
Social dogfood: A Framework to minimise Cloud
field defects through crowd sourced testing.

Jonathan Dunne
Hamilton Institute

Maynooth University
Email: jonathan.dunne.2015@mumail.ie

David Malone
Hamilton Institute

Maynooth University
Email: david.malone@nuim.ie

Abstract—Delivering software for the Cloud represents a
challenge for both micro teams and Small Medium Enterprises
(SMEs), in part due to the rapid release methods adopted and
the numerous ways in which software defects can be detected. We
study field defect detection rates in a framework where these rates
are used to refocus in-house test resources. Using an enterprise
dataset, we address the question of what types of defects are
found in the field and how soon after a system goes live defects
are detected. Our framework can aid both micro teams and
SMEs to minimise the number of defects found in the field by
maximising internal usage through ‘Dogfood’ programs and by
leveraging crowdsourced test methodologies.

I. INTRODUCTION

Cloud computing is seen as a way for an SMEs to compete
with larger companies, in terms of the rapid delivery of soft-
ware and services. This is due in part to the ‘always on’ nature
of Cloud computing. European SMEs are beginning to see the
green shoots of economic recovery, in 2015 SME economic
growth grew by 5.6% [1]. Additionally SME employment
growth grew by 1.5% [1]. As the economic recovery continues
SMEs are looking to maximise their potential.

However both micro-teams and SMEs face continuing chal-
lenges when adopting both Cloud computing and continuous
delivery as their hosting and software delivery mechanisms
respectively. A recent study has outlined the issues facing
SMEs in adopting industry standards in relation to software
development and delivery [2]. Furthermore almost all SMEs
(93%) employ less than 10 people [1], therefore for this study,
we analyse the factors that may impede the rapid delivery of
high quality software for teams with low levels of resourcing.

At regular intervals throughout the past 20 years software
quality commentators have discussed the need for companies
to extensively use the software they develop prior to release
to the customer. This practice is known as “Eating your own
dogfood” [3]. A recent article in Forbes by the CEO of Lua
(a startup company) impressed the need for companies to
continuously use their software prior to release [4]. A leaked
memo from the CEO of Yahoo lamented the fact that only
25% of employees were willing to use Yahoo mail as their
corporate email reader [5].

In this paper we propose a framework that both micro
teams and SMEs can use to deliver high quality software
to the Cloud, while utilising their limited resource cohort.
The core idea of this framework is for software test teams to

amalgamate based on the types of defects found coupled with
regular internal usage of their own software and additional
crowdsourced test methods. For micro teams with a limited
pool of test resources, leveraging a crowdsourced team of test
resources can aid defect detection.

This paper contains research conducted on a large enterprise
dataset of both in-house and field defects. Through study of
this data we investigate whether there is a) an overlap between
the types of defects that in-house test teams find and b) is there
an overlap between the types of defects a customer finds in
the field compared to that of in-house teams. Using the results
of this study for our framework, a crowd-sourced dogfood
program and an in-house test team alignment can be used to
reduce the number of defects found in the field.

The rest of the paper is structured in five sections: Section
II gives some description of study background and related
works. Section III describes the enterprise dataset. Section IV
provides analysis and methodology. It is followed by section
V that explains the result. Finally, the conclusion and future
work is described in section VI.

II. BACKGROUND AND RELATED RESEARCH

A. Eating your own dogfood

Eating your own dogfood is a term given to the internal
usage of a software product prior to release to the customer.
The idea is that regular internal usage will improve overall
software quality.

Warren Harrison [6] the then editor in chief of IEEE
Software, mentions that Microsoft were one of the first com-
panies to aggressively adopt the practice of “Eating your own
dogfood” when developing their Windows platform in the
early 1990’s. Harrison also discusses the pros and cons of
adopting a dog food approach to internal testing.

Adam Moskowitz [7] discussed the idea of dog fooding in
the magazine “;login:”. In the realm of system administration,
Moskowitz provides some practical examples of how increased
internal testing can help improve shell scripting and tooling.

Schmidt and Varian [8], in a Newsweek article, outlined
ten rules, which they believe will drive success within Google
over the next quarter of a century. They attribute the success of
Gmail to the fact that it was extensively tested by the majority
of Google employees over a several month period.



Prlić and Procter [9] in a Public Library of Science com-
puter biology journal, also outline ten rules from the open
development of scientific software. Rule three mentions how
software in development should be useful as an end product
and not simply to demonstrate a solution. In other words the
software should be consumable by customers with a broad
range of backgrounds rather than a specific cohort.

Jackson and Winn [10] conducted research in the field
of research data management platforms. In building a large
complex platform with many API endpoints, they cite internal
usage of the in-development platform coupled with adoption
of agile practices such as ‘Continuous Integration’ [11] as key
methods in defect detection.

B. Crowdsourced testing

Crowdsourcing is the act of taking a job traditionally
performed by a designated agent (usually an employee) and
outsourcing it to an undefined, generally large group of people
in the form of an open call [12].

Nebling et al. [13] presents a study of Crowdstudy, a toolkit
for crowdsourced testing of web pages. By crowdsourcing
numerous individuals, data was collected on how users habits
differed when engaging with a web site.

Vukovic [14] conduced a study of crowdsourcing services
for the Cloud. While Amazon’s Mechanical Turk and Inno-
centive appear to have the most supported features, most of
the frameworks fall short in facilitating the dynamic formation
of globally distributed teams.

Liu et al. [15] conducted a study into the use of crowd-
sourcing for usability testing compared to traditional face-
to-face methods. Their study found the quality of results
from crowdsourcing were not as good as those face-to-face
testing. However crowdsourcing still represents value for de-
sign/development teams with limited time and money.

Zogaj et al. [16] present a case study with a crowdsourcing
company who specialise in outsourcing software testing to
specific groups. Their research found that there were three key
challenges: managing the process, managing the crowd and
managing the technology. By using an intermediary to manage
all aspects of the process from procurement of individuals,
monitoring of test progress to addressing technology skill gaps
ensured a smooth end to end process.

C. Other related studies

Riungu et al. [17] performed research into the challenges
Cloud computing presents to software testing. One concern
raised was the human effort to test software with 24/7 avail-
ability. Automation aside, they mentioned the need for some
level of manual testing to be conducted round the clock—an
idea not easily implemented by SMEs.

A bug bounty program is a scheme whereby software
companies offer a reward to users that find defects within
their software. The benefit to software companies is that it
incentivises users to find defects (typically security vulnera-
bilities) before they are exploited by the general user base [18].
The bugcrowd website contains a list of current bug bounties

offered by software companies. Currently 329 companies are
listed as having some form of reward and/or gift system
for user found vulnerabilities [19]. Bug bounty schemes are
not limited to start-up companies or open source projects.
Some high profile software companies which participate in
bug bounty schemes include Facebook, Google and Microsoft.

III. DATA SET

Field defect studies have been shown to provide a useful
way to infer gaps within in-house testing [20] [21]. Such
studies, in conjunction with our framework, can be adopted by
micro teams and SMEs to determine common failure types.

The study presented in this paper examines approximately
2000 defects (both field and in-house) from a large cloud based
real-time collaboration system. The data was collected over a
22-month period (Jan ’15 – Oct ’16) and is comprised of three
main components: Instant Messaging, Web Conferencing and
an interactive audio and video component.

There are four in-house test teams whose function is to find
software defects; Function test, Performance test, Security and
System test. Defects are also found by Development, DevOps,
Support, Accessibility and well as other general users. Field
detects are found by either the customer or any of the in-house
teams just mentioned. Defects are typically of one of four
types: Functional, Performance, Security and System. Defect
severity is categorised as either: Critical, Major or Normal. The
systems have been deployed within three data centres and are
used by customers globally. The software is developed in Java
and runs on Linux. Each release takes place on a Saturday.

Product development follows a continuous delivery (CD)
model whereby small amounts of functionality are typically
released to the public approximately every four to six weeks.
For each defect we have access to the full report, but we
particularly focus on the defect severity, defect type and
found by whom. The following terminology will now be
defined to provide clear context. These definitions are given
in the glossary of IEEE Standards Collection in Software
Engineering [22].

• Functional Testing: Testing which is focused on the
specified functional requirements and does not verify the
interactions of system functions.

• System Testing: Testing conducted on a complete inte-
grated system to evaluate the system’s compliance with
its specified requirements. System test, unlike Functional
testing, validates end-to-end system operations within the
wider environmental context. Therefore system testing
should be conducted on an environment which closely
mimics customer behaviour.

• Performance Testing: In software engineering Perfor-
mance testing is performed to determine how a system
performs in terms of responsiveness and stability under
a particular workload.

• Field defects: Refers to all defects found by either cus-
tomers or internal teams using the software product post-
release.



This study aims to answer the following questions. First,
what group is most likely to find either an in-house or field
defect based on defect severity and test type? Second, what
is the field defect discovery rate during the first fourteen days
of a release? In order to answer these questions our study is
divided into the following two subsections: defect discovery
probability by team and field defect discovery rates.

A. Defect discovery probability by team

A question to software companies is, what types of defect
are found both internally and externally. Similarly, what are the
most common severity types found in-house and in the field?
By analysing the types of defects found both internally and
externally, a map can be built to determine which teams are
most effective at finding a particular class of defect. Likewise
for defects found in the field a similar map can be drawn to
determine what types of defects a customer is good at finding.
Given the limited resources of both micro teams and SMEs,
an intersection of both maps could be used by internal test
organisations to a) realign their test organisation to discover
more defects and b) pivot internal test practices to more
customer based usage patterns.

B. 14/28 days later – defect discovery rates

Studying when defects are found in the field gives us
knowledge of how reliable software is. In the field of system
reliability, there is the idea that failures (defects) may follow
a specific pattern which can be represented in the form of a
‘bathtub curve’ [23] [24]. The patterns can be summarised as
follows: 1) Decreasing failure rate (early failures), 2) Constant
failure rate (random failures) and 3) Increasing failure rate
(wear-out failures). Of interest is to understand if field defects
failures found within the first twenty eight days conform to
these characteristics. Of additional interest is to understand
what types of defect (and their associated severity) occur
within the first two weeks of a release.

C. Limitations of dataset

The dataset has a number of practical limitations, which
are now discussed. While the defect tracking system allows
for a granular categorisation system, whereby field defects
can be mapped to a specific release. There were a number
of field defects, which were mapped to an incorrect release.
The authors used the defect creation date to determine which
field defects belonged to which release.

The defect reports that form part of this study are from an
enterprise Cloud system. As a result the analysis may not be
relevant outside of these fields.

IV. RESULTS

We now explore the results of our analysis.

A. Defect discovery probability by team

Fig. 1 shows a bubble plot of in-house defect detection
probability grouped by team type and defect severity. The size
of the bubbles are scaled relative to the probability. The greater
the probability the larger the bubble diameter. We also show a

Fig. 1. In-house defect severity detection probability (By Team)

Fig. 2. In-house defect type detection probability (By Team)

probability by combined defect severity. The System test team
have highest probability of finding a normal or major defect.
System test are also most likely to find a defect of any severity.
Function test are most likely to find critical defects.

Fig. 2 shows a bubble plot of in-house defect detection
probability grouped by team type and defect type. We also
show the probability of all defect types. The System test team
have highest probability of finding a System, Functional and
combined defect type. The Performance team are most likely
to find a performance defect. Likewise the Security team are
most adept at finding security defects.

Fig. 3 shows a bubble plot of field defect detection probabil-
ity grouped by team type and defect severity. We also show a
probability by combined defect severity. The customer is most
likely to find a defect of any given severity in the field.

Fig. 4 shows a bubble plot of field defect detection prob-
ability grouped by team type and defect type. We also show
a probability of all defect types. The Customer is the most
likely group to find any a defect of any given severity in the
field.

B. 14/28 days later – defect discovery rates

Fig. 5 shows a line plot of percentage field defects raised
during the first fourteen days of a release. The percentage
values are an aggregate over the entire fifteen releases studied.



Fig. 3. Field defect type detection probability (By Team)

Fig. 4. Field defect type detection probability (By Team)

Additionally the percentages are calculated as follows: an
aggregate daily rate divided by the total number of field
defects found. Days five and seven saw the highest aggregate
percentage of field defects raised, while days eight and nine
saw the lowest aggregate percentage field defects detected.

Fig. 6 shows a bar plot with fitted curve of percentage
field defects raised during the first four weeks of a release.
The percentage values are an aggregate over the entire fifteen
releases studied divided by the total number of field defects
found in the first twenty eight days of a release. Week one
saw the highest number of field defects raised with just over
31%, while weeks two and three had near identical rates with
approximately 21%, while week four had an increased rate
(over weeks two and three) of almost 27%.

V. DISCUSSION

Section IV provided an outline of both in-house and field
defects that were studied as part of our overall dataset,
including defect detection by team and field defect detection
in the field within the first fourteen days of a release. The
following section provides deeper analysis and discussion of
the results. In each section references will be made to each
research question asked in section III.

A. Defect discovery probability by team

As mentioned in Section VI, we wanted to understand, for
in-house defects, how defect detection was distributed across
each internal test team by defect severity and type. Fig. 1
shows that the System test team was more likely to find both
Normal (0.28) and Major (0.15) severity defects while the
Function test team was slightly better at finding Critical defects
(0.06). Overall the System test team were more likely to find
a defect when we collapsed severity into a combined severity
ranking (0.48).

Interestingly, for defect type Fig. 2 illustrates that, the Sys-
tem test team were most likely to find System and Functional
defects (both 0.23), while the Performance and Security teams
found the most performance and security related defects. Over-
all when all defects types are reduced to a single category the
System test team are most likely to find a defect irrespective
of type (0.48).

Fig. 3 shows that the customer is most likely to find a defect
in the field, irrespective of severity (0.81). It’s worth noting
that for normal severity defects the customer has a probability
of 0.58 while the next highest is the development team with
a probability of 0.05.

Fig. 4 highlights that the customer is highly skilled in
detecting functional defects (0.77) and has a low probability
of finding other types of defects: Performance (0.01), Security
(0) and System (0.03). For non functional defects, internal
consumers (i.e. test teams) do find “field defects” as part of
their daily usage of the software. Development (0.01 System
defects) and DevOps (0.01 Performance and System defect
types).

A number of interesting points are raised by analysis of
both sets of defect data. Firstly that the System test team
have the highest probability of finding a defect in-house when
severity or type are reduced to a single category. What is
surprising though is that while the Performance, Security and
System teams are most adept at finding homogeneous defect
types, the Function test team is less likely to find a Functional
defect (0.19) compared to System Test. It is worth noting that
the Development team are also quite skilled at flushing out
functional defects too (0.13). Second that the Customer is more
likely to find a field defect than internal users “Dogfooding”
their own software. That said, the customer appears to find
a very specific type of defect, a normal severity functional
defect.

Given the overlap in terms of detection of Functional defects
there is an argument to merge both Function and System test
teams into a single group. Based on the dataset we know
that the System test team are skilled at finding functional
defects, by merging teams there would be the added benefit
of upskilling the functional team members to test and detect
System defects. Furthermore, it makes sense to have a separate
team to test both the Performance and Security areas of
the product because this testing requires specialist knowledge
which enables these test teams to focus on their core areas of
expertise.



Fig. 5. % aggregate field defect detection rate (First 14 days of a release)

Fig. 6. % aggregate field defect detection rate (By week)

With the customer being so adept at flushing out normal
severity functional defects, focus instead should be placed on
determining what test paths should be included in future test
cases to capture these classes of functional defects as part of an
internal testing. However the customer should be incentivised
in some manner for the number of lower severity defects they
find. We discuss this subject matter in more detail in prior
work [25].

Finally, irrespective of the dataset and the results tied
directly to it, we suggest the following outcomes for our
framework: a) test teams should be aligned based on the types
of defects they find, b) in-house testing should prioritise test
paths to areas of the product, which are both critical path
and where the customer is least likely to find a defect and
c) schemes to incentivise the customer to find low severity
defects could be introduced.

B. 14/28 days later – defect discovery rates

Examining the field defect discovery rate during the first
twenty eight days of release helps us to understand what types
of defects a customer is likely to find.

Fig 5. shows the percentage of defects found the first
fourteen days of a release. Looking at the ‘All Defects’ line
initially we can clearly see that field defect detection peaks at

day five. Approximately 6% of all field defects (raised in the
first twenty eight days of a release) were found on the fifth
day of a release. The second highest daily rate appears on day
seven with 4%. Also of note is that, on days eight and nine,
we observed the least number of field defects raised (0.13% &
0.27% respectively). This may be attributed to both of these
days falling on a weekend. That said the first two days of a
release also fall on weekend and see a higher rate of field
defects raised (Approximately 2% on both days). Finally as
part of the second working week of a release the rate rises
to approximately 3% and remains steady at this rate for the
remainder of the second week.

Another point of interest is evident in Fig. 5. If we consider
Normal & Major severity, Functional type and Customer found
field defects we can see how close these lines mirror the overall
rate line. This confirms our intuition that these categories of
field defect are highly correlated as part of the overall data
set. Our reason for this belief is that, these four categories of
defect contribute a significant proportion to the overall dataset.
No formal regression analysis has been conducted to confirm
our intuition.

Fig 6. Presents a bar plot with fitted spline curve. This plot
illustrates the percentage of field defects raised weekly during
the first twenty eight days of a release. Clearly we can see that
the highest percentage of field defects detected within the first
month of a release are found in the first week of a release.
31% of all field defects found in the first month of a release
are found during the first seven days. Also of note is the rate
drop during weeks two and three of release, approximately
21% for both weeks. Finally it is worth noting that the rate
increases to approximately 27% during week four.

Looking through the lens of analysis from both a fortnightly
and monthly perspective, we can clearly see that highest
percentage of field defects are found within the first seven
days of a release (specifically day five). There may be a host of
reasons why the customer finds so many defects in such early
stage of a release: Poor customer usecase profiling, lack of
test automation, lack of test resources. Irrespective of the root
causes it is worth noting that the majority of field defects the



customer uncovers are low severity and functional. Therefore a
targeted set of crowdsourced tests would be useful in flushing
our additional defects prior to public release.

In Section III we mentioned the idea of software reliability
and how the ‘bathub curve’ is used (at a high level) to
illustrate the three stages of system reliability. We observed
in Fig 6. the weekly percentage rate of field defect discovery.
We noted the high initial rate in week one, the drop in
weeks two and three and finally the increased rate in week
four. This behaviour can be mapped directly to the early,
random and wear-out (i.e. failure that occur due to sustained
usage) failures, which characterise reliability. Targeted survival
analysis of field defects found in the first month of a release is
required to determine whether field defect do indeed contain
early, random and wear-out attributes. We temper this finding
with the observation that there is an baseline of at least 20%
failure rate on any given week.

In future SMEs and micro teams can adopt a two week
crowdsourced–dogfood test program prior to general release.
By leveraging the power of both the internal work force and
a crowdsourced test cohort for a fixed duration, companies
can uncover many ‘field’ defects prior to general release.
Certainly this crowdsourced–dogfood program will uncover
many defects with early and random characteristics. Based
on the analysis of in-house test data, these types of defect
are difficult to uncover as part of internal testing. For defects
with wear-out attributes by adopting a framework of survival
analysis, teams can determine if there are specific components
which wear out more quickly than others. With this knowledge
development teams can adopt remediation plans to ensure their
components are more robust to wear-our failures.

Putting the findings drawn directly from our dataset to one
side, we can add the following proposals to our framework: a)
a period of crowdsourced-dogfood testing should be conducted
for a two week period prior to release, b) the crowdsourced
team should contain individuals from a variety of backgrounds.

VI. CONCLUSION

The purpose of this study was to examine in-house and
field defects for a Cloud based collaboration application. We
found that Performance and Security defects are specialist
focus areas which are best handled by specific teams. We also
found a significant overlap in the area of Functional defects
found by the System test team. Additionally the customer is
skilled at finding specific defects types (Normal Functional)
in our data set.

Furthermore we found that field defect detection occurs
most often in the first seven days of a release and that over a
monthly period field defect detection rates mirror those seen
in other fields of reliability engineering.

In future SMEs can align in-house test teams to overlapping
test areas to help focus test effort. Additionally for field defects
of high severity re-focusing of test plans to high impact areas
can mitigate their detection in the field. A reward/gamification
framework can be introduced to customers who find low
severity defects in the field. Likewise a co-ordinated system

of crowdsourced dogfood testing can be implemented prior to
release, to reduce the number of defects found in the first two
weeks of release.

In subsequent work we shall assess our framework in
conjunction with each feature component, to understand which
components are most likely to break once released into the
field. This future work can aid micro teams and SMEs to
continuously pivot to further reduce defect detection rates from
customers within the field.

REFERENCES

[1] P. Muller, S. Devnani, J. Julius, D. Gagliardi, C. Marzocchi,
R. Ramlogan, and D. Cox. (2016) Annual report on European SMEs
2015/2016. [Online]. Available: http://bit.ly/2kBHgGF

[2] O. T. Pusatli and S. Misra, “A discussion on assuring software quality
in small and medium software enterprises: An empirical investigation,”
Tehnički vjesnik, vol. 18, no. 3, pp. 447–452, 2011.

[3] (2016) Eating your own dog food. [Online]. Available:
http://bit.ly/2kHVTHP

[4] (2014) Not eating your own dog food? You probably should be.
[Online]. Available: http://bit.ly/2k64eWH

[5] (2013) Clinging to outlook. [Online]. Available: http://bit.ly/19dZ40P
[6] W. Harrison, “Eating your own dog food,” IEEE Software, vol. 23, no. 3,

pp. 5–7, 2006.
[7] A. Moskowitz, “Eat your own dog food,” ; login:: the magazine of

USENIX & SAGE, vol. 28, no. 5, pp. 18–19, 2003.
[8] E. Schmidt and H. Varian, “Google: ten

golden rules,” Newsweek http://www. msnbc. msn.
eom/id/10296177/site/newsweek/print/1/displaymode/1098, 2005.

[9] A. Prlić and J. B. Procter, “Ten simple rules for the open development
of scientific software,” PLoS Comput Biol, vol. 8, no. 12, p. e1002802,
2012.

[10] N. Jackson, J. Winn et al., “Eating your own dog food,” 2012.
[11] (2017) Continuous integration. [Online]. Available: http://bit.ly/1Ty3ZfV
[12] (2017) Crowdsourcing: A defintion. [Online]. Available:

http://bit.ly/QwOkEh
[13] M. Nebeling, M. Speicher, M. Grossniklaus, and M. C. Norrie, “Crowd-

sourced web site evaluation with crowdstudy,” in International Confer-
ence on Web Engineering. Springer, 2012, pp. 494–497.

[14] M. Vukovic, “Crowdsourcing for enterprises,” in Services-I, 2009 World
Conference on. IEEE, 2009, pp. 686–692.

[15] D. Liu, R. G. Bias, M. Lease, and R. Kuipers, “Crowdsourcing for
usability testing,” Proceedings of the American Society for Information
Science and Technology, vol. 49, no. 1, pp. 1–10, 2012.

[16] S. Zogaj, U. Bretschneider, and J. M. Leimeister, “Managing crowd-
sourced software testing: a case study based insight on the challenges of
a crowdsourcing intermediary,” Journal of Business Economics, vol. 84,
no. 3, pp. 375–405, 2014.

[17] L. M. Riungu, O. Taipale, and K. Smolander, “Research issues for
software testing in the cloud,” in Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International Conference on.
IEEE, 2010, pp. 557–564.

[18] (2017) Bug bounty program. [Online]. Available: http://bit.ly/2jTEaw8
[19] (2017) The bug bounty list. [Online]. Available: http://bit.ly/1orp03T
[20] M. Sullivan and R. Chillarege, “Software defects and their impact on

system availability: A study of field failures in operating systems,” in
FTCS, vol. 21, 1991, pp. 2–9.

[21] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
Foundations of empirical software engineering: the legacy of Victor R.
Basili, vol. 426, p. 37, 2005.

[22] I. C. S. S. E. S. Committee and I.-S. S. Board, “IEEE recommended
practice for software requirements specifications.” Institute of Electrical
and Electronics Engineers, 1998.

[23] G.-A. Klutke, P. C. Kiessler, and M. A. Wortman, “A critical look at
the bathtub curve,” IEEE Transactions on Reliability, vol. 52, no. 1, pp.
125–129, 2003.

[24] (2016) Bathtub curve. [Online]. Available: http://bit.ly/2kGzD50
[25] J. Dunne, D. Malone, and J. Flood, “Social testing: A framework to

support adoption of continuous delivery by small medium enterprises,” in
2015 Second International Conference on Computer Science, Computer
Engineering, and Social Media (CSCESM), Sept 2015, pp. 49–54.


