
Interface Foundation of America

The Plot-Data Interface in Statistical Graphics
Author(s): Catherine Hurley
Source: Journal of Computational and Graphical Statistics, Vol. 2, No. 4 (Dec., 1993), pp.
365-379
Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association,
Institute of Mathematical Statistics, and Interface Foundation of America
Stable URL: https://www.jstor.org/stable/1390691
Accessed: 23-10-2018 16:37 UTC

REFERENCES
Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/1390691?seq=1&cid=pdf-reference#references_tab_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Institute of Mathematical Statistics, American Statistical Association, Interface
Foundation of America, Taylor & Francis, Ltd. are collaborating with JSTOR to digitize,
preserve and extend access to Journal of Computational and Graphical Statistics

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 The Plot-Data Interface

 in Statistical Graphics

 Catherine HURLEY*

 Statistical software systems include modules for manipulating data sets, model fit-
 ting, and graphics. Because plots display data, and models are fit to data, both the
 model-fitting and graphics modules depend on the data. Today's statistical environments
 allow the analyst to choose or even build a suitable data structure for storing the data
 and to implement new kinds of plots. The multiplicity problem caused by many plot
 varieties and many data representations is avoided by constructing a plot-data interface.
 The interface is a convention by which plots communicate with data sets, allowing plots
 to be independent of the actual data representation. This article describes the components
 of such a plot-data interface. The same strategy may be used to deal with the dependence
 of model-fitting procedures on data.

 Key Words: Abstraction barrier; Interactive plots; Software design.

 1. INTRODUCTION

 Today's advanced statistical software systems provide programming environments
 for data analysis. A statistical programming environment provides basic data structures

 and some built-in procedures for data manipulation, model fitting, and graphics. In ad-
 dition, it provides a programming language with editing and debugging tools that allow

 the analyst to easily build new data representations specialized for the data set at hand,

 invent new graphical methods, and implement new model-fitting techniques, leading to
 still more data structures representing the fit results.

 There are dependencies between the modules of a statistical system. Plots display
 data, and models are fit to data, so both the model-fitting and graphics modules depend

 on the data. It is important for implementors of new model-fitting modules, graphics
 functions, or data structures to understand the nature of this dependency so that new
 model-fitting techniques and graphical methods apply to existing data structures, and,
 conversely, existing fitting techniques and graphical methods apply to new data structures.

 In this article we study the dependency between plot and data.

 We propose to handle the multiplicity problem caused by many plot varieties and
 many data representations by building an interface between plot and data and then iso-

 *Assistant Professor, Department of Statistics, Computer and Information Systems, The George Washington
 University, Washington, DC 20052

 (1993 American Statistical Association, Institute of Mathematical Statistics,
 and Interface Foundation of North America

 Journal of Computational and Graphical Statistics, Volume 2, Number 4, Pages 365-379

 365

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 366 C. HURLEY

 SERS I Puffed Sm Blood Nic Blood [

 ker-0 I 3758.0 123 70

 aoker-1 1 4017.99 311 100
 P IA^ 17 I * Vft nA "A' T121

 91

 103

 87

 PLT-DATA INERFACE e
 53

 Srokers _.o 53
 54

 1 91

 b 500.0, 91

 d o

 O 0.0. a Dn 00 0.o0 o
 o 0 a0

 i ~o o

 n 0.0 0 0 r> 100.0
 e o

 o

 00 o.o I I I I
 0.0 3000.0 400.0 000.0 6000.0 TOO.O 9000.0 900.0

 puffed smoke

 Figur. The Plot-Data Interface.

 lating the dependencies into that interface. The interface will make it easier to construct

 plots of new data representations and to implement new data-display methods. We use

 two important software design concepts to construct the interface.

 1. The data abstraction principle says that the use of a data object should be in-
 dependent of its implementation (see, e.g., Abelson and Sussman 1985). In our

 situation the plot deals with an abstraction of the data set rather than the actual

 data structure used to represent the data set. The abstract version of the data
 is implemented by the plot-data interface, which contains the functions the plot

 uses to extract information from the data. As portrayed by Figure 1, the plot-data

 interface provides a barrier between a plot and the data set it represents, hiding

 the actual data set representation from the plot system.

 2. Generic functions allow the same function to operate on different data types (see,

 e.g., Keene 1988). A generic function is actually a collection of methods. A
 method is like a function that operates only on objects of a particular type. When

 a generic function is invoked on an object, an automatic dispatch mechanism
 selects the appropriate method. By making the functions in the plot-data interface

 generic, the plot system can simultaneously deal with many different data set
 representations.

 Section 2 describes conventional approaches to dealing with the plot-data depen-
 dency. Most simply, a plot function accepts data in a single, prescribed format-a scat-
 terplot function that requires two data vectors, for example. The analyst must then pre-
 convert from any other representation prior to plotting. This approach is unsatisfactory,

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 PLOT-DATA INTERFACE IN STATISTICAL GRAPHICS

 overburdening the analyst and discouraging experimentation with new data structures.

 Section 3 presents the very simple data model assumed by our plot-data interface.
 We emphasize that this model does not require a particular data representation. The
 interface is developed in the context of the Views model for statistical graphics (Hurley

 and Oldford 1988, 1991), and a brief overview of Views is given.

 Section 4 describes the plot-data interface. By adding appropriate generic functions

 to the plot-data interface, plot construction and behavior become effectively independent
 of the actual data set representation.

 Section 5 describes a new, general algorithm for plot linking that exploits the plot-

 data relationship. In conventional linking of two scatterplots, the point symbols in each

 plot associated with a particular case will have the same color. Our linking scheme decides

 which point symbols in the two plots are to be linked by comparing their associated cases.

 Any (user-defined) test may be used to compare cases, not just the identity test. For a
 linking capability that is independent of the data set representation, we add a generic
 case comparison function to the plot-data interface.

 2. PREVIOUS APPROACHES

 In this section we outline previous approaches to the plot-data interface. We demon-

 strate that these approaches are inadequate for open-ended statistical software systems,
 especially those supporting high-interaction graphics.

 In interactive plots, the dependence of plot on data persists beyond construction

 time. By interacting with a plot, the analyst can get information about the underlying
 data set. With a point-and-click style interface, for instance, the analyst identifies the

 case represented by a point symbol on the screen. In effect, the plot acts as a graphical
 interface to the data. Interactive plots are frequently dynamic, changing according to new

 information obtained from a data set: For example, the analyst can request a change of
 variables or that points representing outlier cases be colored red.

 2.1 THE SIMPLE APPROACH

 In the most common and simplest approach to the plot-data interface, each kind

 of plot can only display a particular type of data object. For reasons given later, this
 approach is unsatisfactory. Consider a bar chart that displays a vector whose elements
 are the bar heights. Note that:

 1. The analyst is burdened with converting the data to such a vector prior to plotting.

 Keeping track of the proliferation of derived data sets and their interrelationships
 places an additional burden on the analyst.

 2. This approach requires conversion functions for every combination of plot and
 data set type. It discourages the analyst from experimenting with new plotting
 techniques and data representations.

 3. The data conversion often involves some loss of information. This conflicts with

 the notion that the plot acts as a graphical interface to the data. Suppose the bar
 chart displays the number of individuals in a data set participating in each of

 367

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 C. HURLEY

 five sporting activities. Because the plot actually displays a vector of frequencies

 extracted from the data set, it's not possible to select a bar and find out which cases

 it represents. Neither is it possible to change variables from sporting activities to

 say, racial group. The problem is that the connection between the plot and the
 original data set is lost.

 2.2 AN OBJECT-ORIENTED APPROACH

 Using object-oriented techniques, the S system (Becker, Cleveland, and Wilks 1988;

 Chambers and Hastie 1992) has improved on the simple approach. The plot functions in
 S are generic, which means they accept many different types of data objects as argument.

 For instance, the plot function can be invoked on either an array or a time-series object,

 and the appropriate plot is produced. The plot method for a type, array say, specifies
 the actions to occur when the generic function is invoked on an array object.

 With generic functions there is no need for the analyst to preconvert the data to
 a particular format prior to plotting. The analyst is no longer burdened with producing

 and managing multiple data versions, and objection (1), stated previously, no longer
 applies. Essentially, each data representation requires a method instead of a conversion

 function, so objection (2) still applies. Adding a new data representation could demand
 new methods for every plotting function. Conversely, each new plot function needs
 methods for the data representations.

 In principle, the generic plot function approach could overcome objection (3). Each

 method would have to build a plot that retained the association between the plot and the

 originating data set. The plot methods would be nontrivial, involving much duplication

 of effort, and would require detailed knowledge on the part of the implementor of both

 the plotting technique and the data set representation. Building a new kind of plot and/or

 data set representation would be an ordeal even for an experienced programmer.

 At the other extreme there could be one method for a vector, for example, that
 actually builds a plot, while methods for other data types simply extract a vector and
 invoke the plot function on the vector. S plots lie closer to this extreme. (This is sufficient

 for S plots, which act as an interface to the data only in a limited sense.)

 3. DATA AND PLOT MODELS

 Our plot-data interface assumes a simple data model that is independent of the choice

 of data structure used to represent the data set. Our plots follow the Views model for
 statistical graphics (Hurley and Oldford 1988, 1991).

 3.1 DATA MODEL

 We begin by introducing the smoke-styles data set, collected for an experiment
 conducted on smoking styles and described by Hand and Taylor (1987). We will refer to
 this data set in later sections. In this study, a subject smoked a cigarette and variables
 measuring the cigarette's pharmacological effect were recorded, as well as the subject's

 368

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 PLOT-DATA INTERFACE IN STATISTICAL GRAPHICS

 Identifier: Smoker Data

 Identifier: K. Smith

 Age group: 2 Gender: female Brand: Kent

 Identifier: G. Han

 Age group: 4 Gender: male Brand: Merit

 Identifier: T. Turner

 Age group: 4 Gender: female Brand: Merit

 Figure 2. Model of smoke-styles Data Set From the Smoker Perspective.

 age, gender, and cigarette brand. Additional variables were recorded for the cigarette

 brand. Figure 2 shows a model of the smoke-styles data set. (Smoker and brand
 names were not reported by Hand and Taylor [1987], so the values used here are artificial.)

 The elements of our data model are cases, variables, and the data set itself. A case

 contains observations on an individual; for the smoke-styles data set, a case consists
 of all of the information collected that relates to a particular smoker. A variable is an
 index into the case used to extract an observation; in our example, the variables are age

 group, gender, and blood nicotine, among others. A data set, then, is composed
 of cases. We also regard an individual case as a data set. Additionally, a data set (and
 hence a case) may have an identifier, which describes or names the data set.

 The data model assumes that information on a smoker and his/her choice of brand

 is accessible from a case. In some analyses, the cigarette brands rather than the smokers

 may be the primary focus of interest. Figure 3 shows a model of the data set from the

 cigarette-brand perspective; here each brand constitutes a case. The data model assumes

 that information on a brand, and the smokers selecting that brand, are accessible from
 the case that represents the brand.

 Many different data structures could be used to represent the smoke-styles data
 set. A few possibilities are: The data set could be contained in a matrix in the conventional

 cases by variables format, where each smoker is a case. Then a row would represent a
 smoker, with entries for each variable associated with the smoker. An extra column
 could be used to store the case identifiers, which for this data would be the smoker's

 name. This data implementation is efficient for extracting information by smoker. It
 contains redundant information, however, because some smokers chose the same brand of

 cigarette. To save space, the cigarette variables could be stored in a separate data matrix.

 The matrices could be regarded collectively as a data set, where some cases are subjects
 and others are cigarette brands. Pointers from the smoker to the cigarette matrix would

 369

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 C. HURLEY

 Identifier: Smoker Data

 Identifier: Kent

 Smokers: K. Smith Nicotine: 15 Tar: 180

 Identifier: Merit

 Smokers: T. Turner, G. Han Nicotine: 10 Tar:

 Identifier: Benson & Hedges

 Smokers: R. Kennedy Nicotine: 13 Tar: 170

 Figure 3. Model of smoke-styles Data Set From the Brand Perspective.

 prevent any loss of efficiency in accessing all information (including cigarette variables)

 associated with a subject. Conversely, pointers from the cigarette to the subject matrix

 would allow for efficient access of information (including subject data) associated with
 a cigarette.

 The purpose of our data model is to hide the actual structure used to represent the
 data set from the plotting software that displays the data set. Then, regardless of the
 data structure chosen, the same plots can be made. This allows a data representation to
 be chosen for efficiency reasons without regard to the demands of the plotting functions

 used to display the data.

 3.2 VIEWS MODEL

 According to the Views model, statistical plots are collections of objects such as
 points, lines, labels, and axes. These objects are arranged in a hierarchy-a scatterplot
 consists of axes, a label, and a point cloud, which itself consists of point symbols.
 Similarly a scatterplot matrix consists of point clouds and labels, though arranged in a
 different format. An object appearing in the plot has an associated piece of statistical
 data-typically for the scatterplot it is the entire data set, for a point symbol it is a case,

 and for the point cloud it is the list of cases. The plot and each of its components are
 termed a view. A simple view is a view such as a point symbol or label that contains no
 other views.

 A view is so-called because it provides a graphical representation of a piece of data,
 called the viewed object. A view contains a reference to its viewed object, and an image
 of a view is used as a graphical interface to the viewed object. Because a case is a kind
 of data set, a viewed object can be characterized as a data set or a list of data sets.

 370

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 PLOT-DATA INTERFACE IN STATISTICAL GRAPHICS

 4. A PLOT-DATA INTERFACE

 This section proposes a new plot-data interface. Our plot-data interface consists of
 generic functions, which the plot uses to obtain information from the data set. Thus plot

 construction and behavior become effectively independent of the data representation.

 4.1 PLOT CONSTRUCTION

 For a particular type of plot, we need to identify the information that the plot requires

 from the data set it views. We consider the information necessary for plot construction,

 and for concreteness we discuss the familiar scatterplot.

 The following (Lisp) expression constructs a scatterplot of smokers in the data set
 smoke-styles with puffed smoke on the x axis and blood nicotine on the
 y axis.
 (scatterplot :data smoke-styles

 :x "puffed smoke" :y "blood nicotine")
 There are two essential stages where scatterplot construction requires information

 from the data set. First, cases (the smokers) must be extracted from the data set to become

 the viewed objects of the point symbols. For this purpose, the plot system uses a generic

 function called list-cases. This function takes a data set as argument and returns
 a list of its cases; for our example each case is a smoker. Second, coordinates must be

 extracted from the cases using the variables puffed smoke and blood nicotine
 as indexes into the case. For this the plot system uses a generic function value-of,
 which takes a case and index (the variable) as argument and returns a value.

 For each data representation, the implementor of the graphics package assumes that
 appropriate methods for the generic functions list-cases and value-of exist. To
 use the graphics package, each new data representation then requires methods for the
 generic functions list-cases and value-of.

 Data sets with more than one possible notion of "case" pose a small problem.
 For the smoke-styles data, we might wish to plot the data by cigarette (or by age
 group) rather than by individual smokers. The graphics system handles this possibility
 by allowing the user to supply a function to be used instead of list-cases. The
 following code constructs a scatterplot of cigarettes in the smoke-styles data set
 with (cigarette) variables:

 (scatterplot :data smoke-styles :cases 'list-cigarettes
 :x "tar" :y "nicotine")

 Suppose now we wish to build a plot of cigarettes that displays the subject variable
 blood nicotine on the x axis, where the x coordinate is the average of the blood
 nicotine values recorded for the subjects smoking that brand of cigarette. This could
 be achieved by supplying a function rather than a variable as the: x argument, as follows:
 (scatterplot :data smoke-styles :cases 'list-cigarettes

 :x 'mean-blood-nicotine :y "nicotine")
 Here the mean-blood-nicotine function will be applied to a cigarette object, instead
 of the default value-of.

 Because data transformations are ubiquitous in data analysis, it seemed appropriate

 371

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 C. HURLEY

 to add a data transformation utility to the Views system. Following Buja, Asimov, Hurley,

 and McDonald (1988), the Views system decomposes the transformation from n cases
 to n coordinates into stages as described in Hurley (1991). This implies that the value
 obtained from the case need not yield a single number because the Views system applies

 a series of transformations to the value to obtain the coordinate. Typically then, the
 argument to :x is only concerned with extracting information from cases, not with

 transformation. For example, the following is a plot of cigarette brands with the log of

 nicotine on the y axis and the mean of the logged blood nicotine values on the
 x axis:

 (scatterplot :data smoke-styles :cases 'list-cigarettes
 :x "blood nicotine" :x-function '(mean log)
 :y "nicotine" :y-function 'log)

 The advantages of the data transformation utility are clear: The components of the trans-

 formation can be quite simple, and the individual components can be changed indepen-

 dently of each other.

 4.2 PLOT BEHAVIOR

 With interactive plots a user's actions cause the plots to respond and perhaps change.

 This behavior relies on a connection between a plot and its underlying data. Here we

 examine the information that interactive plots require from the data.

 Recall that a view acts as a graphical interface to the associated viewed object. Using

 a point-and-click interface, the user first selects a view and then requests information on

 the viewed object via a button click or a menu selection. The user can then identify
 or inspect the viewed object. The identify operation prints out a short description of
 the viewed object. For each data set in the viewed object, identify prints the data
 set's identifier, obtained by applying the generic function identifier-of to the data
 set. Here we assume that identifier-of returns the data set's identifier, if present.
 If the data set has no identifier, the data set itself is printed. (Lisp's built-in print
 function is already generic.) Similarly, the inspect operation uses Lisp's built-in generic
 inspect function to obtain a detailed description of the viewed object. Of course, a
 data set implementor may choose to provide a specialized inspect method for the data

 representation.

 Changing variables depends on obtaining information from the data set. To change
 variables, the user is offered a menu of variable choices. Therefore we need a generic

 list-variables function, that, given a data set, returns a list of its variables. There-
 after, coordinates are extracted from the cases as in plot construction.

 We restrict changing cases to deactivating and later reactivating cases in the plot.
 Inactive cases are ignored by the plot: In a point cloud, a point symbol viewing an
 inactive case will not be drawn; deactivating a case for a histogram or fitted line causes

 the histogram bin counts or the fitted line's parameters to be recomputed.
 For concreteness, consider deactivating a case in a point cloud. Using the graphical

 interface, the steps are as follows:
 Step 1. Select a view whose viewed object is the case to be deactivated. The view

 372

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 PLOT-DATA INTERFACE IN STATISTICAL GRAPHICS

 could be a point symbol in a point cloud or a label in a display list showing the
 identifiers of the cases.

 Step 2. Invoke the "deactivate case" operation on the point cloud. This deactivates

 the case in the point cloud that is "the same" as the viewed object of the view
 selected at Step 1. (In general, multiple views may be selected at Step 1, then
 invoking the "deactivate case" operation on a point cloud deactivates all of its
 cases that are "the same" as the viewed objects of the selected views.)

 Step 2 requires a function (eq-dataset, say) that tests for "sameness" of data
 sets. Data set comparison could be done in several different ways: (1) by testing for
 object identity-the two data sets are the same object; (2) by comparing the contents of

 the data set; or (3) by comparing identifiers. Therefore, eq-dataset is a generic data
 set comparison function and different methods can allow for the different possibilities.

 5. LINKING VIEWS

 The basic idea behind scatterplot brushing, also known as painting, is that a point

 in a plot representing a case should have the same color as the point representing the
 same case in other plots (Becker, Cleveland, and Wilks 1987; McDonald 1982; Newton
 1978). Such plots are often described as linked. As we will see, linking makes use of the
 plot-data interface.

 The linking idea has been applied to objects other than point symbols (see, e.g.,
 McDonald, Stuetzle, and Buja 1990) and used with drawing-style parameters (such as
 symbol shape or line thickness), not just color. Our linking algorithm also allows for
 these possibilities.

 5.1 APPROACHES TO LINKING

 We briefly describe some previous approaches to linking and, for simplicity, consider

 plots with point symbols only.

 A simple linking algorithm (see, e.g., Tierney 1990) links the ith point symbol in

 one plot to the ith point symbol in another, essentially assuming that each point symbol

 views the ith case of a data set. This strategy is not appropriate when the two plots show

 different but overlapping subsets of cases, for instance.

 A novel design feature of the Views model led to a simple though limited linking
 strategy (Hurley and Oldford 1991). Views was designed so that the same view object
 can be drawn at multiple locations on the screen and be a subview of more than one

 parent view. Consequently, two (or more) point clouds can have the same point symbol
 objects as subviews. Such point clouds are implicitly linked: Because the point clouds
 use the same actual point symbol object with its associated color to view a particular
 case, the same color will automatically be used to display the case in each of the point
 clouds. The limitations of this method are: (1) It requires identical point symbols in the

 plots, not just the colors and (2) it does not permit linking of different types of plots,
 such as a scatterplot and histogram.

 A more general strategy used by McDonald (1986) and Stuetzle (1987) associates

 373

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 C. HURLEY

 color information with the cases rather than with the point symbols, and then constrains

 the point symbol to appear with the color of its case. When multiple point symbols view

 the same case, they are implicitly linked. This scheme is conceptually simple, but we
 reject as artificial the notion that a case has a color attribute. Every data set implemen-

 tation would have to deal with color attributes-this is impractical and inconsistent with

 our goal of independent plot and data set modules.

 In our proposed linking strategy, the Views system keeps track of the color and

 linking information. The algorithm determines which point symbols are to be linked by

 comparing their associated cases, using a generic data set comparison function. Therefore,

 our linking scheme makes use of the plot-data interface.

 5.2 DRAWING STYLES

 Prior to describing the linking algorithm, we present some necessary background on

 drawing styles for views.

 A view is drawn by recursively drawing each subview, actual drawing occurring
 when the simple views are drawn. Each simple view has a drawing style, consisting
 of all parameters controlling how the view is to be drawn. Minimally, drawing-style

 parameters allow a view to be invisible, highlighted, or to take on different colors. In
 addition, point symbols have shape and size and may be outlined or solid; labels have
 font information.

 Point symbols and labels are examples of single-style views, where the view has just

 one highlight value, color, and so on. Other views, such as bars and lines, are multistyle,

 and can have multiple colors.

 A bar is a simple view drawn as a rectangle and used as a component of a bar chart,

 histogram, or boxplot. Normally, the viewed object of a bar is a list of one or more cases.

 (Because the data sets viewed by simple views are typically cases, we will refer to them

 as such without further qualification). With drawing styles, a bar can be drawn filled or

 not, in any color. The bar may be partitioned horizontally or vertically into rectangular

 segments, where each segment has a different combination of drawing-style values. A

 segment represents a subset of the bar's cases, with the segment size in proportion to
 the number of cases in the subset. (Alternatively, one could envisage constructing a bar
 object for each partition element, but this is inefficient for dynamic applications like
 brushing, where the partitions are frequently modified.)

 Multistyle views, such as a bar, usually have drawing-style values corresponding to
 each of its cases. A pie and sunflower (with one ray for each case, or alternatively, one
 ray for each combination of style values) are other examples of multistyle views.

 The generic function set-drawing-style changes the drawing style of a view.
 This function is invoked by the user (using a command-style or graphical interface) or
 automatically by the system when the style of a linked view is altered. For example, the

 following sets the color of the view foo to red:
 (set-drawing-style foo :color red-color)
 More precisely, this sets all of foo's color style values to red and redraws foo. We can
 also set the color of the part of foo corresponding to a particular case, smoker-1 say:

 374

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 PLOT-DATA INTERFACE IN STATISTICAL GRAPHICS

 (set-drawing-style foo :color red-color :element smoker-1)
 If smoker-1 does not correspond to any of the cases viewed by foo, the view is
 unchanged. The generic data set comparison function from Subsection 4.2, eq-data
 set, is used to determine correspondence among cases.

 5.3 LINKING ALGORITHM

 From the discussion on drawing styles we note that linking need only be considered

 for simple views. In fact, we designate a subset of simple views as linkable.
 For speed, a linked view, foo say, has a list of the views to which it is linked.

 When a drawing-style value of foo is changed, the new style is automatically passed
 to its linked views, using set-drawing-style. The case or cases corresponding to
 the changed style must also be passed to the linked views. Like the case, if the style is

 not relevant for a linked view (for example, a point symbol has a shape style, a bar does

 not), it is ignored and the view unchanged.

 Next we describe how the links are built. A link table consisting of all views currently

 linked is maintained. There are three steps involved in linking a view foo. Assume foo
 is linkable and as yet unlinked:

 Step 1. For the first view, view-1 say, in the table, compare its cases to those
 of foo using the generic function eq-data set. If there is a match, add foo
 to view-l's list of links and, conversely, add view-1 to foo's list of links.
 Repeat this for every view in the link table.

 Step 2. Add foo to the link table. Note that this step is performed even if there

 are no matches in Step 1, ensuring that sequentially linking views is not order
 dependent.

 Step 3. Update the styles in foo to be consistent with those of its links and
 redraw.

 When the view foo to be linked is not simple, then the previous process is performed
 for each linkable descendant of foo-that is, each linkable view in the foo hierarchy.

 We note that:

 * The linking procedure is the same for all linkable views regardless of both its
 type and the type of containing plot (if any). Therefore the procedure will work
 for new views to be designed in the future.

 * The algorithm allows subviews of a view to be linked to each other. This is useful

 because, for instance, one could construct a view containing multiple scatterplots
 and histograms that are linked to one another.

 * There may be multiple link tables, one for each group of related views. (As yet,
 each view can belong to at most one link table.)

 * There are also functions for unlinking a view and for clearing the entire link table.

 375

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 C. HURLEY

 (a) (b)
 15.0 - D

 Do f

 c 3, [e] e8

 [e n a m

 n .

 e 2s m
 a

 so- * e [
 r i r1 1 U 1 1

 80.0 100.0 120.0 140.0 160.0 180.0 200.0 .. 1

 tar 2 3 4 5 6

 Figure 4. Linked Plots of Smoker Data. (a) Cigarette brands and (b) smoker age by gender.

 5.4 DATA SET COMPARISON

 The generic data set comparison function eq-dataset plays an important role
 in linking, determining which views can be linked. In Subsection 4.2 we described
 eq-dataset as comparing two data sets to see if they are "the same" in some sense.
 Here we consider other possibilities.

 As motivation, consider the smoke-styles data. As remarked in Subsection 3.1,
 here one can regard either the smokers or the cigarette brands as cases. In Figure 4a we
 see nicotine and tar plotted for the cigarettes, and in Figure 4b we see a bar chart
 of the smokers' ages, grouped by gender. (The age variable is categorical, with age "2"
 recorded for smokers in their twenties, and so on.) We wish to answer such questions

 as: (1) What is the tar content of the cigarettes smoked by young females? (2) Which
 group tends to smoke low-tar cigarettes?

 To answer these questions, we require links between a cigarette brand point symbol
 and each bar viewing a smoker of that brand. This implies that the data set comparison
 function should return true for a smoker-cigarette pair when the smoker chooses that

 brand of cigarette. Let us call this more general data set comparison function data
 set-intersection. For any two data sets this function returns true if they have
 some data in common. Using data set-intersection in place of eq-dataset,
 question (1) is answered by highlighting the bar viewing the females in their twenties,
 causing the point symbols viewing the brands this smoker group chooses to become
 highlighted. Similarly, question (2) is answered by highlighting the low-tar points rep-
 resenting the cigarettes, so that the barchart shows the frequency of selection of low-tar

 brands by age and gender. From Figure 4 we see that, for the smokers in the study, young

 smokers do not select low-tar brands, and the older women (in their fifties or beyond)

 smoke high-tar brands exclusively.

 The data set comparison function determines which views can be linked. We note

 376

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 PLOT-DATA INTERFACE IN STATISTICAL GRAPHICS

 (a) (b)

 i m
 c ae a
 10.0- e
 i 0 o Io
 n r

 5.0 i s.o - ? e

 80.0 100.0 120.0 140.0 160.0 180.0 200.0

 tar 2 3 4 5 6

 Figure 5. Linked Plots of Smoker Data. (a) Cigarette brands and (b) smoker age by gender.

 that:

 1. Views representing cases of different types can be linked as long as the data set

 comparison function has an appropriate method for each pair of case types.
 2. So far in our discussion we have assumed symmetric links; if view-1 is linked

 to view-2, then view-2 is linked to view-1. The possibility of asymmetric
 links is interesting, however, and could be implemented by modifying Step 1 of

 the linking algorithm (p. 375). This calls for an asymmetric data set comparison
 function, perhaps dataset<=.

 5.5 MULTISTYLE VIEWS

 For Figure 4a, the choice of the single-style point symbol view to represent each
 cigarette brand is perhaps not ideal. Suppose we color the point symbols viewing smokers

 white for female and black for male. This will also partition the point symbols viewing

 cigarettes into black and white, but the partition is not unique. A cigarette smoked by
 both a male and female could appear as either black or white, depending on which color
 was more recently assigned.

 Therefore, we allow the point symbol used by the scatterplot to be replaced by a

 multistyle view, such as a bar or pie, as shown in Figure 5a. This brings up the question,

 "How many sets of style values does a multistyle view have?" Even though the pies in
 Figure 5a each view a single case that is a cigarette brand, each pie has as many sets
 of style values as there are smokers who selected the brand. Also, each pie has area in

 proportion to the number of smokers. We notice that while high-tar cigarettes are the
 most popular, there does not appear to be a gender difference in the choice of brands as

 distinguished by their tar and nicotine content.

 In general, a multistyle view uses the list-data-elements generic function
 from the plot-data interface to decide how many sets of style values are to be used. This

 377

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 C. HURLEY

 function is applied to the cases in the viewed object and returns a list of the data elements

 contained in the cases. Then the multistyle view has one set of style values per data

 element. Normally the data elements are simply the cases themselves. For hierarchical
 cases such as a cigarette brand containing smokers, however, the data elements can be

 the "smallest" cases in the viewed object-the smokers, in our setting.

 6. CONCLUSION

 A plot-data interface provides a way of managing the complexity caused by the
 multiplicity of plot types and data set representations in statistical programming envi-
 ronments. This article described the primary elements of such a plot-data interface for

 highly interactive, linkable statistical plots.

 The interface relies on the programming techniques of data abstraction and generic

 functions to hide the actual data set representation used from the plot displaying the data

 set. The plot is then effectively independent of the actual data representation. The same

 strategy may be used to deal with the dependence of model-fitting procedures on data.

 The ideas described in this article have been implemented by the author in Com-

 mon Lisp and CLOS (Keene 1988; Steele 1990), as part of the Quail environment for
 statistical computing. A beta release of the software is available from the Statistical
 Computing Laboratory at the University of Waterloo, in ftp directory pub/Quail on
 setosa.waterloo.ca. While our approach to statistical plots, and the abstraction
 barrier between plot and data, could of course be implemented in languages other than

 Lisp, we recognize that our approach is inherently object-oriented and thus an object-

 oriented implementation language will be a definite advantage.

 [Received January 1992. Revised June 1993.]

 ACKNOWLEDGMENTS

 The author thanks R. W. Oldford for helpful discussions.

 REFERENCES

 Abelson, H., Sussman, G., and Sussman, J. (1985), Structure and Interpretation of Computer Programs,
 Cambridge, MA: MIT Press.

 Becker, R. A., Cleveland, W. S., and Wilks, A. R. (1987), "Dynamic Graphics for Data Analysis," Statistical
 Science, 2, 355-395.

 Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988), The New S Language, Pacific Grove, CA: Wadsworth
 and Brooks/Cole.

 Buja, A., Asimov, D. A., Hurley, C., and McDonald, J. A. (1988), "Elements of a Viewing Pipeline for Data
 Analysis," in Dynamic Graphics for Statistics, eds. W. S. Cleveland and M. E. McGill, Pacific Grove,
 CA: Wadsworth and Brooks/Cole.

 Chambers, J. M., and Hastie, T. J. (eds.) (1992), Statistical Models in S, Pacific Grove, CA: Wadsworth and
 Brooks/Cole.

 Hand, D. J., and Taylor, C. C. (1987), Multivariate Analysis of Variance and Repeated Measures, New York:
 Chapman and Hall.

 378

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

 PLOT-DATA INTERFACE IN STATISTICAL GRAPHICS

 Hurley, C., and Oldford, R. W. (1988), "Plots as Hierarchichal Views of Statistical Objects," 19-minute video
 (VHS format), STAT-22-88, Statistics Technical Report Series, University of Waterloo, Waterloo, Ontario

 --- (1991), "A Software Model for Statistical Graphics," in Computing and Graphics in Statistics IMA
 Volumes in Mathematics and its Applications, (vol. 36), eds. A. Buja and P. Tukey, New York: Springer-
 Verlag.

 Hurley, C. (1991), "Some Interface Issues for Interactive Statistical Graphics," in Computer Science and
 Statistics: Proceedings of the 23rd Symposium on the Interface, Fairfax Station, VA: Interface Foundation
 of North America.

 Keene, S. E. (1988), Object-Oriented Programming in Common Lisp, Reading, MA: Addison-Wesley.

 McDonald, J. A. (1982), "Interactive Graphics for Data Analysis," Ph.D. dissertation, Stanford University,
 Statistics Department.

 - (1986), "Antelope: Data Analysis with Object-Oriented Programming and Constraints," in Proceedings
 of the American Statistical Association, Section on Statistical Computing, 1-10.

 McDonald, J. A., Stuetzle, W., and Buja, A. (1990), "Painting Multiple Views of Complex Objects," SIGPLAN
 Notices, 25, 245-257, Proceedings OOPSLA/ECOOP '90.

 Newton, C. M., (1978), "Graphics: From Alpha to Omega in Data Analysis," in Graphical Representation of
 Multivariate Data, ed. P. C. C. Wang, New York: Academic Press.

 Steele, G. L. (1990), Common Lisp, The Language (2nd ed.), Bedford, MA: Digital Press.

 Stuetzle, W. (1987), "Plot Windows," Journal of the American Statistical Association, 82, 466-475.

 Tierney, L. (1990), LISP-STATAn Object-Oriented Environment for Statistical Computing and Data Analysis,
 New York: Wiley Interscience.

 379

This content downloaded from 149.157.61.199 on Tue, 23 Oct 2018 16:37:50 UTC
All use subject to https://about.jstor.org/terms

	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15

	Issue Table of Contents
	Journal of Computational and Graphical Statistics, Vol. 2, No. 4, Dec., 1993
	Volume Information [pp. 423 - 424]
	Front Matter
	Invited Article
	A Model for Studying Display Methods of Statistical Graphics [pp. 323 - 343]
	Comment on "A Model for Studying Display Methods of Statistical Graphics" [pp. 345 - 347]
	Comment on "A Model for Studying Display Methods of Statistical Graphics" [pp. 349 - 353]
	Comment on "A Model for Studying Display Methods of Statistical Graphics" [pp. 355 - 360]
	Rejoinder: A Model for Studying Display Methods of Statistical Graphics [pp. 361 - 364]

	The Plot-Data Interface in Statistical Graphics [pp. 365 - 379]
	Confident Search [pp. 381 - 403]
	Comparison of Multivariate Matching Methods: Structures, Distances, and Algorithms [pp. 405 - 420]
	Back Matter [pp. 421 - 422]

