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I INTRODUCTION 

Analogues of the Jarnik-Besicovitch theorem and its generalisations have been 

proved for the p-adic field Cl!, and for Cl!; (details are in [l] and [9]). The p-adic 

norm of a point < = (cl, ( In) in Cl!; will be written I<], = maxi 5J <,, ]EJ], and 

for any rational integer vector q = (41, . . , qn), the usual supremum metric will 

be denoted by ]qJ = max, jq;l. We identify the set of m x n matrices on Z,, with 

Zy and consider the set 

W(m, n; r) = {X E ZT : (qX], < ]q]-’ for infinitely many q E Z”}, 

where qX represents a system of n linear forms over ZP in m variables. This set 

is not a direct analogue of the set in the general Jarnik-Besicovitch theorem [4] 

which involves the distance from Z” rather than the distance from the origin. 

Indeed W( 1,l; 7) reduces to (0). If the p-adic distance from B” is taken, then 

the corresponding set has full measure since for each X, IqX - r( can be made 

arbitrarily small by taking r to be a rational integer vector with the appropriate 

number of leading terms taken from the p-adic expansion of qX. Hence the 

p-adic distance to the origin is considered instead; W(m, n; r) is a p-adic ana- 

logue of the set Wo(m, n; T) considered in [6]. 

The Hausdorff dimension of W(2,l; r) was obtained by Melnichuk in [9] for 

the case x = (x, 1) and this result was extended in two ways by Abercrombie [l]. 

The first extension was to a more general version of Melnichuk’s result and in 
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the second he showed that when r 2 m/n, the Hausdorff dimension of 
W(m, n; T) was 

(1) dim W(m,n: T) = (m - I)n + F 

for m > n. Using ideas from [6] we will complete Abercrombie’s result by ob- 
taining the Hausdorff dimension of W(m, n: T) for the case m 5 n. 

Theorem 1. 

(m- I)n+ 9 forr>m/n, 
dim W(m, n; T) = 

mn otherwise. 

? HAUSDORFF DIMENSION AND HAAR MEASURE 

A ball B(a;pdh) in Z, with diameter diam B(a;pdh) = pPh is defined as 

B(a;p-“) = {x E z, : 1.x - all, 5 p-“} 

and a ball in 27,” is similarly defined as 

B(a;pmh) = {x E ZT : Ix - al, 5 p-“} = B(al;peh) x . . x B(a,;peh) 

where a = (~1,. . . , u,). 
Let 5 > 0. A S-cover of a set Fin Z; is a family of balls B(a,;p-‘I) such that 

F c U, B(a,;pehd) andpehd < 6. Write E,“(F) = inf C, pmSh3 where the infimum 
is taken over all S-covers of F: The Hausdorff outer s-measure of F is defined to 

be 

B>(F) = ;;;z;(F) 

and the Hausdorff dimension of F to be 

dimF = sup{s : E’(F) = KI} = inf{s : ‘FIS(F) = 0). 

Let p be the unique Haar measure on Q$ such that p(Z,“) = 1 and let XB be the 
characteristic function of a ball B. Then 

A more general definition of Hausdorff dimension with respect to Haar mea- 
sure is given in [l] but for p-adic space it is equivalent to the one above. 

3 PROOF OF THEOREM I 

In order to obtain the Hausdorff dimension of W(m, n; T) we will consider 
upper and lower bounds for the dimension separately. 

Lemma 1. 

(m - l)n + 7 if 7 2 m/n, 
dim W(m, n: T) < 

mn otherwise. 
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The first inequality is proved using a standard covering and counting argument 
and is Lemma 4.5 in [I]. The Hausdorff dimension of ZT” is mn, whence 
dim W(nz, n: 7) < mn. 

For the case m > n, the lower bound has already been established in [l] and 
thus from now on we assume that m 5 n. To avoid excessive technical detail we 
first prove the result for nz = n and then sketch the extension to n > m. The main 
idea is to map W(m, m; 7) to the Cartesian product of two spaces, namely Zr-’ 
and the set W’(m, m - 1: 7) for which we already know the dimension by (1). 
Then it will be shown that the map between W(m,m; 7) and the Cartesian 
product is bi-Lipschitz. Using the lemmas below this gives the Hausdorff 
dimension. 

Definition 1. A function f : E + F is (p-adically) bi-Lipschitz on E if there 
exist positive constants c and C such that 

clx - YI, < If(x) -f(Y)I, I Clx - YI,. 

We need two more lemmas: 

Lemma 2. Let f : E + F be a bi-Lipschitz function which is one-one and onto. 
Then 

dim E = dim F. 

The proof of this lemma follows that for the real case which can be found in 

17, page 301. 
The next result is a p-adic analogue of a lemma which appears in [3] and [8]; 

the proof uses ideas from [3]. 

Lemma 3. Let D be an r-dimensional ball, and E a set in ZL with Hausdorff di- 
mension d, then the Hausdorfdimension of the Cartesian product E x D is 

dim(E x D) = d + r. 

Proof. The proof will be done for r = 1 and a simple induction argument ex- 
tends it for general r. 

Let the Hausdorff dimension of E x D be s and assume that s < d + 1. Then 
for each E > 0 there exists a positive 5 and a cover C of E x D by k + l-dimen- 
sional balls B,, such that 

(2) 2 (diam B,)d+‘-h < E. 
,=I 

For each 8 E D there is a cover C(d) = {&(8) = B, n (;2,” x (0)) : B, E C} of 
E x {O} by k-dimensional balls, obtained by taking the cross-section of C 
through 8. Define A, by &(0) = & x (0). I n what follows B, will be a k + l-di- 
mensional ball in the cover C and B,! will be a ball in Z, such that B, = A, x B,] . 
Let yI : Z,, ----) R be defined by 
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1 
Xl(O) = 

if 0 E B,’ i.e., if B, fl (Z,” x (0)) # 8, 

0 otherwise, 

so that 

,S x,(O)dp(O) = diam B’ = diam B, i 
P 

and 

,g, (d 
iam B,(0))d-” = ,$, x,(O)(diam Bl)d-‘. 

Then, by the Monotone Convergence Theorem, 

,J’ ,cl (diam&@))“-“&(@ = ,s / xl(WA@(diam BJdeh 
P 

= ,$ (diam B,)d”p” < E 

Hence for some 0 in D, E x {O} has a cover C(0) such that 

Translating C(e) appropriately gives a cover of E with 

which, as E is arbitrarily small, implies by definition that the Hausdorff dimen- 
sion of E is strictly less than d. It follows from this contradiction that s > d + 1. 

Next, we prove that s 5 d + 1. By definition, given positive S and E there ex- 
ists a cover C of E of k-dimensional balls B, with 

Xi(C) = 2 (diam B,)d*h < E/~(D) 
]=I 

with diam Bl = p-‘/ < 6. For each B, in C, construct a cover C, of D by p’ip(D) 

one-dimensional balls B,: of diameter p-‘) and let 

Blj = B/ x BJ:, 1 2 i <p”p(D). 

The collection 

C* = {B,, : BJ E C, B,; E C,} 

covers E x D and hence 

C (diam B,,)d+‘+d 5 p(D) C (diam B,)-‘(diam B,)df’+b 
B,, EC’ B, EC 

= p(D) C (diam B,)dtb < E, 
B,EC 
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whence s < d -t 1 and the lemma is proved. 0 

3.1. Auxilliary results. It is only possible determine a lower bound for the case 

m > n on a small ball in Zr, but clearly this will also be a lower bound for Zr. 
The method uses Abercrombie’s result [I] for Hr(“P ‘I; he actually proves the 
result for any ball in Z, mdrn ~ lJ Without loss of generality we restrict ourselves to 
a ball for which all the points in the ball (defined in H$(“-‘I) have linearly in- 
dependent columns. To show that such a ball exists, consider the following two 
lemmas. 

Lemma 4. Let A be a matrix in Z;’ such that ldet A[, = p-‘for somefixed in- 

teger t. Then 

Jdet (A + &)I, = (det Al, =p-’ 

-for any matri.v E = (E,,) bvith I&,& < per. 

Proof. By expanding the determinant in the usual way it is readily verified that 

( 

ai1 +&II a12 + ~12 . 4, + oh 

det(A + 5) = det ; 

41 + ~~1 an2 + E,? . . i 1 arm + E,, 

= det A + R(E), 

where R(E) is the sum of the remaining terms of the determinant, in which each 
term contains an E,~ for some i and j. Thus IR(e < p-’ whence ( det(A + &)I, = 
)detAI,. 0 

For the rest of this paper, k will denote a k x (k + r) matrix A4 with some r 

rows deleted. The next result states in essence that linear independence is an 
open property in ZF and is a familiar fact for Euclidean space. 

Lemma 5. Let a(‘), aj2), . . , a@- ‘1 be a set of linearly independent vectors in Z!:. 

Then the matrix 

A = (a(1),a(2),...,a(m~1)) = 

is of maximal rank m - 1 with ) det Al, = pet for some integer t and square matrix 

k. Consider the ball 

B(A;p-‘) = B(a(‘);p-‘) x B(a(‘);p-‘) x . . . x B(a(“-‘);p-‘) 

_for any r > t. Then every set of vectors y(‘), yc2)> . . , y(“- ‘) in B(A;p-“) is 1inearlJ 

independent. 
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Proof. As y(j) E B(a(J’;p-‘) for eachj = 1,. . . ,m - 1, we have 

where 1~~~1~ < p-’ < p -I. By relabelling if necessary we can takek to be A with 

the bottom row deleted. Let r represent the matrix (J:“) for i = 1, . . . m - 1 

andj= l,.... 171 - 1 and E the matrix E without the bottom row. Then 

1 det ?I,, = 1 det(k + E)],, = ) det k], ==p-’ > 0 

from Lemma 4 implying that the vectors y”J9 y(‘)?. . . , y(“‘-‘) are linearly in- 

dependent. q 

Now we give some definitions regarding continuously difirentiable functions. 

More details can be found in [IO]. From now on F is a non-empty set without 

isolated points. 

Definition 2. Let F c C&. The functionf’ : F --f Qp is continuously differenti- 

able at a point a E F if 

lim f(x) -f(Y) 
(.Y.J) * (0.u) X-J 

exists. The function f is continuously differentiable if f is continuously differ- 

entiable at a for all a E F. 

In other wordsfis continuously differentiable at a iffis differentiable at a and if 

for each E > 0 there exists a 6 > 0 such that if _y,y E B(a; 6) with x # y then 

f-(x) -f’b’) 
x - _I’ 

-f’(a) < E. 

P 

Definition3. LetFcQ~,f‘:F+&P,andkE{l,...,u}.Givenapointx= 

(s, 1 . . . ,x,) in F, let x’ = (x’, , . . , XL) be another point in F such that X, = _Y: for 

i # k and xx # _x$ and then consider the limit 

where a = (al,. . ,a,,) E F. If this limit exists it is called the partial derivative 

of j-with respect to the k’th coordinate. If the partial derivatives exist for each 

coordinate then f is continuously differentiable at a. 

342 



Definition 4. Let F c Cl; andA : F -+ QP bep-adic functions for i = 1 3 . . , w. If 

.f, is continuously differentiable at a E F for i = 1,. . . , u thenf = (fr , . . . ,f,,) is 
said to be continuously differentiable at a E F. 

Let J(S)(a) denote the Jacobian matrix (fi,j(a)) offat a. wheref,!, denotes the 
j’th partial derivative of the function5, that is 

&(a) = lim ‘(fi It(‘). 
yJ - uI 

x,’ - N, 
J J 

where _I$ = XI for all 1 # j and .Y~ # x;. 

Lemma6 Letf =(fi,...,fi+r)b e continuously d@erentiable at a E F (where F 
is a bounded non-empty subset of Cl,“) such that 0 < max If,,,(a)I, 5 1 and 

J(f)( ) . f . a 1s o maximal rank k. Then there exists 5 > 0 such thatf is bi-Lipschitz on 
B(a: 6). Moreprecisely there exists an integer t such thatfor any x, y E B(a; 6) 

p-fix - YI, I If(x) - f(Y)l, 5 Ix - YIP. 

Proof. As J(f )( ) a is of maximal rank k, there exists a k x k matrix with non- 
zero determinant. Let this be 

( 
h,.l(a) . f;f,.k(a) 

GG= ; 
fida) t I* .Lt.k(a) 

whereor E {I,... 1 k + r} and let 1 det J(f)(a)\, = p-l. Suppose that x, y and a 
are points in C$‘. In what follows x’ will represent the point (XI,. ,_Y,- I>?,, 

.Y,+1T.. . ~ xk). From the definition of continuous differentiability there exists 
6,, > 0 such that if .v,,sf, E B(a,; 6,,) then 

lxx’) -f;(x) 
_y/ - _I-, 

-f;.j(a) 1 < Pm’. 
r 

i.e., 

(4) .fxx’) -f;(x) cc 

"J - YJ 
=f;,J(a) + c d =f;.J(a) + 6J? 

/=/+I 

wherec/E{O,l,... ,p - 1) and (e,jlp <pm’. Let 6 = min(S,,). Then for any x, 
x’ E B(a; 5), the equation (4) holds for all i = 1,. , . , k + r andj = 1,. . . , k. Now 
assume x, y E B(a; 6). Then 
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= (f;.~ (a) + E,I )(JV - XI) + (h(a) + 62)(.~2 - x2) +. . . 

. . + (h(a) + Q)(JI - xk) 

with I&,& < p-I. Evidently 

f(Y) -f(x) = (fl(Y) -h(X)h(Y) -h(x), . ‘. ..h+r(Y) -fk+r(x)) 
= V(f)(a) + 4(x - Y) 

where E is the matrix (Ed,), implying that If(x) -f(y)l, < Klx - yip. 
For the other direction the inverse function must be determined. The func- 

tion 

g : B(a; 5) - B(a; 6) x {O}r 

given by g(x) = (x, 0.. . . , 0) is clearly one-one, onto and bi-Lipschitz. Define a 
second function f : B(a; S) x {O}r -+ Qi+r by f(x, 0,. . ,O) =f(x). Let I’ de- 
note the following matrix: Z,>,., = 0 for each i = 1,. . . ~ k and j = 1,. . , k + r; for 
each yI E { 1,. . ~ k + r}\{/J, 1 &}, Z{,,I = 1 and I:,,, = 0 for i # j (this matrix 
has been chosen for convenience). Let klf = Mf(x, y) be the matrix J(f)(a) + E 
augmented by I’ so that-M7 is square. It can be readily verified that 

(5) f(Y) -f(x) =f(Y) -S(x) = Jq 

and that the determinant of MT satisfies 

I det A4flP = 1 det(J(f)(a) + ?)I, = 1 det J(f)(a)I, = p-’ > 0 

(from Lemma 4). Therefore the inverse matrix A$-’ exists and 

X-Y 
0 

0 

= M;‘(J(x) -f(Y)). 

0 

It follows that 
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hl . . . h,k+r 

where (bi,) is the adjoint matrix of Mr. Each b,j is the ij’th cofactor of Mj im- 
plying, by virtue of the ultrametric Ibl,jp 5 1. Hence 

Ix-YIpI l I det M/lp 
If(x) -f(Y)lp = P’lf(4 -f(Y)Ip 

completing the proof. 0 

It would also be possible to prove this lemma using a p-adic maximal rank 
theorem as in the real case [6]. Such a theorem exists over local fields when the 
number of variables is at least the number of functions, see [2, Chapter 2,10.12] 
but it is not immediately obvious how to adapt the proof for the com- 
plementary case. Inverse function theorems over local fields differ from those 
of the real case, see [lo, page 75, Example 26.61 and [2, Chapter 2, lO.lO]. Re- 
cently however de Smedt has obtained a C’ p-adic higher dimensional inverse 
function theorem [5] and it seems likely that this could be extended to a max- 
imal rank result. 

3.2. Completing the proof of the theorem. Let V(m,n; r) denote the set of 
pointsX=(x~‘~,...,x~fl~)in~~I)suchthat(x~1~,...,x~“-‘~)~W(m,m-l;r) 
and x(J) = CyZ-il (‘) W, x (I) with W, E ZP forj = m, . . . , n. It is readily verified, by 
checking that )q . x(J)lP < ]q(-‘, that V(m, n; T) C W(m,n; 7). The rest of the 
paper involves constructing a particular function J proving that it is bi- 
Lipschitz, and showing that 

f(w(m - l,m;T) x Z(nf-l)(n-m+l)) 2 V(m,n;T). 
P 

Then Lemmas 2 and 3 can be used to obtain the Hausdorff dimension of 
V(m, n; T) and hence a lower bound for the Hausdorff dimension of W(m, n; T). 

For simplicity we start with the case m = n. 

Let a(‘), ac2), . . . , a(“- ‘) be linearly independent column vectors in Z,!,“. Then 
the m x m - 1 matrix 

A = (a(1),a(2),...,acm-1)) 

is of maximal rank with ( det kl, = p-’ for some t E Z, where by relabelling if 
necessary2 is the matrix A without its bottom row. Choose 6 such that every 
matrix in the ball B(A; S) has m - 1 linearly independent column vectors (this is 
possible by Lemma 5). Define the function 

f:B(A;6) xZ;-‘--t&4$) XZI,” 

by 
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( 
I?, - I 

(x i1),x(*1 ~. . ,x(“‘- ‘1, ,Z’,, LV2, . . . ( w,,,_ ,) H x(“, x(2), . . . ,x(“- I), c w-,x(” 
i-=1 

This can be written more concisely asf(X, w) = (X, Xw ‘), where w ’ denotes 
the transpose of w. Now 

f((W(m,m- 1;7)flB(A;b)) x‘q-‘) = V(m,m;7)ll(B(A;S) xq 

and fis one-one as points in B(A; 5) have linearly independent column vectors. 
Thus to obtain the HausdorfT dimension it suffices to prove that f is bi- 
Lipschitz. 

Lemma 7. There exists 5 > 0 such thatforany (X, v), (Y, w) E B(A; 6) x Z,“-’ 

P-lI(YTw) - (Kv)I, 5 lf(Y>W) -f(Xv)I, 5 I(Y,w) - (Kv)l,, 

where A = (a(1),a(2), . . ,a(“-l)) isasabove 

Proof. It is easy to verify that f is continuously differentiable at any point in 
B(A;S) x q-‘. It is also readily verified that J(f)(A, w) is of maximal rank 
m’-lforanywEZ:-’ with I&(A, w)Ip _< 1. In fact 

where I is the identity matrix and E represents a matrix depending on w so that 

( det J(f)(a)/, = ( det kl, =p-‘. 

Hence from Lemma 6 there exists 5’ > 0 such that 

P-W-J) - V>W)Ip I If(Y,W) -“f(~J)l, 5 I(X,v) - Pwp 

forany(X,v),(Y,w)EB(A;O’)xZ~~‘. cl 

Thus from Lemmas 2 and 3, we get that 

dim W(m, m; 7) > dim V(m, m; 7) = dim( W(m, m - 1; T) x Zj’- ‘) 

= dimW(m,m-l;T)+m-l=(m-l)m+F 

from (1) with n = m - 1. This, together with lemma 1, proves the theorem for 

m = n. 
There now remains the case m < n. This is done exactly as above but using 

the function 

h: B(A;h) x z$‘-l)(n-m+l) _+ B(A$j) x z’b-m+l) 

defined by 

h(X, w(I), . . . ( W(n-nl+‘)) = (x,x(w(‘y,. . . ,X(w(n-m+‘y). 

Plainly 

346 



h((W(m,m- 1;r) x B(A;S)) x Zj;nl-‘)(n-~~+“) 

= V(m,n;7) n (B(A;6) x q-“‘+I’). 

It is readily verified that the Jacobian J(f)(A, w(I). . . . , WC”-“I+‘)) is ofmaximal 
rank for any (w(I)>. . , w(“-“‘+I)) in Z,, @I~ ‘jcn pnr+ I). By Lemma 6 this implies 
that there exists 5’ > 0 such that h is bi-Lipschitz on B(A, W; 6’). Hence from 
Lemmas 2 and 3 we obtain that 

dim W(m,n;r) > dim V(m,n;r) = dim (W(m,m - 1:~) x Z~-l)‘npni+‘)) 

= dim W(m,m - 1; r) + (n - m + l)(m - 1) = (m - I)n + 5 

again from (1). If r I m/n then it is shown in [l] that W(m, n; T) has full Haar 
measure which implies that its Hausdorff dimension is mn and completes the 
proof of Theorem 1. q 
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