	
students’	 final	 written	 examination	 is	 presented.	 Traditionally,	 students	 are	 slow	 to	 sign	 up	 to	 the	
platform	and	this	is	evident	from	the	table,	with	low	correlation	data	in	the	first	few	weeks	(and	higher	
p-values).	Consulting	the	logs,	 it	became	evident	that	it	was	not	until	the	end	of	week	6	when	the	last	
student	had	started	to	use	the	platform.	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 203	

What	is	particularly	interesting	about	the	correlation	is	that,	although	weak	to	moderate,	it	is	relatively	
stable	 from	 week	 6	 until	 week	 16.	 This	 is	 precisely	 the	 type	 of	 dimension	 required	 to	 improve	 the	
classifier.	While	 the	students	 in	 this	 course	generally	expend	most	of	 their	effort	 in	 the	 last	 couple	of	
weeks,	there	is	more	than	enough	activity	on	the	system	early	on	to	establish	their	keystroke	patterns	
that,	in	turn,	have	some	predictive	power	as	to	how	they	will	perform	in	the	final	written	examination.	

5.3 Extended pass–fail classifier 

To	 answer	 RQ2	 and	 evaluate	 the	 potential	 improvement	 that	 keystroke	 analytics	 can	 provide	 to	 the	
accuracy	 of	 the	 classifier,	 the	 basic	 classifier	 presented	 above	was	 re-evaluated,	 this	 time	 adding	 the	
type-E	 digraph	measurements	 to	 the	 pre-existing	 dimensions.	 For	 each	week,	 the	 cumulative	 digraph	
measurements	 up	 to	 that	 point	 were	 used	 as	 the	 digraph	 dimension.	 The	 new	 results	 are	 shown	 in	
Figure	5.	

It	is	clear	that	the	addition	of	the	type-E	digraph	latencies	to	the	classifier	improves	prediction	accuracy.	
Only	in	weeks	0,	3,	and	5	does	the	original	classifier	do	marginally	better.	As	discussed	earlier,	this	is	not	
surprising	since	the	full	set	of	digraph	 latencies	 isn’t	known	until	 the	end	of	week	6.	Overall,	 the	peak	
accuracy	of	the	new	classifier	is	0.707	vs	0.693	for	the	old	classifier.	

	

	

Figure	5:	Improved	prediction	accuracy.	

Although	 the	 improvement	 in	 the	accuracy	of	 the	enhanced	classifier	 is	 relatively	 small	 (0.014)	at	 the	
end	of	the	module,	it	does	make	a	more	significant	difference	overall	early	in	the	semester.	The	average	
week-by-week	improvement	through	the	entire	semester	is	0.028.	The	improvement	in	the	classifier	in	
earlier	weeks	 is	 important	 to	 factor	 in,	 as	 reliable	 classification	 of	 non-performing	 students	 needs	 to	
take	place	as	early	as	possible	to	allow	enough	time	for	interventions	to	be	put	in	place.	Figure	6	shows	
the	confusion	matrix	for	both	classifiers	at	the	end	of	the	semester.	The	fractional	values	in	the	matrix	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 204	

arise	due	to	the	k-fold	cross	validation	approach	(the	matrices	shown	represent	an	average	of	a	number	
of	matrices).	As	per	Figure	5,	the	extended	classifier	shows	an	improvement	over	the	basic	classifier.	To	
estimate	the	overall	importance	of	the	keystroke	feature,	the	Gini	Importance	(Breiman	&	Cutler,	2008)	
of	the	features	was	computed.	The	most	important	features	are	shown	in	Table	4	where	it	can	be	seen	
that	the	average	complexity	of	programs	that	the	student	writes	remains	the	most	important	feature.	

Table	4:	Most	important	features	
Gini	Importance	 Feature	Description	

0.288	 Average	complexity	of	programs	compiled	
0.165	 Number	of	successful	compilations	
0.143	 Activity	outside	lab	sessions	
0.079	 Ratio	of	on-campus	to	off-campus	sessions	
0.075	 Time	spent	viewing	slides	
0.069	 Type-E	digraph	time	

	

	
Figure	6.	Confusion	matrix	for	both	classifiers	after	week	16.	

6 DISCUSSION 

While	 the	 approach	 taken	 to	 predict	 performance	 can	 be	 utilized	 elsewhere,	 it	 is	 worth	 noting	 how	
generalizable	 it	 is.	 The	 results	 presented	 are	 for	 one	 particular	 module,	 where	 low-level	 data	 from	
programming	actions	can	be	collected	from	a	custom-built	platform.	While	we	are	confident	the	results	
would	extend	to	other	programming	languages,	if	the	data	were	not	collected,	then	obviously	the	same	
approach	would	not	work.	Therefore,	careful	attention	would	need	to	be	paid	to	providing	students	with	
an	appropriately	instrumented	platform	if	such	low-level	data	is	required.	

The	results	can	also	be	affected	by	the	demographics	involved.	Those	presented	in	this	paper	are	from	a	
reasonably	 homogenous	 group,	 namely	 2nd	 year	 undergraduate	 computer	 science	 students	with	 over	
80%	of	the	group	being	male.	 It	 is	entirely	possible	that	the	predictive	capability	of	the	classifier	could	
change	with	a	different	or	more	diverse	demographic.	

n=111 Pass Fail n=111 Pass Fail

Pass 71 11.6 82.6 Pass 71.7 10.9 82.6

Fail 14 14.4 28.4 Fail 13.3 15.1 28.4

85 26 85 26

Actual

Pr
ed

ic
te
d

Actual

Pr
ed

ic
te
d

Simple	Classifier Extended	Classifier



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 205	

	

Figure	7:	Cumulative	program	compiles	over	the	module	lifetime.	

The	most	fundamental	limitation	of	the	approach	taken	in	the	platform	is	that	only	online	activity	can	be	
measured.	It	is	not	possible	to	say	anything	about	module-related	activity	that	students	perform	offline,	
such	as	written	exercises.	Although	unlikely	in	our	case,	if	a	student	were	handwriting	programs	during	
their	studies,	the	current	platform	cannot	capture	this.	A	related	issue	is	that,	in	order	for	the	classifier	
to	be	accurate,	there	must	be	sufficient	data	available.	For	the	module	 in	question,	students	backload	
their	work	significantly.	As	can	be	seen	in	Figure	7,	it	is	not	until	week	7	that	students	start	to	compile	
programs	in	significant	amounts.	At	the	end	of	week	6,	only	22%	of	the	final	tally	of	compiled	programs	
had	been	reached.	By	the	end	of	week	7,	this	had	reached	52%.	Up	until	that	point	there	is	simply	not	
enough	data	 in	 the	 system	 to	 build	 a	 reliable	 classifier.	On	 this	 basis,	 a	 reasonable	 time	 to	 intervene	
would	be	the	midpoint	of	the	16	week	period,	just	after	week	8.	Figure	8	shows	the	confusion	matrix	for	
the	two	classifiers	at	this	point.	

	
Figure	8:	Confusion	matrix	for	both	classifiers	after	week	8.	

There	is	room	to	improve	the	performance	of	the	classifier	further.	To	do	this,	we	can	utilize	a	number	
of	strategies.	One	promising	approach,	given	data	that	is	currently	available,	is	to	examine	the	programs	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 206	

that	students	successfully	write.	It	 is	possible	to	determine	when	a	student	employs	a	concept	such	as	
loops	for	the	first	time.	The	approach	is	particularly	interesting	from	a	pedagogical	point	of	view	as	it	is	
easier	to	link	to	course	material	and	structure	(as	opposed	to	successful	compilations	or	type-E	digraph	
timings).	 Justification	 for	 investigating	 time-related	 features	 can	 be	 found	 in	 the	 behaviour	 of	 the	
classifier	between	weeks	4	to	7	(Figure	5),	as	the	predictive	power	of	the	classifier	actually	diminishes.	
Preliminary	investigations	suggest	that	the	classifier	does	quite	well	around	week	4	since	it	is	essentially	
recognizing	early	users	of	the	system	(and	early	users	tend	to	correlate	with	better	performers	for	this	
module).	In	subsequent	weeks,	additional	data	from	later	users	of	the	system	is	included	in	the	classifier	
features,	 thus	 “diluting”	 the	 capability	 of	 the	 classifier	 to	 spot	 early	 adopters.	 Thus,	 examining	 time-
related	 features	 and	 preventing	 this	 “dilution”	 has	 the	 potential	 to	 improve	 classifier	 performance	
considerably.	

Including	 lab	 grades	 in	 the	 prediction	 can	 further	 enhance	 the	 predictive	 ability	 of	 the	 classifier.	 The	
type-E	 digraph	 timings	 used	 in	 this	 paper	 could	 also	 be	 refined.	 At	 present,	 all	 tokens	 (words	 in	 the	
programming	 language)	 are	 treated	 equally,	 but	 it	may	well	 be	 the	 case	 that	 some	 tokens	 are	more	
difficult	 to	 recall.	 Applying	 different	 weightings	 to	 these	 may	 yield	 a	 more	 useful	 dimension	 for	 the	
performance	classifier.	

The	 best	 point	 at	which	 to	 intervene	 is	 a	 complex	 topic,	 informed	by	 classifier	 accuracy	 and	 also	 the	
specifics	of	 the	module	being	taught.	Generally	speaking,	 the	best	 time	to	 intervene	 is	 the	time	when	
the	classifier	can	yield	reasonable	accuracy.	More	specifically,	one	should	intervene	as	early	as	possible,	
once	at-risk	 students	have	been	 identified	accurately.	 For	 this	particular	module,	 this	would	be	when	
sufficient	data	has	been	collected	to	ensure	classifier	accuracy.	That	would	seem	to	be	around	week	7.	
Ideally,	 to	 allow	 even	 earlier	 identification	 of	 at-risk	 students,	 we	 should	 attempt	 to	 structure	 the	
learning	 so	 that	 students	 front-load	 their	 online	 work,	 allowing	 us	 to	 acquire	 the	 data	 that	 would	
identify	 at-risk	 students	 earlier.	While	we	 cannot	 recommend	 a	 particular	week	 or	 point	 at	which	 to	
intervene	in	general,	this	is	the	main	recommendation	to	identify	at-risk	students	early,	and	it	is	obvious	
in	retrospect:	get	students	using	the	online	system	as	early	and	as	intensively	as	possible.	

7 CONCLUSION 

Though	 the	 focus	 of	 this	work	 is	 on	 showing	 that	 keystroke	metrics	 can	 contribute	 to	more	 accurate	
pass–fail	 classifiers,	 it	 is	worth	noting	 that	 the	 feature	providing	 the	greatest	prediction	accuracy	was	
that	of	program	complexity.	This	feature	was	obtained	using	a	technique	outlined	by	Jbara	and	Feitelson	
(2014)	where	 the	 length	of	 the	compressed	code	was	used	as	a	proxy	 for	 the	complexity	of	 the	code	
students	write.	 However,	 this	 is	merely	 an	 approximation	 for	 program	 complexity,	 so	 future	work	 in	
improving	this	feature	has	the	potential	to	yield	substantial	benefits.	

While	 many	 other	 dimensions	 could	 be	 added	 to	 the	 classifier,	 keystroke	 digraphs	 are	 particularly	
interesting.	Most	 importantly,	 they	 are	 relatively	 stable.	 Type-E	 digraph	 latencies	 do	 not	 vary	 hugely	
from	 the	 time	 they	 are	 first	 accurately	 measured.	 In	 contrast	 with	 other	 dimensions,	 such	 as	 the	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 207	

complexity	of	programs	that	students	write	(which	naturally	increases	over	time	as	students	learn),	it	is	
an	ideal	early-indicator.	

Not	only	being	a	good	early	indicator,	digraph	latencies	also	contribute	something	different	than	other	
dimensions	that	reflect	effort	expended	by	the	student,	such	as	time	spent	on	the	platform	or	programs	
compiled.	 Digraph	 latencies	 measure	 something	 intrinsic	 in	 the	 student	 abilities	 and,	 as	 such,	 are	 a	
valuable	adjunct	to	these	student-effort	related	dimensions.	

There	is	also	scope	for	improving	the	digraph	latencies	used.	For	example,	a	number	of	different	options	
such	as	distinguishing	between	leading	edge	and	trailing	edge	type-E	digraphs	were	explored,	but	these	
did	 not	 contribute	 to	 classifier	 accuracy.	 Keystroke	 latencies	were	 also	 adjusted	 to	 eliminate	 general	
typing	speed	as	a	factor,	but	again,	these	did	not	improve	the	accuracy	of	the	classifier.	Future	work	will	
explore	these	variations	further.	

It	could	be	argued	that	the	language	used	(an	x86-like	assembly)	may	also	play	a	significant	role	in	the	
predictive	 power	 of	 these	 digraphs.	 Typically	 there	 is	 a	 limited	 selection	 of	 short	 tokens	 in	 these	
assembly	languages.	Comparing	the	predictive	power	of	digraph	latencies	of	such	a	language	with	that	
of	 the	 latencies	 from	 a	 typical	 higher	 level	 language	 such	 as	 Java	 with	 more	 (and	 longer)	 tokens	 is	
desirable.	Studies	 conducted	by	Thomas	et	al.	 (2005),	where	 the	authors	 investigated	 type-E	digraphs	
for	 Java	 and	Ada,	 show	 similar	 results.	 Thus,	 type-E	 digraphs	 are	 useful	 across	multiple	 programming	
languages	of	varying	syntactic	structure	and	verbosity.	

If	such	keystroke	data	is	available,	we	have	shown	that	it	is	worth	incorporating	keystroke	analytics	for	
improving	 the	 accuracy	 of	 such	 pass–fail	 classification	 systems.	 Improving	 this	 accuracy	 early	 in	 the	
semester,	 as	 keystroke	 analysis	 permits	 us	 to	 do,	 is	 critical	 to	 improving	 the	opportunity	 for	 targeted	
intervention	and,	consequently,	increased	student	retention.	

REFERENCES 

Ahadi,	 A.,	 Lister,	 R.,	 Haapala,	 H.,	 &	 Vihavainen,	 A.	 (2015).	 Exploring	 machine	 learning	 methods	 to	
automatically	 identify	 students	 in	 need	 of	 assistance.	 Proceedings	 of	 the	 11th	 Annual	
International	 Conference	 on	 International	 Computing	 Education	Research	 (ICER	 ’15),	 9–13	 July	
2015,	 Omaha,	 Nebraska,	 USA	 (pp.	 121–130).	 New	 York:	 ACM.	
http://dx.doi.org/10.1145/2787622.2787717	

Anderson,	M.	R.,	Antenucci,	D.,	Bittorf,	V.,	Burgess,	M.,	Cafarella,	M.	J.,	Kumar,	A.,	Niu,	F.,	Park,	Y.,	Ré,	C.,	
&	 Zhang,	 C.	 (2013).	 Brainwash:	 A	 data	 system	 for	 feature	 engineering.	Proceedings	 of	 the	 6th	
Biennial	 Conference	 on	 Innovative	 Data	 Systems	 Research	 (CIDR	 ’13)	 6–9	 January	 2013,	
Asilomar,	 California,	 USA.	
http://www.cs.stanford.edu/people/chrismre/papers/mythical_man.pdf	

Arnold,	 K.	 E.,	 &	 Pistilli,	 M.	 D.	 (2012).	 Course	 Signals	 at	 Purdue:	 Using	 learning	 analytics	 to	 increase	
student	 success.	 Proceedings	 of	 the	 2nd	 International	 Conference	 on	 Learning	 Analytics	 and	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 208	

Knowledge	 (LAK	 ʼ12),	 29	April–2	May	 2012,	 Vancouver,	 BC,	 Canada	 (pp.	 267–270).	New	York:	
ACM.	http://dx.doi.org/10.1145/2330601.2330666	

Baker,	R.	S.,	Gowda,	S.,	&	Corbett,	A.	(2010).	Automatically	detecting	a	student’s	preparation	for	future	
learning:	Help	use	is	key.	In	M.	Pechenizkiy	et	al.	(Eds.),	Proceedings	of	the	4th	Annual	Conference	
on	Educational	Data	Mining	(EDM2011),	6–8	July	2011,	Eindhoven,	Netherlands	(pp.	179–188).	
International	Educational	Data	Mining	Society.	

Baker,	 R.	 S.,	 Gowda,	 S.	 M.,	 &	 Corbett,	 A.	 T.	 (2011).	 Towards	 predicting	 future	 transfer	 of	 learning.	
International	 Conference	 on	 Artificial	 Intelligence	 in	 Education	 (pp.	 23–30).	 Lecture	 Notes	 in	
Computer	Science	vol.	6738.	Springer	Berlin	Heidelberg.	doi:10.1007/978-3-642-21869-9_6	

Baur,	N.	(2006).	Microprocessor	simulator	for	students.	Available	at:	http://tinyurl.com/5pyhnk	
Beal,	C.	R.,	Walles,	R.,	Arroyo,	I.,	&	Woolf,	B.	P.	(2007).	On-line	tutoring	for	math	achievement	testing:	A	

controlled	evaluation.	Journal	of	Interactive	Online	Learning,	6(1),	43–55.	
Beaubouef,	 T.,	 &	Mason,	 J.	 (2005).	Why	 the	 high	 attrition	 rate	 for	 computer	 science	 students:	 Some	

thoughts	 and	 observations.	 ACM	 SIGCSE	 Bulletin,	 37(2),	 103–106.	
http://dx.doi.org/10.1145/1083431.1083474	

Becker,	 B.	A.	 (2015).	An	exploration	of	 the	 effects	 of	 enhanced	 compiler	 error	messages	 for	 computer	
programming	novices	(Master’s	dissertation).	Dublin	Institute	of	Technology.	

Becker,	 B.	 A.,	 Glanville,	 G.,	 Iwashima,	 R.,	 McDonnell,	 C.,	 Goslin,	 K.,	 &	 Mooney,	 C.	 (2016).	 Effective	
compiler	 error	 message	 enhancement	 for	 novice	 programming	 students.	 Computer	 Science	
Education	26(2),	148–175.	http://dx.doi.org/10.1080/08993408.2016.1225464	

Bergadano,	F.,	Gunetti,	D.,	&	Picardi,	C.	(2003).	Identity	verification	through	dynamic	keystroke	analysis.	
Intelligent	Data	Analysis,	7(5),	469–496.	

Berland,	 M.,	 Martin,	 T.,	 Benton,	 T.,	 Petrick	 Smith,	 C.,	 &	 Davis,	 D.	 (2013).	 Using	 learning	 analytics	 to	
understand	 the	 learning	 pathways	 of	 novice	 programmers.	 Journal	 of	 the	 Learning	 Sciences,	
22(4),	564–599.	http://dx.doi.org/10.1080/10508406.2013.836655	

Biggers,	M.,	Brauer,	A.,	&	Yilmaz,	T.	(2008).	Student	perceptions	of	computer	science:	A	retention	study	
comparing	graduating	seniors	with	CS	leavers.	ACM	SIGCSE	Bulletin,	40(1),	402–406.	

Breiman,	 L.,	 &	 Cutler,	 A.	 (2008).	 Random	 forests.	 http://www.stat.berkeley.edu/	
~breiman/RandomForests	

Breiman,	L.,	Friedman,	J.	H.,	Olshen,	R.	A.,	&	Stone,	C.	J.	(1984).	Classification	and	regression	trees	(CART)	
Belmont,	CA:	Wadsworth	International	Group.	

Breslow,	L.,	Pritchard,	D.	E.,	DeBoer,	J.,	Stump,	G.	S.,	Ho,	A.	D.,	&	Seaton,	D.	T.	(2013).	Studying	learning	
in	the	worldwide	classroom:	Research	into	edX’s	first	MOOC.	Research	&	Practice	in	Assessment,	
8,	13–25.	http://www.rpajournal.com/dev/wp-content/uploads/2013/05/SF2.pdf	

Brown,	N.	C.	C.,	Kölling,	M.,	McCall,	D.,	&	Utting,	 I.	 (2014).	Blackbox:	A	large	scale	repository	of	novice	
programmers’	activity.	Proceedings	of	the	45th	ACM	Technical	Symposium	on	Computer	Science	
Education	(SIGCSE	’14),	5–8	March	2014,	Atlanta,	Georgia,	USA	(pp.	223–228).	New	York:	ACM.	
http://dx.doi.or/10.1145/2538862.2538924	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 209	

Casey,	 K.,	 &	 Gibson,	 P.	 (2010).	 Mining	 Moodle	 to	 understand	 student	 behaviour.	 International	
Conference	on	Engaging	Pedagogy	(ICEP10),	National	University	of	Ireland	Maynooth.	Retrieved	
from	http://www-public.tem-tsp.eu/~gibson/Research/Publications/E-Copies/ICEP10.pdf	

Caspersen,	 M.	 E.,	 &	 Bennedsen,	 J.	 (2007).	 Instructional	 design	 of	 a	 programming	 course:	 A	 learning	
theoretic	 approach.	 Proceedings	 of	 the	 3rd	 International	 Workshop	 on	 Computing	 Education	
Research	 (ICER	 ’07),	 15–16	 September	 2007,	 Atlanta,	 Georgia,	 USA	 (pp.	 111–122).	 New	 York:	
ACM.	http://dx.doi.org/10.1145/1288580.1288595	

Champaign,	J.,	Colvin,	K.	F.,	Liu,	A.,	Fredericks,	C.,	Seaton,	D.,	&	Pritchard,	D.	E.	(2014).	Correlating	skill	
and	 improvement	 in	 2	 MOOCs	 with	 a	 student’s	 time	 on	 tasks.	 Proceedings	 of	 the	 1st	 ACM	
Conference	on	Learning	@	Scale	 (L@S	2014),	4–5	March	2014,	Atlanta,	Georgia,	USA	 (pp.	11–
20).	New	York:	ACM.	http://dx.doi.org/10.1145/2556325.2566250	

Davis,	 J.	 (2011).	 CompTIA:	 400K	 IT	 jobs	 unfilled.	 Channel	 Insider,	 2	 August	 2011.	
http://tinyurl.com/ca699dr	

Dowland,	P.	 S.,	&	Furnell,	 S.	M.	 (2004).	A	 long-term	 trial	of	 keystroke	profiling	using	digraph,	 trigraph	
and	 keyword	 latencies.	 IFIP	 International	 Information	 Security	 Conference	 (pp.	 275–289).	
Springer	US.	http://dx.doi.org/10.1007/1-4020-8143-X_18	

Edwards,	 S.	 (2013).	 Continuous	 Data-driven	 Learning	 Assessment.	 In	 Future	 Directions	 in	 Computing	
Education	 Summit	 White	 Papers	 (SC1186).	 Stanford,	 CA:	 Special	 Collections	 and	 University	
Archives,	Stanford	University	Libraries.	http://tinyurl.com/jep5vgt	

Epp,	 C.,	 Lippold,	M.,	 &	Mandryk,	 R.	 L.	 (2011).	 Identifying	 emotional	 states	 using	 keystroke	 dynamics.	
Proceedings	of	the	SIGCHI	Conference	on	Human	Factors	 in	Computing	Systems	 (CHI	 ʼ11),	7–12	
May	 2011,	 Vancouver,	 BC,	 Canada	 (pp.	 715–724).	 New	 York:	 ACM.	
http://dx.doi.org/10.1145/1978942.1979046	

Feng,	M.,	Heffernan,	N.	T.,	&	Koedinger,	K.	R.	(2006).	Predicting	state	test	scores	better	with	intelligent	
tutoring	systems:	Developing	metrics	to	measure	assistance	required.	In	M.	Ikeda,	K.	Ashlay,	T.-
W.	Chan	(Eds.),	Proceedings	of	the	8th	 International	Conference	on	 Intelligent	Tutoring	Systems	
(ITS	2006),	26–30	June	2006,	Jhongli,	Taiwan	(pp.	31–40).	Springer	Berlin	Heidelberg.	

Ferreira,	D.	(2013).	Instant	HTML5	Presentations	How-to.	Birmingham,	UK:	Packt	Publishing.	
Garner,	 S.	 (2002).	 Reducing	 the	 cognitive	 load	 on	 novice	 programmers.	 In	 P.	 Barker	 &	 S.	 Rebelsky	

(Eds.),	Proceedings	 of	 the	 14th	 World	 Conference	 on	 Educational	 Multimedia,	 Hypermedia	 &	
Telecommunications	(ED-MEDIA	2002),	24–29	June	2002,	Denver,	Colorado,	USA		(pp.	578–583).	
Association	for	the	Advancement	of	Computing	in	Education	(AACE).	

Jbara,	 A.,	 &	 Feitelson,	 D.	 G.	 (2014).	 Quantification	 of	 code	 regularity	 using	 preprocessing	 and	
compression.	http://www.cs.huji.ac.il/~feit/papers/RegMet14.pdf	

Kelly,	D.,	&	Thorn,	K.	(2013,	March).	Should	instructional	designers	care	about	the	Tin	Can	API?	eLearn	
Magazine.	http://elearnmag.acm.org/archive.cfm?aid=2446579.	

Kramer,	O.	(2016).	Machine	learning	in	evolution	strategies	(Vol.	20).	Springer	Berlin	Heidelberg.	
Lang,	 C.,	 McKay,	 J.,	 &	 Lewis,	 S.	 (2007).	 Seven	 factors	 that	 influence	 ICT	 student	 achievement.	 ACM	

SIGCSE	Bulletin,	39(3),	221–225).	http://dx.doi.org/10.1145/1268784.1268849	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 210	

Lister,	R.	 (2008).	After	 the	gold	rush:	Toward	sustainable	scholarship	 in	computing.	Proceedings	of	 the	
10th	 Conference	 on	 Australasian	 Computing	 Education	 (ACE	 ’08),	 Vol.	 78,	 1	 January	 2008,	
Wollongong,	NSW,	Australia	(pp.	3–17).	Darlinghurst,	Australia:	Australian	Computer	Society.	

Liu,	 D.,	 &	 Xu,	 S.	 (2011).	 An	 Empirical	 Study	 of	 Programming	 Performance	 Based	 on	 Keystroke	
Characteristics.	 Computer	 and	 Information	 Science,	 2011	 (pp.	 59–72).	 Springer	 Berlin	
Heidelberg.	http://dx.doi.org/10.1007/978-3-642-21378-6_5	

Longi,	 K.,	 Leinonen,	 J.,	 Nygren,	 H.,	 Salmi,	 J.,	 Klami,	 A.,	 &	 Vihavainen,	 A.	 (2015).	 Identification	 of	
programmers	from	typing	patterns.	Proceedings	of	the	15th	Koli	Calling	International	Conference	
on	 Computing	 Education	 Research	 (Koli	 Calling	 ’15),	 19–22	November	 2015,	 Koli,	 Finland	 (pp.	
60–67),	New	York:	ACM.	http://dx.doi.org/10.1145/2828959.2828960	

Miller,	 G.	 A.	 (1956).	 The	magical	 number	 seven,	 plus	 or	minus	 two:	 Some	 limits	 on	 our	 capacity	 for	
processing	information.	Psychological	Review,	63(2),	81.	

Ochoa,	X.,	Chiluiza,	K.,	Méndez,	G.,	Luzardo,	G.,	Guamán,	B.,	&	Castells,	 J.	 (2013).	Expertise	estimation	
based	on	simple	multimodal	features.	Proceedings	of	the	15th	ACM	International	Conference	on	
Multimodal	Interaction	(ICMI	’13),	9–13	December	2013,	Sydney,	Australia	(pp.	583–590).	New	
York:	ACM.	http://dx.doi.org/10.1145/2522848.2533789	

O’Kelly,	 J.,	Bergin,	 S.,	Dunne,	 S.,	Gaughran,	P.,	Ghent,	 J.,	&	Mooney,	A.	 (2004a).	 Initial	 findings	on	 the	
impact	of	an	alternative	approach	to	problem	based	learning	in	computer	science.	Proceedings	
of	the	PBL	International	Conference,	Cancun,	Mexico,	June,	2004.		

O’Kelly,	J.,	Mooney,	A.,	Bergin,	S.,	Gaughran,	P.,	&	Ghent,	J.	(2004b).	An	overview	of	the	integration	of	
problem	based	learning	into	an	existing	computer	science	programming	module.	Proceedings	of	
the	PBL	International	Conference,	Cancun,	Mexico,	June,	2004.	

Pardos,	Z.,	Bergner,	Y.,	Seaton,	D.,	&	Pritchard,	D.	(2013,	July).	Adapting	Bayesian	knowledge	tracing	to	a	
massive	 open	 online	 course	 in	 edx.	 In	 S.	 K.	 DʼMello	 et	 al.	 (Eds.),	 Proceedings	 of	 the	 6th	
International	Conference	on	Educational	Data	Mining	(EDM2013),	6–9	July	2013,	Memphis,	TN,	
USA	(pp.	137–144).	International	Educational	Data	Mining	Society/Springer.	

Quinlan,	 J.	 R.	 (1996).	 Bagging,	 boosting,	 and	 C4.5.	 Proceedings	 of	 the	 13th	 National	 Conference	 on	
Artificial	 Intelligence	 (AAAI’96),	4–8	August	1996,	Portland,	Oregon,	USA	(Vol.	1,	pp.	725–730).	
Palo	Alto,	CA:	AAAI	Press.	http://dx.doi.org/10.1243/095440505X32274	

Refaeilzadeh,	P.,	Tang,	L.,	&	Liu,	H.	(2009).	Cross-validation.	Encyclopedia	of	Database	Systems,	pp.	532–
538.	Springer.	

Ragan-Kelley,	M.,	Perez,	F.,	Granger,	B.,	Kluyver,	T.,	Ivanov,	P.,	Frederic,	J.,	&	Bussonier,	M.	(2014).	The	
Jupyter/IPython	 architecture:	 A	 unified	 view	 of	 computational	 research,	 from	 interactive	
exploration	 to	 communication	 and	 publication.	 American	 Geophysical	 Union,	 Fall	 Meeting	
Abstracts,	#H44D-07		(Vol.	1,	p.	7).	

Romero-Zaldivar,	V.	A.,	Pardo,	A.,	Burgos,	D.,	&	Kloos,	C.	D.	 (2012).	Monitoring	student	progress	using	
virtual	 appliances:	 A	 case	 study.	 Computers	 &	 Education,	 58(4),	 1058–1067.	
https://dx.doi.org/10.1016/j.compedu.2011.12.003	

	Scheffel,	M.,	Niemann,	K.,	Leony,	D.,	Pardo,	A.,	Schmitz,	H.	C.,	Wolpers,	M.,	&	Kloos,	C.	D.	(2012).	Key	
action	 extraction	 for	 learning	 analytics.	 Proceedings	 of	 the	7th	 European	 Conference	 on	



	
(2017).	 Using	 keystrokes	 analytics	 to	 improve	 pass-fail	 classifiers.	 Journal	 of	 Learning	 Analytics,	 4(2),	 189–211.	
http://dx.doi.org/10.18608/jla.2017.42.14	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 211	

Technology	 Enhanced	 Learning	 (EC-TEL	 2012),	 18–21	 September	 2012,	 Saarbrücken,	 Germany	
(pp.	320–333).	Springer	Berlin	Heidelberg.	http://dx.doi.org/10.1007/978-3-642-33263-0_25	

Siemens,	 G.,	 &	 Long,	 P.	 (2011).	 Penetrating	 the	 fog:	 Analytics	 in	 learning	 and	 education.	 EDUCAUSE	
Review,	46(5),	30.	

Slonim,	J.,	Scully,	S.,	&	McAllister,	M.	(2008).	Crossroads	for	Canadian	CS	enrollment.	Communications	of	
the	ACM,	51(10),	66–70.	http://dx.doi.org/10.1145/1400181.1400199	

Teague,	 D.,	 &	 Roe,	 P.	 (2007).	 Learning	 to	 program:	 Going	 pair-shaped.	 Innovation	 in	 Teaching	 and	
Learning	 in	 Information	 and	 Computer	 Sciences,	 6(4),	 4–22.	
http://dx.doi.org/10.11120/ital.2007.06040004	

Thibodeau,	 P.	 (2011).	 Romney	 sees	 tech	 skills	 shortage:	More	H-1B	 visas	 needed.	Computer	World,	 7	
September	2011.	http://tinyurl.com/76l4qxo	

Thomas,	 R.	 C.,	 Karahasanovic,	 A.,	 &	 Kennedy,	 G.	 E.	 (2005).	 An	 investigation	 into	 keystroke	 latency	
metrics	 as	 an	 indicator	 of	 programming	 performance.	 Proceedings	 of	 the	 7th	 Australasian	
Conference	on	Computing	Education	(ACE	’05),	Vol.	42,	January/February	2005,	Newcastle,	New	
South	Wales,	Australia	(pp.	127–134).	Darlinghurst,	Australia:	Australian	Computer	Society.	

Yousoof,	M.,	Sapiyan,	M.,	&	Kamaluddin,	K.	(2007).	Measuring	cognitive	load:	A	solution	to	ease	learning	
of	programming.	World	Academy	of	Science,	Engineering	and	Technology,	26,	216–219.	

Yuan,	 K.,	 Steedle,	 J.,	 Shavelson,	 R.,	 Alonzo,	 A.,	 &	 Oppezzo,	 M.	 (2006).	 Working	 memory,	 fluid	
intelligence,	 and	 science	 learning.	 Educational	 Research	 Review,	 1(2),	 83–98.	
https://dx.doi.org/10.1016/j.edurev.2006.08.005	

	


