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1. Introduction

Data privacy has been of interest to researchers for decades [4], but high-profile privacy breaches in recent years, such as
those involving AOL [1] and Netflix [18], have renewed focus on the topic. The movement towards smart metering systems
for electricity, water and other utilities and the greater use of data mining in so-called smart cities and transport have given
rise to further concerns over personal data privacy.

Themost traditional framework for the study of data privacy is that of tabular data. A simplemodel of this type considers
the data to be arranged as individual records within a table, where each record contains entries from some underlying
dataset,whichmaybe continuous or discrete depending on the type of data being studied. Simple anonymisation techniques,
such as removing names and social security numbers (so-called unique identifiers) from the data, have been shown to be
inadequate [19].More sophisticated frameworks such as k-anonymity [19] and ℓ-diversity [15] are also vulnerable to privacy
attacks via the use of appropriate side-information or data from external sources [15,14].

Within the last decade, differential privacy [5] has emerged as a popular framework for research in the field of data
privacy based on its capability to provide a quantifiable basis for privacy preserving data publishing and mining. This is a
probabilistic approach to data privacy in which a suitably randomised version of the correct response to a query is released.
The core idea is founded on the simple premise that the response to a user query should not be too tightly coupled with
any one entry in the table. One widely-adopted implementation of differential privacy for real-valued databases is to add
an appropriate amount of noise sampled from a Laplace distribution to each cell of the database [6].

Much research on differential privacy to date has been completed on real-valued databases [6], although a considerable
body of literature also exists on discrete data [16,3]; in particular some recent work has focused on graph data relevant to
applications in areas such as social networks [13,2].
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Differentially private mechanisms can be divided into two distinct classes: sanitisation based mechanisms; and output
perturbation based mechanisms. Our concern here is with the former class, which first constructs a sanitised version of the
database and then answers queries on this. It has been shown in [11] that if the sanitised database satisfies the requirements
of differential privacy, then any query can be answered on it in a differentially private manner.

In writing this paper, we have two aims: the first is to present a set of new results on the mathematical foundations
of differential privacy for discrete data; the second is to bring the problems in this field to the attention of researchers in
discrete applied mathematics.

We examine differentially private mechanisms for discrete data within the general probabilistic framework described
in our previous paper [11]. As we deal with finite datasets here, many of the measure-theoretic details required for the
more general setting can be suppressed. However, to properly set context, we include the more general definitions here in
Section 2.

Our first results concern an adaptation for discrete data of the exponential mechanism introduced by McSherry and
Talwar. In particular, we consider the problem of sufficient sets for differential privacy for this mechanism. This problem is
motivated by the practical issue of testingwhether or not amechanism is differentially private and arises from the following
simple considerations.

For a sanitisation to be differentially private, certain inequalities (described formally later) must hold on all subsets of the
database space, which can necessitate checking a prohibitively large collection of sets in order to test for differential privacy.
The question of sufficient sets asks whether it is sufficient for the differential privacy condition to hold on a collection of
these subsets for it to hold on all subsets.We can therefore reduce theworkload required to check that amechanism satisfies
differential privacy. In Section 3, we present results characterising sufficient sets for the discrete exponential mechanism.
We then use these to give necessary and sufficient conditions for differential privacy for this mechanism.

Amajor concern of privacy research is the trade-off between privacy and accuracy. For the current setting, in the absence
of a given metric on the dataset, we measure the error of a sanitisation using hamming distance; in Theorem 5 we derive a
tight lower bound on the maximal expected error of a discrete exponential mechanism.

In Section 4 we consider a seemingly unrelated approach to database sanitisation: product sanitisations. We show that
these are in fact equivalent to the discrete exponential mechanism constructed using the hamming distance and, building
on results in [11], we characterise differential privacy and the error for these in Theorems 8 and 9 respectively. Finally in
Theorem 10 we provide a characterisation of the optimal product sanitisation mechanism, which minimises the maximal
expected error within the class of product sanitisations (and hence within the class of discrete exponential mechanisms).
Concluding remarks are given in Section 5.

1.1. Related work

Before the advent of differential privacy, Fienberg examined the use of data swapping and cell suppression for privacy
protection on categorical data [9]. Dwork then presented the notion of differential privacy in [5], and its limitations were
discussed by Dankar in [7], including its applicability to categorical data.

Dwork’s work was closely followed by McSherry and Talwar who proposed the exponential mechanism in [16]. An
instantiation of this was used by Hardt and Talwar [10] in examining the geometry of differential privacy. Mohammed
made use of the exponential mechanism for releasing count queries in [17,3], while a more recent contribution has looked
at differential privacy on counts using a combination of the Laplace and exponential mechanisms [21].

2. Preliminaries

2.1. Database model

We consider a finite data set D with (m + 1) elements (m ≥ 1). A database d with n rows drawn from this data set is
represented by a vector d = (d1, . . . , dn) ∈ Dn. D is equipped with a σ -algebra, in this case the power set 2D and Dn inherits
the product σ -algebra, 2Dn

. We are therefore considering all subsets of D and Dn.
We will consider hamming distance on Dn. Recall that the hamming distance, h : Dn

×Dn
→ {0, 1, . . . , n}, between two

databases is the number of rows on which they differ:

h(d, d′) = |{i : di ≠ d′

i}|. (1)

Definition 1 (Neighbours). Two databases d, d′
∈ Dn are said to be neighbours, written d ∼ d′ if h(d, d′) = 1.

Informally, two databases are neighbours if they differ on exactly one row.

2.2. Query model

We make use of the generalised query model introduced in [11], adapted to the discrete setting. A query Q : Dn
→ EQ

outputs a response in EQ , the structure of which is not specified (it may be numeric, categorical, functional, etc.). EQ is,
however, equipped with a σ -algebra AQ . We require that all queries be measurable, which is trivial in this setting since
Q−1(A) ⊆ Dn for all A ∈ AQ .
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2.3. Response mechanism

Let (Ω, F , P) be a probability space. We define a response mechanism for a query Q to be the family of measurable
mappings

{XQ ,d : Ω → EQ | d ∈ Dn
}. (2)

For simplicity, when the query in question is the identity query I , we denote XI,d by Xd : Ω → Dn. Where there is no
ambiguity, the response mechanism will be written as {XQ ,d} (or {Xd} when dealing with the identity query).

In this paper we deal exclusively with sanitised response mechanisms, where XQ ,d = Q ◦ Xd. In this case the mechanism
is generated by first sanitising the database d and then answering queries on the sanitised database Xd without any further
modification to the data. Hence, a sanitised response mechanism for a query Q is the family of mappings

{XQ ,d = Q ◦ Xd : Ω → EQ | d ∈ Dn
}. (3)

One mechanism which we will make use of in this paper is the exponential mechanism, as described by McSherry and
Talwar [16]. We next recall the definition of this mechanism for general output spaces; later we will specialise to the case
of discrete categorical data.

Definition 2 (Exponential Mechanism). Given a query Q , a query output space EQ , a utility function (which measures the
utility of all possible query answers to the database being queried) u : Dn

×EQ → R, a measureµ on EQ and a normalisation
constant Cd, the exponential mechanism is defined to be the family of mappings {XQ ,d : Ω → EQ | d ∈ Dn

}, with probability
density function with respect to µ given by C−1

d eϵu(d,q) for each d ∈ Dn and for q ∈ EQ .

Comment: McSherry and Talwar refer to the measure µ in the above definition as a base measure on the output space.
As mentioned in [16], it is often the uniform probability measure on EQ and is adjusted by the exponential factor C−1

d eϵu(d,q)

to reflect the utility of various pairs of values from Dn and EQ . The measure can potentially be viewed as describing the
underlying distribution of values in EQ . If EQ is discrete, as in all cases considered here, we can specify µ by {µ(q) : q ∈ EQ }

and the exponential mechanism has probability mass function

P(XQ ,d = q) = C−1
d eϵu(d,q)µ(q), (4)

where q ∈ EQ . In fact, we will focus on the situation where Q is the identity map on a finite Dn andµ is given by the uniform
measure.

2.4. Differential privacy

We now define what it means for a response mechanism in our framework to be differentially private.

Definition 3 (Differential Privacy with Respect to a Query). Let a query Q : Dn
→ EQ and parameters ϵ ≥ 0 and 0 ≤ δ ≤ 1

be given. A response mechanism {XQ ,d : Ω → EQ | d ∈ Dn
} is (ϵ, δ)-differentially private if

P(XQ ,d ∈ A) ≤ eϵP(XQ ,d′ ∈ A) + δ, (5)

for all d ∼ d′
∈ Dn and for all measurable A ⊆ EQ .

Note that the relation d ∼ d′ is symmetric, so (5) must hold when d and d′ are swapped.

Note: McSherry and Talwar showed that the exponential mechanism (Definition 2) satisfies 2ϵ∆u-differential privacy
(δ = 0), where

∆u = max
d∼d′∈Dn,q∈EQ

|u(d, q) − u(d′, q)|.

Theorem 4 of [11] simplifies the problem of checking differential privacy for sanitised response mechanisms. We now
recall that theorem.

Theorem 1 (Identity Query). A sanitised response mechanism which is (ϵ, δ)-differentially private with respect to the identity
query is (ϵ, δ)-differentially private with respect to any query Q .

We therefore need only examine the response mechanism for the identity query,

{Xd : Ω → Dn
| d ∈ Dn

}. (6)

Example 1 (Categorical Data I). Suppose the data we are interested in records individuals’ favourite hobby. The data set D
would contain a list of all hobbies. For simplicity in this example, we restrict answers to the following five hobbies: Sports;
Cars; Television; Computer games; and Reading. Hence, m = 4. Each database d would contain the favourite hobby of n
individuals. If n = 6, one possible d could be represented by the following list: Sports; Computer games; Television; Sports;
Reading; Television.

Queries on such databases could include counting the number of unique hobbies (4 in the case above) or how many list
‘Television’ as their favourite hobby (2 in the case above). The identity query would be another valid query.
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3. Sufficient sets for discrete exponential mechanism

In order for a response mechanism to be deemed (ϵ, δ)-differentially private, (5) must hold for all pairs of neighbouring
databases and for all possible subsets ofDn. If wewere to check all combinations, this would require checking all nm(m+1)n
pairs of neighbouring databases on 2(m+1)n

−2 subsets ofDn (all subsets exceptDn itself and∅). Therefore, checking a discrete
response mechanism for differential privacy requires nm(m + 1)n(2(m+1)n

− 2) checks in total.
However, for a given pair of neighbouring databases, it is not always necessary to check (5) on all subsets of Dn. So we

ask the question: For a given d ∼ d′, what is the smallest collection of subsets of Dn that we need to check for (5) to hold on
all subsets of Dn? We call such a collection of subsets sufficient sets of the mechanism for d ∼ d′.

In this section, we examine the sufficient sets for a class of discrete response mechanisms and show that, even in the
most general cases, significant improvements on workload can be made when checking for differential privacy. We also
present conditions that are necessary and sufficient for differential privacy to hold. This compares to the mostly sufficient
conditions presented in other differential privacy literature, which can therefore give a conservative estimate on the privacy
level achieved.

3.1. General response mechanism

We begin by considering the exponential mechanism described by McSherry and Talwar [16], as detailed in Definition 2.
We wish to assign a probability to each database based on its utility to the input/reference database. This is determined by
the utility function, which can be a metric or any other function deemed suitable for a particular application. As discussed
in Section 2.4, we are only concerning ourselves with the identity query.

With the aim of minimising error, a reasonable approach is to assign the reference/input database itself the highest
probability of being returned, with decreasing likelihood the further we move away from the reference as determined by
the utility function.

Definition 4 (Discrete Exponential Mechanism). Let u : Dn
× Dn

→ R be given. The discrete exponential response mechanism
is defined to be a family of measurable mappings

{Xd : Ω → Dn
| d ∈ Dn

},

where each Xd satisfies

P(Xd = d′) = C−1
d eu(d,d′), (7)

for all d, d′
∈ Dn. As Dn is finite, we can define the normalisation constant Cd as

Cd =


d′∈Dn

eu(d,d′)

for each d ∈ Dn.

Remark. While similar to the exponential mechanism (4), the discrete exponential mechanism differs by dealing only with
the identity query (Q = I), by having a uniformmeasure (µ = 1) and by absorbing ϵ into u, in order to allow consideration
of (ϵ, δ)-differential privacy.

Even with this general set-up, we can still make improvements on workload when checking for differential privacy. We
begin by defining the following set for each pair of neighbouring databases d ∼ d′

∈ Dn:

Sd,d′ =

d∗

∈ Dn
| P(Xd = d∗) > P(Xd′ = d∗)


=


d∗

∈ Dn
| C−1

d eu(d,d∗) > C−1
d′ eu(d

′,d∗)


. (8)

This set is a collection of the ‘‘worst-case’’ databases for d and d′, and, as we show in Theorem 2, is the only set of interest
when checking for differential privacy.

Theorem 2 (Sufficient Sets). Let {Xd} be a discrete exponential mechanism and fix d ∼ d′
∈ Dn. If (5) holds on all A ⊆ Sd,d′ then

it will hold on all A ⊆ Dn.

Proof. We fix d ∼ d′
∈ Dn, let A ⊆ Dn be given and assume (5) holds on all subsets of Sd,d′ . By assumption, (5) holds on

A0 = A ∩ Sd,d′ , hence P(Xd ∈ A0) ≤ eϵP(Xd′ ∈ A0) + δ. If A0 = Awe are done, so assume A \ A0 ≠ ∅.
For each d∗

∈ A \ A0, P(Xd = d∗) ≤ P(Xd′ = d∗). Pick one such d∗

0 ∈ A \ A0, then

P(Xd ∈ A0 ∪ {d∗

0}) = P(Xd ∈ A0) + P(Xd = d∗

0)

≤ eϵP(Xd′ ∈ A0) + δ + P(Xd = d∗

0)

≤ eϵP(Xd′ ∈ A0) + δ + P(Xd′ = d∗

0)

≤ eϵP(Xd′ ∈ A0 ∪ {d∗

0}) + δ.
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Hence, (5) holds on A1 = A0 ∪ {d∗

0}. We can similarly show that (5) holds on A2 = A1 ∪ {d∗

1} for any d∗

1 ∈ A \ A1.
By repeating this process (picking d∗

i ∈ A \ Ai), we can show that (5) holds on Ai+1 = Ai ∪ {d∗

i } for each i.
Since A is finite (Dn is finite), this process will eventually terminate when Ai = A, i.e. i = |A \ A0|. Hence, (5) will hold on

A as required. �

We now look at a simple example to demonstrate the impact of Theorem 2.

Example 2 (ℓ1 norm). For this example, we consider a discrete exponential mechanism where D = {0, 1, 2}, n = 2 and
u(d, d′) = −∥d−d′

∥1. In this case, |Dn
| = 9, and we are therefore required to check 29

−2 = 510 subsets (all subsets of Dn

except ∅ and Dn itself) for every pair of neighbouring databases d ∼ d′
∈ Dn, meaning a total of 510× 36 = 18, 360 checks.

Let d =
0
1


and d′

=
2
1


, then Sd,d′ =

0
0


,
0
1


,
0
2


. Hence, for this particular pair of neighbouring databases, it is

sufficient to check that (5) holds on just 23
− 1 = 7 subsets (all subsets of Sd,d′ except ∅).

If we choose d =
1
1


and d′

=
2
1


, then we get Sd,d′ =

0
0


,
0
1


,
0
2


,
1
0


,
1
1


,
1
2


. This gives a total of 26

− 1 = 63
subsets to check.

By populating the entire set of databases, we can show that 21 pairs of neighbour databases require 7 subset checks,
while the remaining 15 pairs require 63 checks. That leaves us with a total of 1092 subset checks to verify differential
privacy, compared with 18,360 without the use of Theorem 2.

3.2. Response mechanism with fixed Cd

By Theorem 2, we know that, for a discrete exponential mechanism, checking that (5) holds on all subsets of Sd,d′ is
equivalent to checking all subsets of Dn. However, if Cd is fixed for all d ∈ Dn, we can partition Sd,d′ to reduce our workload
further. Let us first consider the following set relating to Sd,d′ :

α = {u(d, d∗) − u(d′, d∗) | d∗
∈ Sd,d′}. (9)

There are only finitely many such values in α, since Sd,d′ is finite. We label these elements α1, α2, . . . , αs, with 0 < α1 <
α2 < · · · < αs.

We then partition Sd,d′ into the collection of subsets {S̃1d,d′ , S̃2d,d′ , . . . , S̃sd,d′} as follows:

S̃ id,d′ =

d∗

∈ Sd,d′ | u

d, d∗


− u


d′, d∗


= αi


. (10)

Note that for each i and for all d∗
∈ S̃ id,d′ ,

P(Xd′ = d∗) = Ceu(d
′,d∗)

= Ceu(d,d∗)−αi

= e−αiP(Xd = d∗). (11)

We can now show that if (5) holds on these partitions, it will hold on all subsets of each partition, i.e. the partitions are
sufficient sets of themselves.

Theorem 3. Fix d ∼ d′
∈ Dn and let {Xd} be a discrete exponential mechanism with Cd = C for all d ∈ Dn. If (5) holds on S̃ id,d′

then it will hold on all A ⊆ S̃ id,d′ for each i.

Proof. Fix d ∼ d′
∈ Dn. We assume

P(Xd ∈ S̃ id,d′) ≤ eϵP(Xd′ ∈ S̃ id,d′) + δ,

and let A ⊆ S̃ id,d′ . By (11), P(Xd′ ∈ A) = e−αiP(Xd ∈ A). Since this also holds for the set S̃ id,d′ itself, we have

1 ≤ eϵ−αi +
δ

P(Xd ∈ S̃ id,d′)
.

Clearly P(Xd ∈ A) ≤ P(Xd ∈ S̃ id,d′), which gives

1 ≤ eϵ−αi +
δ

P(Xd ∈ A)
,

or, rewriting,

P(Xd ∈ A) ≤ eϵP(Xd′ ∈ A) + δ.

Hence, (5) holds on all A ⊆ S̃ id,d′ . �
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When δ = 0, Theorem 3 tells us that these partitions S̃ id,d′ of Sd,d′ are all we need to check to verify ϵ-differential privacy,
i.e. the sufficient sets are the collection of subsets {S̃1d,d′ , . . . , S̃sd,d′}.

Corollary 1 (Sufficient Sets with Fixed Cd). Let {Xd} be a discrete exponential mechanism, δ = 0 and fix d ∼ d′
∈ Dn. If (5) holds

on S̃ id,d′ for all i, then it will hold on all subsets of Dn.

Proof. Let A ⊆ Sd,d′ and assume that (5) holds on S̃ id,d′ for all i. Hence, by Theorem 3, (5) holds on all subsets of S̃ id,d′ for all i.
As {S̃ id,d′} partitions Sd,d′ , A =


i A ∩ S̃ id,d′ , hence P(Xd ∈ A ∩ S̃ id,d′) ≤ eϵP(Xd′ ∈ A ∩ S̃ id,d′) for all i.

Since S̃ id,d′ ∩ S̃ jd,d′ = ∅ when i ≠ j, P(Xd ∈


i A ∩ S̃ id,d′) =


i P(Xd ∈ A ∩ S̃ id,d′), and so,

P(Xd ∈ A) = P


Xd ∈


i

A ∩ S̃ id,d′


=


i

P

Xd ∈ A ∩ S̃ id,d′


≤ eϵ


i

P

Xd′ ∈ A ∩ S̃ id,d′


= eϵP(Xd′ ∈ A).

Therefore (5) holds on all subsets of Sd,d′ , and by Theorem 2, it holds on all subsets of Dn. �

3.3. Discrete exponential mechanism with hamming distance

The usefulness of Theorem 3 becomes particularly apparent when we restrict our response mechanism to one derived
from hamming distance. For the remainder of this section our utility function u is defined to be

u(d, d′) = −k h(d, d′), (12)

where k ≥ 0 is a privacy parameter and h(d, d′) is the hamming distance between d and d′ (the number of elements on
which they differ, see (1)). Note that for this set-up, the normalisation constant Cd = C is fixed for all d ∈ Dn.

Proposition 1. For a discrete exponential mechanism satisfying (12),

Cd = C =


1 +

m
ek

−n
. (13)

Proof. Let d ∈ Dn be given. Then,
d′∈Dn

P(Xd = d′) =


d′∈Dn

Cde−k h(d,d′)

= Cde0 + Cdnme−k
+ Cd


n
2


m2e−2k

+ · · · + Cdmne−nk

= Cd

n
i=0


n
i


mie−ik

= Cd


1 +

m
ek

n
.

For the probability mass function of Xd to sum to 1, we need

Cd


1 +

m
ek

n
= 1.

Rearranging this completes the proof. �

In this case, the sufficient sets for the problem condense down to a single set.

Corollary 2 (Sufficient Sets for Hamming Distance). Consider a discrete exponential mechanism satisfying (12). If (5) holds on
Sd,d′ , then it will hold on all A ⊆ Dn.

Proof. First note that, for all d ∼ d′
∈ Dn,

h(d′, d∗) − h(d, d∗) ∈ {−1, 0, 1},
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hence for all d∗
∈ Sd,d′ , h(d′, d∗) − h(d, d∗) = 1. The set α reduces to a singleton set,

α = {−k h(d, d∗) + k h(d′, d∗) | d∗
∈ Sd,d′}

= {k},

and hence Sd,d′ = S̃1d,d′ .
We can then conclude that if (5) holds on Sd,d′ , it must hold on all subsets of Sd,d′ (by Theorem 2) and also on all subsets

of Dn (by Theorem 3). �

We have established that, for the discrete exponential mechanism satisfying (12) and for a given neighbouring pair of
databases d ∼ d′, to check for differential privacy on all possible subsets of the database space Dn, we need only check a
single set Sd,d′ .

It is now a relatively simple task to establish conditions on the response mechanism for differential privacy. For the
following theorem, we assume that δ < 1 (note that all mechanisms are trivially (ϵ,1)-differentially private).

Theorem 4 (Condition for Differential Privacy). Let δ < 1. A discrete exponential mechanism {Xd} satisfying (12) is (ϵ, δ)-
differentially private if and only if

ek ≤
eϵ

+ mδ

1 − δ
. (14)

Proof. Fix d ∼ d′
∈ Dn. By Corollary 2 we need only satisfy (5) on Sd,d′ for it to hold on all A ⊆ Dn. Hence we need

P(Xd ∈ Sd,d′) ≤ eϵP(Xd′ ∈ Sd,d′) + δ.

By definition, P(Xd′ ∈ Sd,d′) = e−kP(Xd ∈ Sd,d′), therefore the mechanism will be differentially private if and only if

1 ≤ eϵ−k
+

δ

P(Xd ∈ Sd,d′)
. (15)

Now consider P(Xd ∈ Sd,d′). By definition, each d∗
∈ Sd,d′ lies a hamming distance of h(d, d∗) + 1 from d′. Therefore, the

number of d∗ where h(d, d∗) = c is
n−1

c


mc (c elements must be changed, but not the element on which d and d′ differ, to

ensure h(d, d∗) + 1 = h(d′, d∗)). Hence,

P(Xd ∈ Sd,d′) = C
n−1
i=0


n − 1

i


mie−ik

= C

1 +

m
ek

n−1

=


1 +

m
ek

−1
.

Substituting this result into (15) gives

1 ≤ eϵ−k
+ δ


1 +

m
ek


,

and solving for ek completes the proof. �

Remark. For (ϵ,0)-differential privacy, we require k ≤ ϵ.

Discussion: If we convert our discrete exponential mechanism back into the form of the exponential mechanism,
McSherry and Talwar [16] tell us that the mechanism satisfies 2ϵ-differential privacy at worst. However, we have shown
in Theorem 4 that the mechanism satisfies ϵ-differential privacy, and that this condition is tight (necessary and sufficient,
hence we can do no better). This improves on the looser bound inMcSherry and Talwar’s proof, as it underestimates the dif-
ferential privacy achieved by a factor of two. Their mechanism is also limited to ϵ-differential privacy only (δ = 0), whereas
we can account for (ϵ, δ)-differential privacy (δ > 0).

Using the differential privacy constraints established in Theorem 4, we can now determine error bounds for the mecha-
nism, where we define error to be the largest mean hamming distance between the input and sanitised databases. Formally,
we have the following result.

Theorem 5 (Error). Consider a discrete exponential mechanism satisfying (12) which is (ϵ, δ)-differentially private. Let

E = max
d∈Dn

E[h(Xd, d)]. (16)
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Then

1 − δ

1 +
eϵ
m

≤
E

n
≤

m
m + 1

. (17)

Proof. Let d ∈ Dn. Then P(Xd = d′) = Ce−k h(d,d′) and |{d′
: h(d, d′) = c}| =

n
c


mc for all c ∈ {0, 1, . . . , n}. Hence,

E[h(Xd, d)] = C
n

i=0

i

n
i


mie−ik

= Cn
n

i=1


n − 1
i − 1

m
ek

i
= Cn

m
ek

n−1
I=0


n − 1

I

m
ek

I
= Cn

m
ek


1 +

m
ek

n−1

= n
m
ek


1 +

m
ek

−1

=
n

1 +
ek
m

.

On average, the number of entries that will change is therefore

E

n
=

max
d∈Dn

E[h(Xd, d)]

n
=

1

1 +
ek
m

.

Since the response mechanism is differentially private, Theorem 4 tells us that ek ≤
eϵ+mδ
1−δ

, and k ≥ 0 by definition,
hence,

1 − δ

1 +
eϵ
m

≤
E

n
≤

m
m + 1

. �

Remark. This lower bound is tight and can be achieved by setting k = ln


eϵ+mδ
1−δ


(see Theorem 4).

4. Product sanitisation

The results of Section 3 give a clear framework on how to create differentially privatemechanisms for any type of discrete
data, particularly categorical data using hamming distance, and to obtain tight (necessary and sufficient) conditions for
differential privacy. However, this mechanism requires the creation of a separate probability distribution for each of the
(m + 1)n unique databases.

In this section, we present a simple method for realising the discrete exponential mechanism.

4.1. Response mechanism

A product sanitisation mechanism is one where the database is sanitised row-by-row. The following is the definition of
such a mechanism, following the same notation as in [11].

Definition 5 (Product Sanitisation Mechanism). Given a 1-dimensional response mechanism for the identity query, {Xd :

Ω → D | d ∈ D} (the parent mechanism), the product sanitisation response mechanism is defined to be the set of measurable
mappings

{Xd : Ω → Dn
| d ∈ Dn

}

given by

Xd = (X1
d , . . . , Xn

d ), (18)

where the X i
d are independent and each X i

d has the same distribution as Xdi , for all d ∈ Dn, i ∈ {1, . . . , n}.

In this setting, each row of the sanitised database is represented by an independent random variable, as if the database
represents n 1-dimensional databases, each sanitised independently. Realising this framework therefore only requires the
creation ofm + 1 probability distributions which are then copied to create distributions on each database.
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Remark. The above definition of product sanitisation involves generating ‘‘noisy’’ versions of the data contributions or
responses from individuals. In this way, it is clearly related to the classical method of randomised response in the literature
on statistical disclosure control [20]. Recently, differentially private mechanisms based on randomised responses have been
considered in [8], motivated by applications to statistical crowd-sourcing. The techniques described in this latter paper
have been deployed in Google’s open source browser, Chromium. In [12], the authors study product mechanisms under
the heading local differential privacy. They consider strict differential privacy (δ = 0) and a low privacy regime. For this
setting, they show in Theorem 2.6 of [12] that a particular randomised response mechanism is optimal with respect to a
utility function based on Kullback–Leibler divergence.We consider related questions here for the case of relaxed differential
privacy and objective functions based on Hamming distance.

Wenow recall Theorem5of [11],which states that differential privacy on aproduct sanitisationmechanism is guaranteed
when its parent mechanism is differentially private.

Theorem 6. Consider a family {Xd | d ∈ D} of measurable mappings and assume that

P(Xd ∈ A) ≤ eϵP(Xd′ ∈ A) + δ,

for all d, d′
∈ D and all A ⊆ D. Let {Xd | d ∈ Dn

} be a product sanitisation mechanism. Then

P(Xd ∈ A) ≤ eϵP(Xd′ ∈ A) + δ,

for all d ∼ d′
∈ Dn and all A ⊆ Dn.

The converse of this result was proven in Lemma 3 of [11]. However, we are able to take a simpler approach to showing
this converse by exploiting the finiteness of D.

Corollary 3 (Parent Mechanism). A product sanitisation mechanism {Xd | d ∈ Dn
} is (ϵ, δ)-differentially private if and only if its

parent mechanism {Xd | d ∈ D} is (ϵ, δ)-differentially private.

Proof. ‘‘⇐’’: Theorem 6.
‘‘⇒’’: Let A ⊆ D and d ≠ d′

∈ D be given. Define A′
= A × Dn−1

⊆ Dn and d, d′
∈ Dn, such that d1 = d, d′

1 = d′ and
di = d′

i for all i ∈ {2, . . . , n}, hence d ∼ d′. Since {Xd} is differentially private by assumption,

P(Xd ∈ A′) ≤ eϵP(Xd′ ∈ A′) + δ.

However, since {Xd} is a product sanitisation mechanism,

P(Xd ∈ A′) = P(X1
d ∈ A) ×

n
i=2

P(X i
d ∈ D)

= P(X1
d ∈ A)

= P(Xd1 ∈ A).

Hence,

P(Xd ∈ A) ≤ eϵP(Xd′ ∈ A) + δ,

for all d ≠ d′
∈ D and A ⊆ D, as required. �

Hence, for a product sanitisation mechanism to be differentially private, we need only show that its parent mechanism
is differentially private.

For the remainder of this section, given 0 ≤ p ≤
1

m+1 , the parent mechanism {Xd | d ∈ D} of the product sanitisation is
defined such that

P(Xd = d) = 1 − pm, P(Xd = d′) = p, (19)

for every d′
∈ D \ {d}.

Remark. p =
1

m+1 represents the case of releasing uniform noise (i.e. no information), while decreasing p reduces the error
of the mechanism.

Remark. By requiring p ≤
1

m+1 , we get P(Xd = d) ≥ P(Xd = d′) for every d′
∈ D. Therefore, the mechanism is at least as

likely to return the correct answer as any one incorrect answer, an entirely reasonable assumption.

Example 3 (Categorical Data II). Using the same set-up as in Example 1, one such permissable p would be p = 0.1, since
0 ≤ 0.1 ≤

1
5 . Then, if d were to be the value ‘Television’, and d′ the value ‘Cars’, P(Xd = d) = 0.6, and P(Xd = d′) = 0.1.

We then sanitise the n-row database d in the same way, working through the database one row at a time.



N. Holohan et al. / Discrete Applied Mathematics 211 (2016) 86–98 95

In the first main result of this section, we show that the product sanitisation mechanism and the discrete exponential
mechanism are equivalent, despite being constructed in different ways (this is subject to the discrete exponential
mechanism satisfying (12) and the product sanitisation mechanism satisfying (19)).

Theorem 7 (Equivalence). Let {Xd | d ∈ Dn
} be a discrete exponential mechanism satisfying (12), and {Yd | d ∈ Dn

} be a
product sanitisation response mechanism, whose parent mechanism satisfies (19). Then the probability mass functions of Xd and
Yd are identical, for every d ∈ Dn, when

ek =
1
p

− m. (20)

Proof. Let d ∈ Dn, then

P(Xd = d′) =


1 +

m
ek

−n
e−k h(d,d′),

P(Yd = d′) = (1 − pm)n


p
1 − pm

h(d,d′)

,

for all d′
∈ Dn.

For the two mechanisms to be equivalent, we need p
1−pm = e−k, or, rewriting, 1−pm

p = ek.

We also need 1 − pm =
ek

ek+m
, which can be rewritten as 1

1−pm = 1 +
m
ek
, or 1−pm

p = ek.
Hence, the mechanisms {Xd} and {Yd} are equivalent when ek =

1
p − m or p =

1
ek+m

. �

4.2. Alternative proofs of Theorems 4 and 5

We have already established that the discrete exponential mechanism satisfying (12) and the product sanitisation
mechanism satisfying (19) are equivalent, meaning the results of Theorems 4 and 5 also apply to the product sanitisation
mechanism in this particular set-up. In this sub-section, we provide alternative methods of proof for these theorems that
make use of the specific product sanitisation of the mechanism, for the additional insight provided.

The proof of the following theorem first appeared in [11], but is included here for completeness.

Theorem 8 (Condition for Differential Privacy). A product sanitisation mechanism, whose parent mechanism satisfies (19), is
(ϵ, δ)-differentially private if and only if

p ≥
1 − δ

eϵ + m
. (21)

Proof. By Corollary 3, we need only be concerned with proving differential privacy on {Xd | d ∈ D} for it to hold on
{Xd | d ∈ Dn

}.
‘‘⇒’’: Assume {Xd} is differentially private and let d ≠ d′

∈ D be given. Applying the definition of differential privacy to
the singleton set A = {d} gives

1 − pm ≤ eϵp + δ.

Rearranging this gives (21).
‘‘⇐’’: Assume (21) holds and let d ≠ d′

∈ D and A ⊆ D be given. There are four cases to consider on A:

1. d, d′
∉ A: Then P(Xd ∈ A) = P(Xd′ ∈ A) = p|A| and differential privacy holds trivially.

2. d, d′
∈ A: Then P(Xd ∈ A) = P(Xd′ ∈ A) = p(|A| − 1) + 1 − pm = p(|A| − m − 1) + 1 and differential privacy holds

trivially.
3. d′

∈ A, d ∉ A: Then P(Xd ∈ A) = p|A| and P(Xd′ ∈ A) = p(|A| − 1) + 1 − pm, so P(Xd ∈ A) ≤ P(Xd′ ∈ A) and differential
privacy holds.

4. d ∈ A, d′
∉ A: Then

P(Xd ∈ A) = p(|A| − m − 1) + 1,
P(Xd′ ∈ A) = p|A|.

From (21), we have

1 − pm ≤ eϵp + δ

= eϵ(p|A| − p|A| + p) + δ

≤ eϵp|A| − p(|A| − 1) + δ,
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since |A| ≥ 1 (d ∈ A by hypothesis). Rewriting the above,

p(|A| − m − 1) + 1 ≤ eϵ (p|A|) + δ,

hence P(Xd ∈ A) ≤ eϵP(Xd′ ∈ A) + δ and differential privacy holds. �

Remark. For (ϵ,0)-differential privacy, we require p ≥
1

eϵ+m .

Remark. By definition, p is bounded from above by 1
m+1 , so for differential privacy we require

1 − δ

eϵ + m
≤ p ≤

1
m + 1

.

We now look at an alternative proof of Theorem 5 which established error bounds on the mechanism.

Theorem 9 (Error). The error, E (given by (16)), of a product sanitisationmechanism, whose parent mechanism satisfies (19) and
is (ϵ, δ)-differentially private, satisfies

1 − δ

1 +
eϵ
m

≤
E

n
≤

m
m + 1

. (22)

Proof. Let d ∈ Dn. Then,

E = max
d∈Dn

E [h(Xd, d)]

= max
d∈Dn

E


n

i=1

h(X i
d, di)



= max
d∈Dn

n
i=1

E

h(X i

d, di)


= max
d∈Dn

n
i=1

P(Xdi ≠ di)

= n

max
d∈D

(1 − P(Xd = d))


= npm.

On average, the number of entries that will change is therefore

E

n
= pm.

As the mechanism satisfies (ϵ, δ)-differential privacy, p ≥
1−δ
eϵ+m by Theorem 8, and since p ≤

1
m+1 by definition,

1 − δ

1 +
eϵ
m

≤
E

n
≤

m
m + 1

. �

Remark. As with the discrete exponential mechanism, this bound is tight and can be achieved by setting p equal to the
lower bound established in Theorem 8.

4.3. Optimal mechanism

We now look at the second main result of this section. Using the same error definition as before, (16), we show how to
construct the optimal (ϵ, δ)-differentially private mechanism which produces the minimum error. For the purpose of this
subsection, we assume the following labelling of elements in the data set:

D = {d̃1, d̃2, . . . , d̃m+1}. (23)

Definition 6 (Solution Matrix). The parent mechanism {Xd} of a product sanitisation mechanism can be defined by a
stochastic matrix

P(ϵ,δ) ∈ [0, 1](m+1)×(m+1),
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where

P(Xd̃i
= d̃j) =


P(ϵ,δ)


ij . (24)

We refer to P(ϵ,δ) as a product sanitisation solution matrix if the mechanism it defines is (ϵ, δ)-differentially private.

Remark. A parent mechanism which satisfies (19) is represented by the following solution matrix:
P(ϵ,δ)


ij =


1 − mp if i = j,
p if i ≠ j. (25)

Theorem 10 (Optimality). Let {Xd} be a parent mechanism which satisfies (19), with p =
1−δ
eϵ+m . The error, E =

maxd∈Dn E[h(Xd, d)], produced by its product sanitisation mechanism {Xd} is the minimum of all product sanitisation
mechanisms.

Proof. Let A = P(ϵ,δ), satisfying (25) with p =
1−δ
eϵ+m , be the solution matrix of {Xd}, i.e. P(Xd̃i

= d̃j) = aij. Note that this
mechanism has the property that ajj = eϵaij + δ, since ajj =

eϵ+mδ
eϵ+m and aij =

1−δ
eϵ+m , for all i ≠ j.

The error of its product sanitisation mechanism {Xd}, using the same method as in the proof of Theorem 9, is

max
d∈Dn

E[h(Xd, d)] = n

max
d∈D

(1 − P(Xd = d))


= n

max

i
(1 − aii)


= n


1 − min

i
aii


= n(1 − aii),

for all i, since aii = ajj = 1 − mp for all i and j.
Let B be a solution matrix defining the parent mechanism {Yd}, with a corresponding product sanitisation mechanism

{Yd}, where B ≠ A. Since B is a solution matrix, it is stochastic (


j bij = 1 for all i) and the parent mechanism it defines is
(ϵ, δ)-differentially private (P(Yd ∈ A) ≤ eϵP(Yd′ ∈ A) + δ, for all d, d′

∈ D and A ⊆ D).
Since A ≠ B and A, B are stochastic, there exists at least one pair (i∗, j∗), where bi∗j∗ < ai∗j∗ . There are two cases to

consider:

1. i∗ = j∗: The error of {Yd} is then

max
d∈Dn

E[h(Yd, d)] = n

1 − min

i
bii


≥ n


1 − bj∗j∗


> n(1 − aj∗j∗)
= max

d∈Dn
E[h(Xd, d)].

2. i∗ ≠ j∗: As noted previously, aj∗j∗ = eϵai∗j∗ + δ, and since {Yd} is (ϵ, δ)-differentially private, P(Ydj∗ = dj∗) ≤ eϵP(Ydi∗ =

dj∗) + δ, or alternatively, bj∗j∗ ≤ eϵbi∗j∗ + δ. Therefore,

bj∗j∗ ≤ eϵbi∗j∗ + δ

< eϵai∗j∗ + δ

= aj∗j∗ .

Hence, bj∗j∗ < aj∗j∗ , and case 1 applies.

We therefore conclude that

max
d∈Dn

E[h(Yd, d)] > max
d∈Dn

E[h(Xd, d)],

and that {Xd} is the product sanitisation mechanism which produces the optimal error. �

Using Theorem 10, we now have a simple method to construct themost accurate (ϵ, δ)-differentially private mechanism
possible for discrete data. We have proven that no other product sanitisation mechanism is more accurate than it. It follows
from Theorem 7 that we now know the optimal discrete exponential mechanism that satisfies (12).
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Remark. The previous result describes an optimal randomised response mechanism for what is referred to as local
differential privacy in [12]. Where this earlier paper considered an objective function based on Kullback–Leibler divergence
and the case δ = 0, our result addresses the relaxed formulation of differential privacy with δ ≥ 0 and an objective function
based on Hamming distance.

5. Conclusion

We study mechanisms for (ϵ, δ)-differential privacy on finite datasets that are an adaptation for discrete data of the
exponential mechanism introduced by McSherry and Talwar. By deriving sufficient sets for differential privacy we obtain
necessary and sufficient conditions for differential privacy, a tight lower bound on the maximal expected error of a discrete
mechanism and a characterisation of the optimal mechanismwhichminimises the maximal expected error within the class
of mechanisms considered.
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