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Abstract

We study the convex polytope of n × n stochastic matrices that define locally
ǫ-differentially private mechanisms. We first present invariance properties of
the polytope and results reducing the number of constraints needed to define it.
Our main results concern the extreme points of the polytope. In particular, we
completely characterise these for matrices with 1, 2 or n non-zero columns.
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1. Introduction

Data privacy has been of interest to researchers in computer science [1],
statistics, cryptography [9] and law [7] for decades. The recent emergence of ‘Big
Data’, while offering significant potential benefits to business and society, poses
very real risks to personal privacy; this naturally has led to increased interest
in questions pertaining to data privacy. The concept of Differential Privacy,
introduced by C. Dwork in 2006 [13], has emerged as a popular theoretical
paradigm in privacy research within the computer science community and has
been applied to various different types of data and queries [12].

We are interested in the geometry of matrix polytopes arising in the study
of differential privacy for categorical or finite-valued datasets. More formally,
we consider databases d ∈ DN where the set D is finite and can, without loss of
generality, be taken to be {1, . . . , n}. Each entry in d, di, corresponds to data
contributed by an individual; the base set D describes all the values that data
entries can take.

The problem we consider is motivated by the construction of differentially
private sanitisations, where we are interested in releasing a private, sanitised
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version of a database d. A sanitisation is defined by a set of random variables
Xd taking values in DN for every d ∈ D. Loosely speaking, Xd describes a
noisy version of the original d designed to protect the privacy of individual data
contributors.

The differential privacy model specifies two privacy parameters, ǫ ≥ 0 and
0 ≤ δ ≤ 1. For any two databases d,d′ ∈ DN that differ in one row only,
(ǫ,δ)-differential privacy requires

P(Xd ∈ A) ≤ eǫP(Xd′ ∈ A) + δ, (1)

for all A ⊆ DN .
In essence, differential privacy ensures that answers to queries on a database

cannot change greatly when one person’s information in a database is altered.
The above definition considers global privacy with the mechanism defined on

a complete database. Global mechanisms can readily be constructed using lo-
cally private mechansism, where subjects perturb/sanitise their own data locally
before providing it to a central database upon which queries are answered [11].
The concept of local privacy first appeared over 50 years ago as a way to elimi-
nate bias in surveying [22] and is known in other contexts as input perturbation
or randomised response [22, 15]. A rigorous mathematical framework has been
developed which guarantees global differential privacy when local differential
privacy methods are applied [17].

We refer to local mechanisms as 1-dimensional mechanisms, as they take a
single row of a database as an input, and output another (perturbed/noisy) row.
In our context, a 1-dimensional mechanism is specified by giving an appropriate
probability mass function pi for every i ∈ D = {1, . . . , n}. More compactly, a
1-dimensional mechanism is defined by a stochastic matrix A ∈ R

n×n where aij
denotes the probability of outputting j when the input, or real data, is i. The
requirement for local differential privacy is then given by:

aik ≤ eǫajk + δ (2)

for all i, j, k. These constraints, taken together with the stochastic and non-
negativity constraints, define the local differential privacy polytope. We shall
consider the simplified case of strict differential privacy (which is what was
originally introduced by Dwork) where δ = 0 here.

In practice, we are interested in finding a mechanism (i.e. a matrix in this
polytope) which is optimal for some utility function. Understanding the ge-
ometry of the polytope guides the design of such mechanisms. For instance, if
the utility function happens to be linear, then the optimal mechanism occurs
at an extreme point of the polytope. The search for optimal mechanisms in
differential privacy has been studied by a number of authors [20, 21, 19]. Local
differential privacy has been studied recently in the paper [11], while extremal
local differential privacy mechanisms were considered in [18]. Of course, poly-
topes of stochastic matrices and doubly stochastic matrices have been widely
studied in the past [4, 6, 8, 5]. An alternative study on geometrical aspects of
differential privacy can be found in [16].
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The basic layout of the paper is as follows. In Section 2 we introduce prelim-
inary definitions of polytopes, extreme points, the concept of differential privacy
and the polytope with which we will be working. In Section 3 we look at some
elementary results for extreme points of this polytope, and in Section 4 we
present our main results. In Section 5 we examine a number of special cases for
extreme points, and finish with some concluding remarks in Section 6.

2. Notation and Background

To begin, let us introduce the major notation and standard definitions to be
used in our results. For a matrix A ∈ R

n×n and 1 ≤ i ≤ n, we will use A(i) to
denote the ith column of A. AT denotes the usual matrix transpose. We denote
by 1 the (column) vector of all ones where the dimension will typically be clear
from context. We denote by ei, 1 ≤ i ≤ n, the ith standard basis vector of Rn.

2.1. Polyhedra

In this paper, we adopt the following definitions for polyhedra and polytopes

Definition 1 Let 〈·, ·〉 : V × V → R be an inner product on a real vector space
V , and let

{

c(1), . . . , c(q+l)
}

⊆ V and b ∈ R
q+l be given. A convex polyhedron

P ⊆ V is defined as:

P =

{

v ∈ V :
〈c(i), v〉 = bi, ∀ 1 ≤ i ≤ q,

〈c(q+i), v〉 ≤ bq+i, ∀ 1 ≤ i ≤ l.

}

. (3)

An inequality constraint is said to be tight or active on a point v if 〈c(q+i), v〉 =
bq+i.

Definition 2 A convex polytope in a vector space V is the convex hull of a
finite collection of points in V .

P = conv(v1, . . . , vk), (4)

where vi ∈ V for all i.

It is well known that all polytopes are polyhedra, but only bounded polyhe-
dra are polytopes.

An extreme point of a polyhedron cannot be written as the convex combi-
nation of any other points in the polyhedron.

Definition 3 (Extreme point) Let P ⊆ R
n be a convex polyhedron. A point

v ∈ P is an extreme point of P if w, z ∈ P, 1
2 (w + z) = v, implies w = z = v.

We denote by ex(P) the set of all extreme points of a polyhedron P .
Our primary interest is in characterising the extreme points of the local

differential privacy polyhedron. The following theorem from convex geometry
shall prove useful in this regard [3].

3



Theorem 1 Let P ⊆ V be a polyhedron, and consider a point v ∈ P. Denote
by the set Iv ⊆ {1, . . . , l} the indices of the inequality constraints that are tight
on v (i.e. 〈c(q+i), v〉 = bq+i for all i ∈ Iv and 〈c(q+i), v〉 < bq+i for all i ∈
{1, . . . , l} \ Iv). Then v ∈ ex(P) if and only if

span
({

c(1), . . . , c(q)
}

∪
{

c(q+i) : i ∈ Iv

})

= V.

Essentially, this result tells us that v is an extreme point of P if and only if
there are n linearly independent constraints tight on v where n is the dimension
of V .

2.2. Differential Privacy

As in the Introduction, we take the set D = {1, . . . , n} to be the domain
of the rows of our database (i.e. each subject contributes a value of D to the
database). For local differential privacy to be satisfied, we require:

P(Xi ∈ I) ≤ eǫP(Xj ∈ I) + δ,

for all i, j ∈ {1, . . . , n} and for all I ⊂ D.
For the purpose of this paper, we only consider the case of strict or non-

relaxed differential privacy, where δ = 0. In this case, the requirement simplifies
to

P(Xi = k) ≤ eǫP(Xj = k),

for all i, j, k ∈ {1, . . . , n}.
If we let A ∈ R

n×n be given by,

aij = P(Xi = j)

then A defines a valid ǫ-differential privacy mechanism if and only if the following
conditions hold:

∑

j

aij = 1, 1 ≤ i ≤ n, (5a)

aij ≥ 0, 1 ≤ i, j ≤ n, (5b)

aik ≤ eǫajk, 1 ≤ i, j, k ≤ n. (5c)

We now define the ǫ-differential privacy polytope, comprised of all matrices
satisfying the above constraints.

Definition 4 (Differential Privacy Polytope) Fix n ∈ N and ǫ ≥ 0. The
ǫ-differential privacy polytope, D ⊂ R

n×n, is defined as follows:

D =







A ∈ R
n×n :

∑

j aij = 1, ∀ 1 ≤ i ≤ n,

aij ≥ 0, ∀ 1 ≤ i, j ≤ n,
aij ≤ eǫakj , ∀ 1 ≤ i, j, k ≤ n.







. (6)

The non-negativity and stochastic constraints ensure D is bounded. There-
fore it is a polytope.
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Note: As the constraint aij ≤ eǫakj must hold for all i, j, k, we require
e−ǫakj ≤ aij ≤ eǫakj for each i, j, k. Equivalently, maxi aij ≤ eǫ mini aij for all
j.

Remark: If ǫ = 0, then for A to be in D, we require that aij = akj for all
i, j, k.

Using the Hilbert Schmidt inner product

〈X,Y 〉 = tr(XTY ),

together with the matrices eie
T
j , ei1

T , eie
T
j = eǫeke

T
j , it is not a difficult exercise

to represent the constraints defining D in the form given in Definition 1.

3. Preliminary results

In this section, we present several preliminary results on the structure of the
set D and its extreme points. We first note that the nonnegativity constraint
in the definition of D is redundant in the case where ǫ > 0.

Lemma 1 Fix ǫ > 0. Let v ∈ R
n satisfy vi ≤ eǫvj for all i, j. Then v ≥ 0.

Proof: Let vi < 0 for some i. Then, for each j, we have:

e−ǫvi ≤ vj ≤ eǫvi

⇒ e−ǫvi ≤ eǫvi

⇒ e−ǫ ≥ eǫ

⇒ ǫ ≤ 0

By hypothesis ǫ > 0. Hence, we must have vi ≥ 0 for each i.
Our next lemma notes that if the differential privacy constraint is tight on

two elements in a column, that those two elements must be the minimum and
maximum entries of that column.

Lemma 2 Let v ∈ R
n be a vector with vi ≤ eǫvj for all 1 ≤ i, j ≤ n. Suppose

there exists at least one pair i, j where vi = eǫvj. Then mink vk = vj and
maxk vk = vi.

Proof: Suppose there exists vl such that vl > vi. Then, vl > eǫvj ,
contradicting the differential privacy constraints. Similarly, if vl < vj , then
eǫvl < vi. The result follows.

Several of our results will relate the extreme points A of D to the non-zero
columns in A. With this in mind, we formally define

γ(A) = {i ∈ {1, . . . , n} : A(i) 6= 0}.

So that γ(A) consists of the indices of the non-zero columns of A and 1 ≤
|γ(A)| ≤ n gives the number of non-zero columns in A.

Our next result concerns the rank of the extreme points of D; first we note
the simple observation that rank(A) ≤ |γ(A)| for all A.
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Theorem 2 Let A ∈ ex(D). Then

rank(A) = |γ(A)|.

Proof: Suppose A ∈ ex(D). As noted before, rank(A) ≤ |γ(A)|. If A has
only one non-zero column, then clearly rank(A) = 1 = |γ(A)|.

Let |γ(A)| > 1 and suppose rank(A) < |γ(A)|. Then there exists η ∈ R
n,

η 6= 0 and ηi = 0 for all i /∈ γ(A) (i.e. whenever A(i) = 0), such that
∑

i ηiA
(i) =

0.
Let B = Adiag(η). By construction, B1 = 0.
Consider C = A−∆B, D = A+∆B, where 0 < ∆ < 1

maxi |ηi|
. Then,

1. C and D are stochastic, as A is stochastic and B1 = 0;

2. since aij ≤ eǫakj and (1±∆ηj) > 0 for all i, j, k, it follows that cij ≤ eǫckj ,
dij ≤ eǫdkj ; and

3. C,D ≥ 0.

Hence, C and D are in D and C 6= D as B 6= 0.
However, 1

2 (C +D) = A, so A /∈ ex(D), a contradiction. Therefore, for
every A ∈ ex(D), rank(A) = |γ(A)|.

We shall often make implicit use of the following simple corollary to the
above result; essentially it states that for an extreme point A with at least 2
non-zero columns, none of these columns can have all their entries equal.

Corollary 1 Let A ∈ ex(D) satisfy |γ(A)| ≥ 2. Then there is no i ∈ γ(A),
k ∈ R with A(i) = k1.

Proof: Suppose that there is some k ∈ R, i0 ∈ γ(A) such that A(i0) = k1.
Clearly, k 6= 0 as i0 ∈ γ(A) and k 6= 1 as |γ(A)| ≥ 2. As A is stochastic,

∑

i∈γ(A)

A(i) = 1

which implies that

(1−
1

k
)A(i0) +

∑

i∈γ(A),i6=i0

A(i) = 0.

This implies that rank(A) < |γ(A)|, contradicting Theorem 2.
It is clear from the definition that D is closed under row/column permuta-

tions. Our next result notes that this same invariance property also holds for
extreme points.

Theorem 3 Let A ∈ D and let P1, P2 ∈ {0, 1}n×n be permutation matrices.
Then P1AP2 ∈ D. Furthermore, A ∈ ex(D) if and only if P1AP2 ∈ ex(D).
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Proof: From Definition 4, it clearly follows that P1AP2 ∈ D if A ∈ D, since
permuting a matrix only changes the order of rows and columns, but elements
in the same row/column will remain in a common row/column.

Now, let A ∈ ex(D) and suppose that P1AP2 /∈ ex(D) for some permutation
matrices P1 and P2. Then, there exist B 6= C ∈ D such that,

P1AP2 =
1

2
(B + C).

However, since P−1 = PT for any permutation matrix P , we have

A =
1

2
(PT

1 BPT
2 + PT

1 CPT
2 ),

where PT
1 BPT

2 6= PT
1 CPT

2 since B 6= C. This is a contradiction since A ∈ ex(D),
hence P1AP2 ∈ ex(D) also. Thus,

A ∈ ex(D) ⇒ P1AP2 ∈ ex(D),

and
P1AP2 ∈ ex(D) ⇒ PT

1 P1AP2P
T
2 = A ∈ ex(D),

hence A ∈ ex(D) if and only if P1AP2 ∈ ex(D) for any permutation matrices P1

and P2.

3.1. Tight constraints

We now examine the implications of Theorem 1 for the extreme points of
D. We first note a simple fact concerning the number of linearly independent
differential privacy constraints that can be tight on an element of D.

In the next result, we use Cdp
j to denote the set of all tight differential privacy

constraints acting on the jth column of a matrix A. Formally, given A, this
consists of all constraints such that aij − eǫakj = 0 where 1 ≤ i, k ≤ n.

Theorem 4 Let A ∈ D be given. Then, dim(span(Cdp
j )) = n if and only if

aij = 0 for each i ∈ {1, . . . , n}.

Proof: If we make the obvious identification of the jth column of A with a
column vector, A(j) in R

n, then each constraint in Cdp
j can be identified with a

vector of the form (0, . . . , 1, 0, . . . ,−eǫ, 0, . . . , 0)T where the 1 occurs in the ith

position and eǫ occurs in the kth position. If dim(span(Cdp
j )) = n, there are n

linearly independent vectors v1, . . . , vn such that vTi A
(j) = 0 for 1 ≤ i ≤ n so it

follows trivially that A(j) = 0.
For the converse, it is enough to note that A(j) = 0 implies that every

differential privacy constraint acting on the jth column is tight and that there
are n linearly independent such constraints. To see this consider the matrix T
with: tii = 1 for 1 ≤ i ≤ n; ti+1,i = −eǫ for 1 ≤ i < n; t1n = −eǫ; tjk = 0
otherwise. It can readily be verified that T is non-singular.
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Remark: A direct consequence of Theorem 4 is that dim(span(Cdp
j )) ≤ n−1

for any j ∈ γ(A).
Our later characterisations of the extreme points of D shall rely on the

following concept of loose entries.

Definition 5 (Loose entries of a matrix) Given A ∈ D, define

λ(A) =
{

(i, j) : aij /∈
{

eǫmin
k

akj , e
−ǫmax

k
akj

}

}

.

For a matrix A ∈ D, we say the entry aij is loose if (i, j) ∈ λ(A).

It follows from Lemma 2 that for any (i, j) there exists a k such that aij =
e±ǫakj if and only if (i, j) /∈ λ(A).

Example 1 Let ǫ = ln(2) and

A =
1

7





4 1 2
3 2 2
2 1 4



 .

Then λ(A) = {(2, 1)}, since 3 /∈ {4, 2}.

Our next result bounds the number of loose entries of an extreme point in
terms of the number of non-zero columns.

Theorem 5 Let A ∈ ex(D) with |γ(A)| ≥ 2. Then,

|λ(A)| ≤ n− |γ(A)|.

Proof: Let A ∈ ex(D) and consider the following sets of constraints active
on A. We define

Cdp =
⋃

j∈γ(A)

Cdp
j

to be the set of tight differential privacy constraints acting on the columns in
γ(A). Note the following readily verifiable facts:

(i) for j /∈ γ(A), every differential privacy constraint acting on column j is
tight;

(ii) the n stochastic constraints are tight;

(iii) as |γ(A)| ≥ 2, no non-zero column of A is of the form k1 where k ∈ R.

It follows from (ii) and Theorem 1 that the number of tight, linearly independent
differential privacy constraints on A must be n2 − n. Furthermore, Theorem
4 implies that there are n linearly independent differential privacy constraints
active on each of the n− |γ(A)| zero columns of A. It is not difficult to see that
constraints acting on different columns must be linearly independent and hence

8



there are a total of (n−|γ(A)|)n linearly independent tight differentially private
constraints arising from the zero columns of A. Putting all of this together, we
see that there must be

n2 − n− (n− |γ(A)|)n = n|γ(A)| − n

tight differential privacy constraints acting on the non-zero columns of A. For-
mally:

|Cdp| ≥ n|γ(A)| − n. (7)

From point (iii) above there are no non-zero columns in which all entries are
constant; it follows that for each j ∈ γ(A),

|{i : (i, j) /∈ λ(A)}| ≥ |Cdp
j |+ 1.

If we let lj denote the number of loose entries in column j, the previous inequality
can be rewritten as

|Cdp
j | ≤ n− lj − 1.

Combining this with (7) we see that

n|γ(A)| − n ≤
∑

j∈γ(A)

|Cdp
j |

≤
∑

j∈γ(A)

n− lj − 1

= n|γ(A)| − |λ(A)| − |γ(A)|.

A simple rearrangement now shows that

|λ(A)| ≤ n− |γ(A)|

as claimed.
Note: When |γ(A)| = 1, |λ(A)| = n.
To conclude this sub-section, we take a look at the following result for later

use, which states that at most one loose entry can appear in any row of an
extreme point.

Lemma 3 Let A ∈ ex(D). No row of A has more than one loose entry (i.e.
there exist no two distinct pairs (i1, j1), (i1, j2) ∈ λ(A) with j1 6= j2).

Proof: LetA ∈ ex(D), and assume without loss of generality that (1, 1), (1, 2) ∈
λ(A). Let

∆ = min
{

max
i

ai1 − a11, a11 −min
i

ai1,max
i

ai2 − a12, a12 −min
i

ai2

}

.

Hence, A±∆(E11 − E12) ∈ D.
However, A = 1

2 ((A+∆E11−∆E12)+(A−∆E11+∆E12)), hence, A /∈ ex(D),
a contradiction and so the result follows.
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Finally, for this section we present a number of other results that will add
further insight to the behaviour and structure of D and its extreme points. The
next piece of notation will prove useful later.

For A ∈ D, we define the vector m′ ∈ R
n where m′

j = 1
mini aij

for any

j ∈ γ(A) and m′
j = 0 otherwise. We then denote by Ã the matrix given by:

Ã = Adiag(m′). (8)

Then, for any A ∈ D, ãij ∈ [1, eǫ] for any j ∈ γ(A), and ãij = 0 otherwise.
Hence,

Ã diag
1≤j≤n

(

min
i

aij

)

= A.

Note: γ(A) = γ(Ã) and λ(A) = λ(Ã).
We now show that for any extreme point A, Ã cannot have a row with equal

non-zero values.

Lemma 4 Let A ∈ ex(D) with |γ(A)| > 1. Then for each row i, there exist two
non-zero columns j, k ∈ γ(A) such that ãij 6= ãik.

Proof: We prove this by contradiction. Firstly, suppose there exists a row
i such that ãij = ãik for all j, k ∈ γ(A). By Lemma 3, each row cannot have
more than one loose element, therefore either ãij = 1 or ãij = eǫ.

Let m ∈ R
n be defined by mj = mini aij . Then A = Ãdiag(m).

Suppose ãij = 1, hence
∑

k∈γ(A) mk = 1. By Theorem 5, each column j has

at least one pair (i, k) such that aij = eǫakj , hence there exists a row i∗ such
that ãi∗j = eǫ. However, ãi∗k ≥ 1 for every k ∈ γ(A), so

∑

k∈γ(A) ãi∗kmk > 1,
contradicting the stochasticity of A.

A similar argument holds for ãij = eǫ. The result follows.

4. Extreme points for fixed values of |γ(A)|

In this section, we characterise extreme points with a specified number of
non-zero columns. We note that extreme points with one and two non-zero
columns are limited to a specific form, while Section 4.3 deals with extreme
points with any number of non-zero columns.

4.1. Extreme points with one column non-zero

The first case to consider is that of a single non-zero column in the ma-
trix. Due to the stochastic constraints, there are only n such matrices, and as
Theorem 6 below states, each one of these matrices is an extreme point.

Theorem 6 (|γ(A)| = 1) Let Ei ∈ R
n×n be given by Ei = 1eTi for 1 ≤ i ≤ n

and define the set D̃′ as:
D̃′ = {E1, . . . , En} .

Then D̃′ ⊆ ex(D).
Furthermore, A ∈ ex(D), |γ(A)| = 1 implies that A ∈ D̃′.

10



Proof: Suppose Ei =
1
2 (B + C) for B,C in D. As B, C are both nonneg-

ative, it follows immediately that all columns of B and C apart from the ith
column are zero. B and C are also both stochastic which immediately implies
that B = C = 1eTi .

Note that if A ∈ D with |γ(A)| = 1, then A = Ei for some i. Hence, if
A ∈ ex(D) with |γ(A)| = 1, it follows that A ∈ D̃′.

The points in D̃′ are extreme points in all cases, regardless of ǫ. Furthermore,
in the trivial case of ǫ = 0, the set D̃′ are the only extreme points.

Corollary 2 Let ǫ = 0. Then,

ex(D) = D̃′.

Proof: Let ǫ = 0. Then, for all A ∈ D, we have akj ≤ aij ≤ akj , hence
aij = akj for all i, j, k, i.e. entries in the same column are equal. It now follows
immediately from Corollary 1 that if A is an extreme point, γ(A) = 1 and hence
that A ∈ D̃′ as claimed.

4.2. Extreme points with two columns non-zero

Next, we consider the case of two non-zero columns. Although Theorem 5
allows for many loose entries to occur in these extreme points, Theorem 7 below
states that no loose entries are possible.

Theorem 7 (|γ(A)| = 2) Let A ∈ ex(D) where |γ(A)| = 2. Then A has no
loose entries.

Proof: Without loss of generality, assume that γ(A) = {1, 2}. Define m ∈
R

n by mj = mini aij for 1 ≤ j ≤ n and define Ã so that A = Ãdiag(m). Then
ãij ∈ [1, eǫ] ∪ {0} for 1 ≤ i, j ≤ n.

By Theorem 5, |λ(A)| ≤ n − 2, so there exist at least two rows with no
loose entries. Let row k be one of these rows. Then ãk1, ãk2 ∈ {1, eǫ}, but by
Lemma 4, ãk1 6= ãk2. We can assume that ãk1 = eǫ and ãk2 = 1 (otherwise just
swap columns 1 and 2). As A is stochastic,

m1e
ǫ +m2 = 1. (9a)

By Lemma 3, for all rows j, at least one of ãj1, ãj2 must be in {1, eǫ}.
Moreover, in order to satisfy (9a), ãj1 = eǫ if and only if ãj2 = 1.

Suppose therefore that there exists a row j where ãj1 ∈ (1, eǫ) corresponding
to a loose entry in A. It follows from (9a) that ãj2 = eǫ. Hence

1 = m1ãj1 +m2e
ǫ

> m1 +m2e
ǫ.

(9b)

It follows from Corollary 1 that there is some j∗ such that ãj∗1 = 1, implying

1 = m1 +m2ãj∗2

≤ m1 +m2e
ǫ,
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contradicting (9b). Therefore there are no loose entries in the first column.
Now suppose there exists a row j where ãj2 ∈ (1, eǫ). As above, it follows

that ãj1 = 1. Hence,

1 = m1 +m2ãj2

< m1 +m2e
ǫ.

(9c)

As before, it follows from Corollary 1 that there is some j∗ such that ãj∗2 =
eǫ, hence,

1 = m1ãj∗1 +m2e
ǫ

≥ m1 +m2e
ǫ,

contradicting (9c). Therefore there are no loose entries in the second column.
Hence |λ(A)| = 0.
Using this result along with Lemma 4, we can describe the two non-zero

columns.

Corollary 3 Let A ∈ ex(D) with |γ(A)| = 2. Let γ(A) = {j, k} and Ã be given
by (8). Then, for every 1 ≤ i ≤ n, we have

(ãij , ãik) ∈ {(1, eǫ), (eǫ, 1)}. (10)

Proof: By Theorem 7, ãij ∈ {1, eǫ} and ãik ∈ {1, eǫ} for each 1 ≤ i ≤ n.
By Lemma 4, we must have ãij 6= ãik for each i. So, ãij = eǫ if and only if

ãik = 1, and ãij = 1 if and only if ãik = eǫ.
The follow example illustrates the consequence of Corollary 3.

Example 2 Every extreme point A ∈ ex(D) with |γ(A)| = 2 must be of the
form shown in (10), and furthermore both non-zero columns of Ã must contain
at least one 1 and one eǫ.

Let n = 4 and A ∈ ex(D) with |γ(A)| = 2. One example of such an A is as
follows:

A =
1

1 + eǫ









1 0 eǫ 0
1 0 eǫ 0
eǫ 0 1 0
1 0 eǫ 0









∈ ex(D).

4.3. Extreme points with every element constrained

The next definition is necessary before we can state Theorem 8 which is the
main result of the paper.

Definition 6 Let D̃ ⊂ D be defined as follows:

D̃ = {A ∈ D | rank(A) = |γ(A)|, λ(A) = ∅}. (11)
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The set D̃ contains matrices with between 2 and n non-zero columns, which
satisfy the rank condition of Theorem 2 and have no loose entries (i.e. ãij ∈
{0, 1, eǫ} for each i, j). We now show that every one of these matrices is an
extreme point of D.

Theorem 8 Let ǫ > 0. Then,

D̃ ⊂ ex(D).

Proof: Let A ∈ D̃ and let B,C ∈ D where 1
2 (B + C) = A. Define mj =

mini aij for each j ∈ {1, . . . , n} (Note that mj = 0 for each j /∈ γ(A), and
aij ∈ {mj, e

ǫmj} for each i, j since λ(A) = ∅).
Let ∆j =

1
2 maxi |bij − cij | for each j ∈ γ(A). As B and C are nonnegative,

it is not hard to see that:

∆j = 0, ∀ j /∈ γ(A). (12a)

We shall show that the same conclusion must also hold for j ∈ γ(A). To this
end, let j∗ ∈ γ(A) be given where ∆j∗ > 0. Assume without loss of generality
that bi1j∗ = ai1j∗ +∆j∗ for some i1 (if not, swap B and C).

We claim that ai1j∗ 6= mj∗ . Suppose otherwise. Then there exists i2 where
ai2j∗ = eǫmj∗ . However, since 1

2 (B + C) = A, we have ci1j∗ = 2ai1j∗ − bi1j∗ =
ai1j∗ −∆j∗ , and since C ∈ D, we have

ci2j∗ ≤ eǫci1j∗

= eǫai1j∗ − eǫ∆j∗

= ai2j∗ − eǫ∆j∗

By the definition of ∆j∗ , we must have ci2j∗ ≥ ai2j∗ − ∆j∗ . Hence it would
follow that ∆j∗ ≥ eǫ∆j∗ , a contradiction since ǫ > 0. Thus, ai1j∗ = eǫmj∗ as
claimed (i.e. the max change occurs on the max element of the column).

We now know that bi1j∗ = eǫmj∗ +∆j∗ . Let

Ij∗ = {i : aij∗ = mj∗}.

Then for every i ∈ Ij∗ , since B ∈ D, we get eǫmj∗ +∆j∗ = bi1j∗ ≤ eǫbij∗ , hence

bij∗ ≥ mj∗ + e−ǫ∆j∗ . (12b)

Also, for every i ∈ Ij∗ , since C ∈ D,

ci1j∗ = eǫmj∗ −∆j∗

≤ eǫcij∗

= ee(2aij∗ − bij∗)

= 2eǫmj∗ − eǫbij∗ ,

hence eǫmj∗ −∆j∗ ≤ 2eǫmj∗ − eǫbij∗ , or rewriting,

bij∗ ≤ mj∗ + e−ǫ∆j∗ . (12c)
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Hence, from (12b) and (12c),

bij∗ = mj∗ + e−ǫ∆j∗

= aij∗ + e−ǫ∆j∗ ,
(12d)

for every i ∈ Ij∗ .
It follows readily that for every i ∈ Ij∗ , cij∗ = mj∗ − e−ǫ∆j∗ .
We next consider indices i /∈ Ij∗ . Choose some i2 ∈ Ij∗ . For all i /∈ Ij∗ ,

aij∗ = eǫmj∗ , then
bij∗ ≤ eǫbi2j∗ = eǫmj∗ +∆j∗ , (12e)

and

cij∗ = 2aij∗ − bij∗

= 2eǫmj∗ − bij∗

≤ eǫci2j∗

= eǫmj∗ −∆j∗ ,

which can be rewritten as

bij∗ ≥ eǫmj∗ +∆j∗ . (12f)

Hence, from (12e) and (12f),

bij∗ = eǫmj∗ +∆j∗

= aij∗ +∆j∗ ,
(12g)

for all i /∈ Ij∗ .
Putting everything together, it follows from (12a), (12d) and (12g),

bij =











0, j /∈ γ(A),

mj + e−ǫgj∆j , j ∈ γ(A), i ∈ Ij

eǫmj + gj∆j , j ∈ γ(A), i /∈ Ij

where gj ∈ {−1, 1}, for all j ∈ γ(A).
Similarly, since B + C = 2A,

cij =











0, j /∈ γ(A),

mj − e−ǫgj∆j , j ∈ γ(A), i ∈ Ij

eǫmj − gj∆j , j ∈ γ(A), i /∈ Ij .

Rewriting in terms of Ã (given by (8)), bij = aij + gje
−ǫ aij

mj
∆j = aij +

gje
−ǫãij∆j and cij = aij − gje

−ǫãij∆j for all i, j.
Hence,

B = A+ e−ǫÃ diag
1≤j≤n

(gj∆j)

C = A− e−ǫÃ diag
1≤j≤n

(gj∆j).

14



Since A,B are stochastic, we require

e−ǫÃ diag
1≤j≤n

(gj∆j)1 = 0.

This equation defines a linear relationship between the columns of Ã. More-
over, we know that ∆j = 0 for j /∈ γ(A). If ∆j 6= 0 for any j ∈ γ(A), it

would imply that the non-zero columns of Ã and hence those of A are linearly
dependent, contradicting the assumption that rank(A) = |γ(A)|. It follows that
∆j = 0 for all j and hence that B = C = A. This completes the proof.

Furthermore, the set D̃ contains all extreme points of D which have no loose
entries.

Corollary 4 Let A ∈ D with λ(A) = ∅. Then, A ∈ ex(D) if and only if A ∈ D̃.

Proof: “⇒”: Let A ∈ ex(D) with λ(A) = ∅. By Theorem 2, rank(A) =
|γ(A)|, hence A ∈ D̃.

“⇐”: A ∈ D̃ ⇒ A ∈ ex(D) by Theorem 8.

4.4. Extreme points with all columns non-zero

From an application point of view, it is entirely reasonable to only consider
matrices (and the resulting response mechanism) with no zero columns.

Having a zero column in a matrix that defines a response mechanism means
that the mechanism never releases a particular (or multiple) values as its output.
In many circumstances, this feature will not be required of a mechanism.

Using Theorem 8, we now present the following corollary, which gives a
complete characterisation of extreme points without zero columns.

Corollary 5 Let A ∈ D, with |γ(A)| = n. Then, A ∈ ex(D) if and only if
A ∈ D̃

Equivalently,

{A ∈ ex(D) : |γ(A)| = n} = {A ∈ D̃ : |γ(A)| = n}.

Proof: “⇒”: Let A ∈ ex(D) have n non-zero columns. Then, rank(A) = n
by Theorem 2 and λ(A) = ∅ by Theorem 5.

“⇐”: Let A ∈ D such that rank(A) = n and λ(A) = ∅. Then A ∈ ex(D) by
Theorem 8.

We now have necessary and sufficient conditions for finding and determining
extreme points with n non-zero columns.

5. Discussion

We now take a brief look at a number of useful and interesting consequences
of the results given in Sections 3 and 4.
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ex(D) for small n: From Theorems 6 and 8, we know that D̃′ ∪ D̃ ⊆ ex(D);
with the addition of Theorem 7 we can make further observations for small
n.

Theorem 9 Let n ≤ 3, then

ex(D) = D̃′ ∪ D̃.

Extreme points for n = 4: We therefore have a complete characterisation of
all extreme points up to n = 3. While we lack a formal proof, extensive
computer simulations suggest it is also true for n = 4 leading to the
following conjecture.
Let n ≤ 4: then

ex(D) = D̃′ ∪ D̃.

ex(D) for n ≥ 5: When n = 5, our previous results allow us to characterise all
extreme points A for which |γ(A)| = 1, 2, 5. However, when |γ(A)| = 4,
we can find extreme points with loose entries.

The following point A ∈ D can be shown to be an extreme point of D by
using Theorem 1.

A =
1

3 + 2eǫ













1 1 2eǫ 1 0
eǫ 1 2 eǫ 0
eǫ eǫ 2 1 0
1 eǫ 2 eǫ 0
1 1 1 + eǫ eǫ 0













.

Fitting with Theorem 5, A has only a single loose entry (λ(A) = {(5, 3)}),
while we also observe that rank(A) = 4, satisfying Theorem 2.

We therefore have A ∈ ex(D), but A /∈ D̃′ ∪ D̃. Hence, D̃′ ∪ D̃ ⊂ ex(D) in
general.

6. Conclusion

We have studied the differential privacy polytope of n × n matrices and
described a suite of results characterising its extreme points. In particular, our
results describe completely the extreme points of this polytope containing 1,
2 and n non-zero columns. The last fact is of particular practical significance
as most implementations of differentially private mechanisms are likely to have
no zero columns; this is because a zero column corresponds to a value of the
dataset D that is never released by the mechanism. Future work could focus on
characterising extreme points with other values of |γ(A)|; alternative directions
for work include considering other convex geometric aspects of the polytope D
such as the structure of its dual set for example.
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