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Abstract  

A compact condition is obtained that guaran- 
tees the stability of a single convex sum of a 
pair of related matrices. It is anticipated that 
the proof presented for a single pencil can be 
modified to  yield conditions for a pair of related 
pencils . 

1 Introduction 

We are interested in the problem of determin- 
ing appropriate conditions on the matrices A1 
and A2 that are necessary and sufficient for the 
stability of the convex sums (pencils) 

where A1 , A2 are real n x n matrices and A2 = 
A1 + B- where rank B = 1. Problems of this 
nature can be readily found in the literature 
on robust stability of linear systems [l]. More 
recently, research on the stability of switching 
systems constructed by switching between two 
linear systems [2,3], has illustrated the impor- 
tance of convex sums of the form of equations 
(1) and (2). In this paper we begin the study of 
establishing compact conditions that are neces- 
sary and sufficient for the stability of both con- 
vex sums simultaneously by presenting a new 
sufficient condition for the stability of a single 
convex sum. We note that the proof of our con- 
dition is based on the original matrices A1 and 
A2, and hence differs considerably from treat- 
ments of similar problems in the literature [1,4]. 

2 Main result 

Due to space considerations some of the proofs 
are omitted. Full details can be found in [5]. 

Lemma 1. Suppose A1 and A2 = A1 + B are 
real n x n stable matrices and that B has rank 
one. Then A,'& has no negative eigenvalues. 

The main result of this paper is the following 
theorem which gives a sufficient condition for 
the stability of a convex sum of two matrices. 

Theorem 1 .  Suppose A1 and A2 = A1 + B 
are real n x n stable matrices and that B has 
rank one. Suppose that A1A2 has no negative 
eigenvalues. Then a A l +  (1 - &)A2 is stable for 
all a with 0 5 or 5 1. 
Proof : We will prove the result by contradic- 
tion. Suppose that for some Q with 0 < Q < 1, 
we have that aAl+  (1 - a)A2 is unstable. Thus, 
A1 + 6B is unstable and has a purely imaginary 
eigenvalue i7 (7 real) for some 6 with 0 < 6 < 1. 
Note that Lemma 1 implies that 7 # 0. Let 
ul, 'u2 be eigenvectors of A1 + 6B corresponding 
to iy,-iy respectively. We may assume that 
v1 = u1 + iuz and v2 = UI - iuz where ~ 1 , 2 1 2  

are real vectors. We get that U I  and 212 are lin- 
early independent over the reals. Let U be the 
real subspace spanned by u1 and 212. Note that 

(3) ((Al + c ~ B ) ~  + r21)u = 0, V U E U 

Let K = (w E Rn : Bur = 0). Then, d imK = 
n-1 and dimU = 2 and so dim(KnU) 2 1. Let 
U be a non-zero element in KnU.  Then Bu = 0 
and so (3) implies that  ((AI +6B)A1 +y21)u = 
0. Thus, (A1 +6B)A1 (and hence, AI(A1+6B)) 
has -y2 as an eigenvalue. So, 

det(Al(A1 + 6B) -+ r21) = 0 (4) 
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I+zAL2 is invertible for s 2 0 and so f(s, y) = 
(det A1)2 det ( I  + zAF2)g(s, y) where g(z, y) E 
det(1 + yA;'B(I -t zAf2)"). 

Note that C = Ai'B(1+ZAi2)" has rank one 
and therefore has at  most one non-zero eigen- 
value and that eigenvalue (if it exists) has alge- 
braic multiplicity one. Thus, tr  C is either the 
unique non-zero eigenvalue or else it is zero. So, 
g(z, y) = 1 + ytr(AF'B(I+ %AT2)"). 

We define 

h(z) = tr(A,'B(I + 
so that g(z, y) = l+yh(z). Note that g(T2, 6) = 
0 and so h(r2)  = - %  < -1. 

Now, h(0) = tr(A-'B). Note that AF'A2 = I +  
AT'B, where A;'B has rank one. Thus, AF'B 
has at most one non-zero eigenvalue and that 
eigenvalue (if it  exists) has algebraic multipicity 
one. So, tr(A,'B) is either the unique non-zero 
eigenvalue or else it is zero. Thus, tr(Ai'B) 2 
-1. Thus, h(0) 2 -1. In fact, h(0) > -1 
since otherwise tr(A,'B) = -1, and SO det( l+ 
AY'B) = 0 which implies that det(A1 +B) = 0, 
which is false. 

Now, h is a continuous function for z 2 0 and 
so by the Intermediate Value Theorem we have 
that there exists a z with 0 < z < r2 such that 
h(z)  = -1. Thus, g ( t ,  1) = 0 and so f ( z ,  1) = 0. 
Therefore, 

det(Al(Ar+ B)  + z I )  = 0 

and so A1A2 = Al(A1 + B )  has -2 as an eigen- 
value, which is a contradiction. Q.E.D. 

The Corollary below shows a surprising connec- 
tion between the convex sums (1) and (2). 

Corollary 1. Suppose A1 and A2 = A1 + B 
are real n x n stable matrices and that B has 
rank one. Suppose that aAl + (1 - a)& is 
invertible V a E [0,1] and that there exists a 
p with 0 < < 1 such that PA1 + (1 - /-?)A2 
has a non-zero purely imaginary eigenvalue, i.e. 
the convex sum aA1+ (1 - a)A2 is unstable by 
eigenvalues passing through the imaginary axis 
(excluding the origin). Then there exists a T 

with 0 < 7 < 1 such that TAL' + (1 - 7)Aa has 

a zero eigenvalue, i.e. the convex sum aA;l + 
(1 - a)A2 is unstable with an eigenvalue passing 
through the origin in the complex plane. 

3 Conclusions 

The main result of this paper gives a sufficient 
condition for when the convex sum of two ma- 
trices is stable. We also prove a surprising con- 
nection between the two convex sums (1) and 
(2)- 
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