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COBORDISM INVARIANCE OF THE HOMOTOPY TYPE OF

THE SPACE OF POSITIVE SCALAR CURVATURE METRICS

MARK WALSH

(Communicated by Daniel Ruberman)

Abstract. Let X and Y be a pair of smooth manifolds, each obtainable
from the other by surgery in codimension at least three. We show that the
corresponding spaces Riem+(X) and Riem+(Y ), respectively consisting of
Riemannian metrics of positive scalar curvature on X and Y , are homotopy
equivalent. This result is originally due to V. Chernysh but remains unpub-
lished.

1. Introduction

This paper concerns the space of metrics of positive scalar curvature (psc-metrics)
on a smooth manifold X. Denoted Riem+(X), this space is an open subspace of
the space of all Riemannian metrics on X, Riem(X), equipped with its standard
smooth topology. In general, little is known about the topology of Riem+(X), al-
though some results have been obtained at the level of 0 and 1-connectivity; see [9]
for a survey. This is in contrast to the problem of whether or not X admits a psc-
metric, of which a great deal is known; see [6]. We are interested in the homotopy
type of Riem+(X) and how it is affected by surgery on the underlying manifold.
Our main result, Theorem 4.1, is as follows.

Main Theorem. Let X be a smooth compact manifold of dimension n. Suppose
Y is obtained from X by surgery on a sphere i : Sp ↪→ X with p + q + 1 = n and
p, q ≥ 2. Then the spaces Riem+(X) and Riem+(Y ) are homotopy equivalent.

A consequence of this, Corollary 4.2, is that in the case of simply connected spin
manifolds of dimension at least five, the homotopy type of the space of psc-metrics
is a spin-cobordism invariant. The main result of this paper is originally due to V.
Chernysh in [2], although it remains unpublished. Our proof is much shorter and
makes use of work done in [8].

The main idea behind the proof of Theorem 4.1 is to exhibit a homotopy equiva-
lence between the space Riem+(X) and a certain subspace Riem+

std(X). This sub-
space consists of metrics which are “standard” near an embedded surgery sphere. If
Y is obtained from X by surgery on this sphere, then X is obtainable from Y by a
complementary surgery. In turn, Riem+(Y ) is homotopy equivalent to a subspace
Riem+

std(Y ) of metrics which are standard near this complementary surgery sphere.

The space Riem+
std(Y ) is demonstrably homotopy equivalent to Riem+

std(X). To
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2476 MARK WALSH

show that Riem+(X) and Riem+
std(X) are homotopy equivalent, we use an inter-

mediary space of “almost standard” metrics, Riem+
Astd(X), where

Riem+
std(X) ⊂ Riem+

Astd(X) ⊂ Riem+(X).

In Lemma 3.3, we show that there is a deformation retract from Riem+
Astd(X) to

Riem+
std(X). It remains to show homotopy equivalence between Riem+

Astd(X) and

Riem+(X). We now use the fact, due to Palais in [4], that both of these spaces are
dominated by CW-complexes. Thus, by a theorem of Whitehead, it is enough to
show that the relative homotopy groups πk(Riem+(X),Riem+

Astd(X)) are trivial
for all k. This is the most delicate step and is achieved by a family version of
the surgery technique of Gromov and Lawson; see [8] for a detailed account. A
crucial requirement of this technique is that the embedded surgery spheres are in
codimension at least three, hence the need for this hypothesis.

2. Background

Given its importance in our work, it is worth recalling what we mean by surgery.
Let X denote a smooth manifold of dimension n and let i : Sp ↪→ X be an
embedding with trivial normal bundle. Thus, we can extend i to an embedding
ī : Sp ×Dq+1 ↪→ X, where p+ q + 1 = n. By removing an open neighbourhood of

Sp, we obtain a manifold X \ ī(Sp ×
◦
D

q+1
) with boundary ī(Sp × Sq). Here

◦
D

q+1

denotes the interior of the disk Dq+1. As the handle Dp+1 × Sq has diffeomorphic

boundary, we can use the map ī|Sp×Sq to glue the manifolds X \ ī(Sp ×
◦
D

q+1
) and

Dp+1 × Sq together by identifying their boundaries and consequently obtain the
manifold

Y = (X \ ī(Sp ×
◦
D

q+1
)) ∪ī (D

p+1 × Sq).

The manifold Y is said to be obtained from X by surgery on the embedding ī (or
by a p-surgery or codimension (q + 1)-surgery). In particular, this surgery may
be “reversed” by performing a complementary surgery on the above embedding
Dp+1 × Sq ↪→ Y to restore the original manifold X.

The principal technique in the construction of new psc-metrics comes from the
Surgery Theorem of Gromov and Lawson in [3] (proved independently by Schoen
and Yau [7]).

Surgery Theorem. Let X be a smooth manifold. If X admits a metric of positive
scalar curvature, then so does any manifold which is obtained from X by surgery
in codimension at least three.

A consequence of this theorem was an enormous increase in the number of known
examples of manifolds which admit psc-metrics. Moreover, the proof by Gromov
and Lawson is constructive. More precisely, given a psc-metric g on X, there is an
explicit technique for building a new psc-metric g′ on Y , the manifold obtained by
surgery. Shortly, we will provide a brief review of this construction. Before doing
this, we need to introduce some notation.

We denote by ds2n the standard round metric of radius 1 on the sphere Sn. Let
f : [0,∞) → [0,∞) be a smooth function which satisfies the following conditions:

(i) f(0) = 0, f ′(0) = 1.
(ii) The mth derivative f (m)(0) = 0, when m is even.
(iii) f(t) > 0, when t > 0.
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THE SPACE OF POSITIVE SCALAR CURVATURE METRICS 2477

Then, the metric dr2 + f(r)2ds2n−1 on (0,∞)×Sn−1 extends uniquely to a smooth
metric on the plane Rn, where r denotes the radial distance coordinate. This follows
from the results of Chapter 1, Section 3.4 of [5]. Moreover, the resulting “warped
product metric” is radially symmetric and has scalar curvature R given by the
following formula:

(2.1) R = −2(n− 1)
f ′′

f
+ (n− 1)(n− 2)

1− (f ′)2

f2
.

An important example of such a metric is determined as follows. Let f1 :
[0,∞) → [0,∞) be a smooth function which satisfies the following conditions:

(i) f1(t) = sin t, when t is near 0.
(ii) f1(t) = 1, when t ≥ π

2 .

(iii) f1
′′(t) < 0, when 0 ≤ t < π

2 .

More generally, for each δ > 0, the function fδ : [0,∞) → [0,∞) is defined by the
formula

fδ(t) = δf1(
t

δ
).

By restricting fδ to the interval (0, b], where b ≥ δ π
2 , the metric dt2 + fδ(t)

2ds2n−1

on (0, b]× Sn−1 extends uniquely to a smooth O(n)-symmetric metric on the disk
Dn. This metric, known as a torpedo metric, is denoted ḡntor(δ); see Figure 1. It is
a round n-sphere of radius δ near the centre of the disk, and a standard product
of (n − 1)-spheres of radius δ near the boundary, at least when b > δ π

2 . In the
case when b = δ π

2 , the metric is only a product near the boundary infinitesimally,

though it smoothly attaches to a standard product dt2 + δds2n−1. This is sufficient
for our purposes. From (2.1), we see that the scalar curvature of such a metric can
be bounded below by an arbitrarily large positive constant by choosing sufficiently
small δ.

Figure 1. The function fδ and the resulting torpedo metric

Remark 2.1. We have made a slight generalisation to the definition of torpedo
metric given in [8] to allow for an infinitesimal product near the boundary. As we
can still smoothly attach a standard product to this boundary, all of the results
in [8] still hold. In general, we will suppress the δ term when writing ḡntor(δ) and
simply write ḡntor, knowing that we may choose δ to be arbitrarily small if necessary.

We will now describe the Gromov-Lawson surgery technique. The setup de-
scribed here will be used throughout the rest of the paper. Fix a Riemannian
metric m on X and an embedding i0 : Sp ↪→ X. The Riemannian metric m is a
reference metric and is not required to have positive scalar curvature. We assume
also that the embedding i0 has trivial normal bundle, denoted by N . Moreover, let
p + q + 1 = n with q ≥ 2. By choosing an orthonormal frame for N over i0(S

p),
we specify a bundle isomorphism φ : Sp × R

q+1 → N . Points in Sp × R
q+1 will

be denoted by (y, x). Let r denote the standard Euclidean radial distance function
in R

q+1 and let Dq+1(ρ) = {x ∈ R
q+1 : r(x) ≤ ρ} denote the standard Euclidean
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2478 MARK WALSH

disk of radius ρ. We will choose ρ̄ > 0 sufficiently small so that the composition
iρ = exp ◦φ|Sp×Dq+1(ρ), where exp denotes the exponential map with respect to
the metric m, is an embedding for all ρ ∈ (0, ρ̄]. We will also denote by N(ρ) the
tubular neighbourhood of i0(S

p), which is the image of each such embedding. This
information is summarised in the commutative diagram below, where p1 denotes
projection onto the first factor:

Sp ×Dq+1(ρ) Sp × R
q+1 N

Sp X

φ

exp
p1 p1

i0

Now, let g be any psc-metric on X. In their proof, Gromov and Lawson show that
g can be replaced by a psc-metric gstd, which satisfies the following properties:

(1) gstd = g on X \N(ρ̄).

(2) For some ρ0 ∈ (0, ρ̄) and some δ > 0, gstd = ds2p + gq+1
tor (δ) on N(ρ0).

From here, the Surgery Theorem follows easily, as the standard part of gstd can
easily be replaced by a metric of the form gp+1

tor + δ2ds2q . A detailed analysis of this
construction is performed in [8], and so we will be as brief as possible. We will
consider the construction as consisting of two stages.

Stage 1. We begin by constructing a particular hypersurface M in N(ρ̄) × R,
where N(ρ̄)×R is equipped with the metric g+ dt2. The hypersurface is obtained
by pushing out bundles of geodesic spheres of radius r in N(ρ̄), with respect to a
smooth curve γ in the (t, r)-plane of the type depicted in the first image in Figure 2.
This curve consists of three straight line segments: vertical, tilted and horizontal,
which are connected by a pair of concave upward curves. Finally, the horizontal
piece is connected to the t-axis by means of a curve of downward concavity which
intersects the axis as a circular arc. Given such a curve γ, we denote by gγ the
metric obtained by replacing g with the induced hypersurface metric. The vertical
segment of γ allows for a smooth transition to the original metric on the rest of X.
The fact that such a curve can be constructed to ensure positive scalar curvature
of the induced metric is proved in [3] (although a minor error is later corrected in
[6]). Of crucial importance is the fact that there is a sphere factor of dimension
at least two, the curvature of which may be made arbitrarily large. We will refer
to such curves as Gromov-Lawson curves. In [8], we prove the following stronger
statement.

Lemma 2.1 ([8]). For each Gromov-Lawson curve γ, there is a homotopy γs, s ∈ I,
through smooth curves in the (t, r)-plane, which satisfies the following conditions:

(1) γ0 is the segment [0, ρ̄] on the vertical axis.
(2) Each curve γs begins at the point (0, ρ̄), proceeds initially as a vertical seg-

ment and finishes as a curve which, infinitesimally at least, intersects the
t-axis as the arc of a circle.

(3) γ1 = γ.
(4) The induced metric gs = gγs

has positive scalar curvature for all s ∈ I.

Proof. This is done in great detail in [8]. Roughly speaking, the homotopy γs, s ∈ I,
is constructed by first performing a small tilt to the horizontal segment of γ, pro-
ducing a curve of the type shown in the second picture of Figure 2. Then, treating
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THE SPACE OF POSITIVE SCALAR CURVATURE METRICS 2479

this curve as the graph of a function t = t(r) over the r-axis, a straightforward
linear homotopy to the r-axis does the rest. Positivity of the scalar curvature is
preserved by the fact that the linear homotopy decreases the second derivative of
this curve but does not increase the radii of the geodesic spheres. �

t

r

Figure 2. Gromov-Lawson curves

Henceforth, we will use the term isotopy to describe a path in Riem+(X). Also,
metrics which lie in the same path component of Riem+(X) will be said to be
isotopic.

Stage 2. Near i0(S
p), the metric gγ is approximately a Riemannian submersion

metric on the total space of the bundle N (ρ̄) → i0(S
p). The base metric is the

induced metric on i0(S
p). The metric on fibres is (due to the shape of γ) close

to the standard torpedo metric gq+1
tor (δ), where δ may need to be very small. A

straightforward linear homotopy allows for adjustment of the fibres near i0(S
p) to

obtain a Riemannian submersion. Finally, O’Neill’s formulae (Chapter 9 of [1])
show that the positivity of the curvature on the disk factor allows us to homotopy
through psc-submersion metrics, near Sp, to obtain the desired metric gstd. In [8],
we actually prove something a little stronger.

Lemma 2.2 ([8]). There is an isotopy α : I = [0, 1] → Riem+(X) with α(0) = g,
α(1) = gstd and so that α(t) is a psc-metric for all t ∈ I.

Proof. We combine the isotopy constructed in Lemma 2.1 with a further isotopy
through submersion metrics. This further isotopy involves a linear homotopy on
fibres to obtain the desired torpedo metric on the disk factor, a linear homotopy
on the base to obtain the desired round metric on i0(S

p) and a linear homotopy
through horizontal distributions to obtain a flat distribution and consequently a
product metric. All of this is made possible by the fact that the metric on the fibres
may be adjusted to carry arbitrarily large positive scalar curvature. As before, full
details can be found in [8]. �

3. Some observations about the Gromov-Lawson construction

We now make a number of observations, which will be of crucial importance in
proving the main theorem. Firstly, for each g ∈ Riem+(X), the isotopy gs, s ∈ I,
constructed in Lemma 2.2, is not unique. There are several choices involved in the
construction, and so it is worth analysing how these choices impact the resulting
isotopy. The choice of reference metric and the normal coordinate neighbourhood
around the embedded surgery sphere are fixed and do not change as we vary the
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2480 MARK WALSH

choice of psc-metric g. However, it is worth noting that choosing a different refer-
ence metric or a different set of normal coordinates has no effect on the process.
We make this observation in the form of a lemma.

Lemma 3.1. The Gromov-Lawson isotopy α constructed in Lemma 2.2 is unaf-
fected by the choice of reference metric m and bundle isomorphism φ : Sp×R

q+1 →
N .

Proof. In stage 1, all of our adjustments are radially symmetric and depend only
on the Euclidean distance function r. This function is the same for any metric and
so the choice of reference metric m is unimportant. In stage 2, adjustments consist
of linear homotopies to metrics which, again, are standard when r is near zero and
transition to the original metric by a smooth adjustment in the radial direction.
Once again, the choice of m is unimportant.

The choice of bundle isomorphism φ is a choice of orthonormal frame on the
embedded surgery sphere. In particular, we can equate all such choices with the
obvious action of O(p)×O(q+1) on this bundle. In Lemma 2.10 of [9], we show that
the entire Gromov-Lawson construction is equivariant with respect to this action
and so the choice of normal coordinates is unimportant. �

There are some choices which do make a difference. For example, there are many
possible choices of a Gromov-Lawson curve γ which will work. Furthermore, the
radius of the q-dimensional sphere factor can be chosen to be arbitrarily small.
However, these choices only mildly affect the isotopy. Overall, the construction
does not involve any significant choices and is mostly a sequence of linear homo-
topies from arbitrary to standard pieces. With this in mind we make the following
definition.

Definition 3.1. For each metric g ∈ Riem+(X), isotopies of the type described in
Lemma 2.2 are known as Gromov-Lawson isotopies.

Before making our second observation, we define some important subspaces of
Riem+(X). Firstly, for each metric g ∈ Riem+(X), let GL(g) be the subspace of
Riem+(X) obtained by taking the union of all metrics contained in all Gromov-
Lawson isotopies emanating from g. Next, we consider the space of psc-metrics on
X which are standard near i0(S

p). This is

Riem+
std(X) = {g ∈ Riem+(X) : i∗ρ(g) = ds2p + gq+1

tor , for some ρ ∈ (0, ρ̄]}.
Finally, we will also be interested in the space of all metrics obtained by Gromov-
Lawson isotopy of these metrics. Thus, we define

Riem+
Astd(X) =

⋃

g∈Riem+
std(X)

GL(g).

We now make our second observation in the form of a lemma.

Lemma 3.2. The subspace Riem+
Astd(X) ⊂ Riem+(X) remains fixed if we vary

the choice of reference metric m or the bundle isomorphism φ.

Proof. This is an immediate consequence of Lemma 3.1. �
Our final observation, which also takes the form of a lemma, is the key technical

step in proving our main theorem.

Lemma 3.3. The spaces Riem+
std(X) and Riem+

Astd(X) are homotopy equivalent.
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Proof. We will exhibit a deformation retract of the space Riem+
Astd(X) down to the

subspaceRiem+
std(X). More precisely, we will describe a process which continuously

adjusts metrics in Riem+
Astd(X), making them standard near i0(S

p) while having

no effect on metrics which are already in Riem+
std(X). Before doing this we need

to analyse the effect of the Gromov-Lawson isotopy on metrics in Riem+
std(X).

Let g ∈ Riem+
std(X). Let ρstd ∈ [0, ρ̄] be the supremum over all ρ ∈ [0, ρ̄], for

which the metric g takes the form

(3.1) g|N(ρstd) = ds2p + dr2 + w(r)2ds2q,

on N(ρ), where w : (0, ρ̄) → (0,∞) is a smooth function. Note that when r
is near 0, the function w is the torpedo function fδ described earlier. We now
restrict our attention to the region N(ρstd). Applying stage 1 of the Gromov-
Lawson construction to the metric g produces an isotopy through metrics, which at
all times takes the form shown in (3.1). Furthermore, although the function w may
not always be a torpedo function near 0, it will at all times satisfy the following
conditions:

(1) w′(0) = 1 and w′(r) ≥ 0, for all r ∈ (0, ρstd).
(2) w(m)(0) = 0, when m is even.
(3) w′′(r) ≤ 0, when r is near 0.

Finally, as each such metric is a standard product near i0(S
p) and as stage 2 of

the Gromov-Lawson construction is essentially just a sequence of linear homotopies
to the standard form, we may conclude that stage 2 leaves all of these metrics
unchanged. Thus, for each g ∈ Riem+

Astd(X), there are parameters 0 < ρstd ≤ ρ̄
so that on N(ρstd), g takes the form described in (3.1) for some smooth function
w : (0, ρstd) → (0,∞) (determined by g) which, although not necessarily a torpedo
function, satisfies the above conditions.

Considering elements of Riem+
Astd(X) in this way allows us to construct the

necessary deformation retract by focussing on the corresponding w functions. In
the case where w is a torpedo function near 0, we wish to make no change. In all
other situations we wish to make the function w torpedo-like. Before considering the
various cases, we need some notation. Let ρ′0 denote the infimum over ρ ∈ (0, ρstd]
for which w′(ρ) = 0. Let ρ′′0 denote the infimum over ρ ∈ (0, ρstd] for which
w′′(ρ) = 0. Finally let ρ0 be defined as

ρ0 = min{ρstd, ρ′0, ρ′′0}.

The function w (and consequently the parameter ρ0) varies continuously over the
space of metrics Riem+

Astd(X). In turn, our adjustments will depend continuously
on w. There are four cases to consider. To aid the reader we illustrate these
respectively in Figure 3. In each case, the dashed vertical line is t = ρ0.

(1) Suppose ρ0 = ρ′0 = ρ′′0 ≤ ρstd. In this case, we perform a standard linear
homotopy, along (0, ρ0], from w to the torpedo function fw(ρ0).

(2) Next, suppose ρ0 = ρ′0 ≤ ρstd and ρ′0 < ρ′′0 . In this case, w′ reaches 0
before w′′. Near ρ0, w

′ is small. Thus, it follows from formula (2.1) that
the function w may be adjusted near ρ0 and satisfy positivity of the scalar
curvature by keeping w′′ nonpositive. It is therefore possible to specify a
parameter ε(w), depending continuously on w, and a homotopy of w which
is the identity of (ρ0 − ε(w), ρ0 + ε(w)), and so that the resulting function
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2482 MARK WALSH

satisfies case (1). This homotopy involves continuously increasing the sec-
ond derivative of w so that it equals zero at ρ0 but remains nonpositive at
all times. We then proceed as in case (1).

(3) Now, suppose ρ0 = ρ′′0 ≤ ρstd and ρ′′0 < ρ′0. Once again, we want to adjust
w so that it belongs in case (1). Straighten out the graph of w immediately
to the left of ρ0 so that for some parameter ε(w), w proceeds as a straight
line segment with slope w′(ρ0) on (ρ0 − ε(w), ρ0]. This will necessitate
homothetically shrinking the graph of w along (0, ρ0 − ε(w)) but won’t
damage the positivity of the scalar curvature. Finally, on some subinterval
(ρ0−ε(w), ρ0−ε(w)+ε′) ⊂ (ρ0−ε(w), ρ0], perform a gradual increase in the
second derivative to satisfy the conditions of case (1). It follows from the
bending argument of Gromov and Lawson, described in detail in [8], that
provided w(ρ0 − ε(w)) is chosen small enough, this can be done without
damaging positivity of the scalar curvature.

(4) Finally, suppose ρ0 = ρstd < min{ρ′0, ρ′′0}. In this case, w is concave down-
ward on all of (0, ρstd]. Immediately to the left of ρstd, adjust w to bring
the second derivative up to 0 on some point ρ0 − ε(w). This can be done
so that w′′ ≤ 0 and so that positive scalar curvature is maintained. Then
proceed as in case (3).

Figure 3. The various forms w may take near 0.

Metrics which are already standard will immediately lie in case (1), in which case the
corresponding linear homotopy will have no effect. This completes the proof. �

4. The Main Theorem

We are now in a position to prove our Main Theorem.

Theorem 4.1. Let X be a smooth compact manifold of dimension n. Suppose Y
is obtained from X by surgery on a sphere i : Sp ↪→ X with p + q + 1 = n and
p, q ≥ 2. Then the spaces Riem+(X) and Riem+(Y ) are homotopy equivalent.

Proof. Choose a reference metric m and a trivialisation φ : Sp × R
q+1 → N as

above. Let īρ̄ : Sp × Dq+1(ρ̄) ↪→ X be the framed embedding of the sphere Sp

described above, where ρ̄ is chosen sufficiently small. The manifold Y is assumed
to be the manifold obtained by doing surgery on this embedding. This surgery
can be canonically reversed by performing a surgery on the embedded Sq of the
attached handle. As p, q ≥ 2, both surgeries are in codimension ≥ 3.

Recall that Riem+
std(X) denotes the space of psc-metrics on X which are stan-

dard near i(Sp). Let Riem+
std(Y ) denote the analogous space of psc-metrics on Y

which are this time standard near the embedded Sq⊂Y . Note that the choices of
reference metric and normal coordinates are unimportant here. Let j : Riem+

std(X)

→ Riem+
std(Y ) be the map which is defined on a metric g ∈ Riem+

std(X) as follows.
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THE SPACE OF POSITIVE SCALAR CURVATURE METRICS 2483

Choose the smallest ρ ∈ (0, ρ̄] so that the metric induced on N(ρ) is the torpedo

gq+1
tor (δ) on the disk factor. Thus, on each disk, the metric will only be infinitesi-
mally a product near the boundary. Then attach to g|X\N(ρ) a standard product

gp+1
tor + δ2ds2q , ensuring once again that gp+1

tor is again only infinitesimally a product
near the boundary (the smallest possible torpedo metric). The resulting metric,
denoted j(g), is an element of Riem+

std(Y ). Furthermore, the association g 
→ j(g)
defines a homeomorphism, with inverse defined completely analogously.

Applying Lemma 3.3 gives us that the spaces Riem+
Astd(X) and Riem+

Astd(Y )

are now homotopy equivalent, and so it remains to show that Riem+
Astd(X) is

homotopy equivalent to Riem+(X). It follows from the work of Palais in [4] that
the spaces Riem+

Astd(X) and Riem+(X) are dominated by CW-complexes. Thus,
by the theorem of Whitehead, we need only show that the relative homotopy groups
πk(Riem+(X),Riem+

Astd(X)) are all trivial in order to demonstrate the desired
homotopy equivalence.

Let λ ∈ πk(Riem+(X),Riem+
Astd(X)). The element λ is a homotopy equivalence

class of commuting diagrams of the type shown below:

Sk−1 Dk

Riem+
Astd(X) Riem+(X)

Thus, λ is represented by a family of psc-metrics in Riem+(X) which is param-
eterised by a disk. Furthermore, the restriction of this parameterisation to the
boundary ∂Dk = Sk−1 is a map into Riem+

Astd(X). In Theorem 2.13 of [8], we
show that the Gromov-Lawson isotopy of Lemma 2.2 holds for compact families of
psc-metrics and so we may apply it to the family parameterised by the disk Dk.
By definition, metrics in Riem+

Astd(X) remain in this space throughout the isotopy,
and so there is a continuous deformation through diagrams of the type above to
one in which the image of the map from Dk lies entirely in Riem+

Astd(X). This
completes the proof. �

An immediate corollary of Theorem 4.1 is that, when X is a simply connected
spin manifold of dimension ≥ 5, the homotopy type of the space Riem+(X) is an
invariant of spin cobordism.

Corollary 4.2. Let X0 and X1 be a pair of compact simply connected spin mani-
folds of dimension n ≥ 5. Suppose also that X0 is spin cobordant to X1. Then the
spaces Riem+(X0) and Riem+(X1) are homotopy equivalent.

Proof. This follows from Theorem B of [3], where the authors show that any two
such manifolds which are spin cobordant can be mutually obtained from the other
by codimension ≥ 3 surgeries. The idea is to show that, given some manifold W ,
a spin cobordism of X0 and X1, the interior of W can be modified by surgery to
make H1(W,X0), H2(W,X0), Hn(W,X0) and Hn−1(W,X0) trivial. By a theorem
of Whitney, Theorem 2 of [10], generators of these relative homology groups can
be represented by embedded spheres. The fact that W is spin (i.e. its first and
second Stiefel-Whitney classes vanish) means that these embedded spheres have
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trivial normal bundle and so surgery can be performed. Thus, W will admit a
Morse function f : W → I, with f−1(0) = X0, f

−1(1) = X1 and so that all critical
points of the functions f and 1− f correspond to surgeries in codimension at least
three. �

Acknowledgements

The author thanks Boris Botvinnik at the University of Oregon, Christine Escher
at Oregon State University, and David Wraith at NUI Maynooth, Ireland, for their
helpful comments.

References

1. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987. MR867684 (88f:53087)

2. V. Chernysh, On the homotopy type of the space R+(M), Preprint, arXiv:math.GT/0405235
3. M. Gromov and H. B. Lawson, Jr., The classification of simply connected manifolds of positive

scalar curvature, Ann. of Math. (2) 111 (1980), 423–434. MR577131 (81h:53036)
4. R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.

MR0189028 (32:6455)
5. P. Peterson, Riemannian Geometry, 2nd Edition, Springer, 2006. MR2243772 (2007a:53001)
6. J. Rosenberg and S. Stolz, Metrics of positive scalar curvature and connections with surgery,

Surveys on Surgery Theory, Vol. 2, Ann. of Math. Studies 149, Princeton Univ. Press, 2001.
MR1818778 (2002f:53054)

7. R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curvature,
Manuscripta Math. 28 (1979), 159–183. MR535700 (80k:53064)

8. M. Walsh, Metrics of positive scalar curvature and generalised Morse functions, Part I, Mem-
oirs of the American Mathematical Society. Volume 209, No. 983, January 2011. MR2789750
(2012c:53049)

9. M. Walsh, Metrics of positive scalar curvature and generalised Morse functions, Part II.
arXiv.org/0910.2114. To appear in Trans. Amer. Math. Soc.

10. H. Whitney, Differentiable Manifolds, Ann. of Math. (2) 37 (1936), 645–680. MR1503303

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331

Current address: Department of Mathematics, Statistics and Physics, Wichita State Univer-
sity, Wichita, Kansas 67260

E-mail address: walsh@math.wichita.edu

Licensed to Oregon St Univ. Prepared on Mon Mar  3 17:04:21 EST 2014 for download from IP 128.193.163.187.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=867684
http://www.ams.org/mathscinet-getitem?mr=867684
http://www.ams.org/mathscinet-getitem?mr=577131
http://www.ams.org/mathscinet-getitem?mr=577131
http://www.ams.org/mathscinet-getitem?mr=0189028
http://www.ams.org/mathscinet-getitem?mr=0189028
http://www.ams.org/mathscinet-getitem?mr=2243772
http://www.ams.org/mathscinet-getitem?mr=2243772
http://www.ams.org/mathscinet-getitem?mr=1818778
http://www.ams.org/mathscinet-getitem?mr=1818778
http://www.ams.org/mathscinet-getitem?mr=535700
http://www.ams.org/mathscinet-getitem?mr=535700
http://www.ams.org/mathscinet-getitem?mr=2789750
http://www.ams.org/mathscinet-getitem?mr=2789750
http://www.ams.org/mathscinet-getitem?mr=1503303

	1. Introduction
	2. Background
	3. Some observations about the Gromov-Lawson construction
	4. The Main Theorem
	Acknowledgements
	References

