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Summary

We discuss the use of highly parameterized semi-mechanistic nonlinear models with
particular reference to the PARJIB crop response model of Reid (2002). Compared to
empirical linear approaches, such models promise improved generality of application
but present considerable challenges for estimation. We have had some success with a
fitting approach that uses a Levenberg-Marquardt algorithm starting from initial values
determined by a genetic algorithm. Attention must be paid, however, to correlations
between parameter estimates, and we describe an approach to identifying these based on
large simulated datasets. This work illustrates the value for the scientist in exploring the
correlation structure in mechanistic or semi-mechanistic models. Such information
might be used to reappraise the structure of the model itself, especially if the
experimental evidence is not strong enough to allow estimation of a parameter free of
assumptions about the values of others. Thus statistical modelling and analysis can
complement mechanistic studies, making more explicit what is known and what is not

known about the processes being modelled and guiding further research.
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1. Introduction

The contrast between linear and nonlinear regression modelling is deeper than the
formal definitions might suggest. Linear models are often purely descriptive in that they
seek to describe relationships between a response variable and predictor variables as
economically as possible for a particular dataset. Nonlinear models, while they may be
purely descriptive, often arise through subject matter considerations about the situation
being modelled. In an ideal world, fitting should be part of an ongoing process of model
theory development and testing, rather than an endpoint. In a statistical consulting
situation, tension can arise between the statistician and the client if they are at cross
purposes about the type of modelling being undertaken. Often the statistician tends to
seek the simplest empirical model fitting the data but the client tries to build a model

corresponding to his/her assumptions about the process.

Models generally divide into two types, mechanistic and empirical. Empirical models
are essentially descriptions of the observational data, most often associated with curve
fitting and regression. Empirical modelling is not constrained by biological principles

and often does not require detailed knowledge of the mechanism.

In the context of crop performance modelling, one is often interested in modelling
system behaviour across a wide range of field conditions. Under such circumstances,
empirical models can be of limited value, as they will rarely account for changes in

covariates such as weather or plant density.

Mechanistic models, on the other hand, are reductionist in approach, and are concerned
with the mechanism since they aim to contribute to understanding of the processes

being modelled. In general, mechanistic modelling involves breaking the system down



into components and assigning properties and processes to these components, usually

introducing many extra variables compared to the empirical approach .

Typically, mechanistic models are very rich in content; they may apply to a wide range
of phenomena and relate them to each other (Thornley & Johnson, 1990). However, in
the context of fertilizer response modelling, there are some drawbacks, as Reid (2002)

observes

...detailed mechanistic simulation models are often ill suited for calculations that
span a wide range of field conditions. Such models may need large amounts of site-
specific soil and crop details, and can be difficult to validate at the level at which they

ostensibly simulate the processes involved.

In agricultural science, it is rare that fully mechanistic models based on good science are
available. Often, it is necessary to replace parts of a model which would ideally be
mechanistic with assumed or empirically estimated functional forms. The resultant
models are neither fully mechanistic nor fully descriptive, and we call them here semi-
mechanistic models. These types of models can also be rich in content. Typically they

are highly parameterized and fitting them requires strong statistical expertise.

Apart from a professional tendency toward scepticism, statisticians are averse to highly
parameterized nonlinear models because their parameters are poorly identified and they
are very difficult to fit by common statistical methods such as the Gauss-Newton
algorithm. Raw computing power and computer intensive algorithms such as Nelder-
Mead or Genetic Algorithms offer ways of finding good least-squares solutions for

complicated nonlinear models. Nevertheless, the quality of such solutions needs to be



evaluated by calculation of an information matrix and exploration of the likelihood

surface in the neighbourhood of the solution.

An obvious way to proceed would be to start from parameter estimates provided by a
genetic algorithm and use Gauss-Newton to improve these estimates. However, when a
nonlinear model has a large number of parameters, the pseudodesign matrix often fails
to be of full column rank. In turn this will cause the Gauss-Newton update to fail while

attempting to invert a singular or near-singular matrix.

The failure of the Gauss-Newton algorithm need not bring fitting efforts to a close. It is
sometimes possible to reduce the number of parameters being estimated by specifying
some of them as constants. A difficulty with proceeding in this way is that it not easy to
see which parameters are responsible for the failure, and hence which need to be

specified as constants.

This paper presents a case study of fitting a semi-mechanistic biological model. It is not
intended to argue for or against the validity and usefulness of that model. We discuss
some of the practical and philosophical issues that confront the statistician in fitting
such models and the biologist in using the statistician’s findings to appraise the
soundness of the original model. In particular, we show how simulated data may be
used to predict which parameters may be difficult to estimate with the actual data

available.

2. Case Study Outline

2.1 Background

Reid (2002) developed a model (named PARJIB) to describe how crop yield varied in

response to nutrient supply. Reid et al. (2002) carried out an initial fitting of that model



using a genetic algorithm technique. That technique yielded parameter values that made
biological sense, but any detailed interpretation of those values was limited by the fact
that the genetic algorithm technique gave no indication of reliability for individual

parameter values.
2.2 QOutline of the PARJIB model

The cornerstone of PARJIB is the idea that crop responsiveness to nutrient supply is
very strongly influenced by the maximum yield. Maximum yield, denoted by Y., 1s
the yield that would be achievable in the absence of mineral nutrient stresses (Reid,
2002). Modelled yield (Ymodel) 1s obtained from Y,,, and what Reid called the scaled

yield (Y):
Ymodel = Y* Ymax-
The maximum yield variable (Y. in t/ha) itself is derived from estimates of potential

yield (the yield achievable in the absence of water and nutrient stresses, dictated by

weather and cultivar characteristics) adjusted for plant density and water stress,

Yy, - YHhW ’ (1)
1000

where Y is the potential yield in kg/plant calculated at a standard population density
(Reid, 2002), H is the plant population multiplier (no units), /is the plant population
(plants/hectare), and W is the water stress multiplier (no units). Potential yield is
calculated by a separate model which takes into account cultivar characteristics and the
weather conditions experienced. The variables A and W will be defined below. PARJIB
is strongly concerned with scaling, particularly by relating scaled yield (Y*) to an

integrated nutrient multiplier (g,,,,,)



Y* = qnut - (2)

In this paper we consider two ways of calculating the g, term; the standard way

outlined by Reid (2002), and a ‘simple model’ that involves fewer nutrients. In this

particular case, the input variable ¥ was calculated using Wilson, Muchow &
Murgatroyd’s (1995) modification of the potential yield model presented by Muchow,

Sinclair & Bennett (1990). The quantities Y, and Y are by definition constrained to be

positive and less than Y . Variables and parameters used to calculate ¥ do not appear

elsewhere in PARJIB, although the input /4 is used to calculate H (see below) and solar

radiation and air temperature appear in the calculation of both ¥ and the input D, (see

below.)

The PARJIB model predicts crop yield in kg/ha as a hypothetical ideal yield attenuated
by factors expressive of stresses due to plant density, water supply, and nutrient supply
and soil pH. The nutrients considered are Nitrogen, Phosphorus, Potassium and
Magnesium. (We will often speak of nutrient X, where X is understood to range over N,
P, K, and Mg.) For each nutrient there is a response curve relating crop yield to the

supplied amount of that nutrient, when all other nutrients are at optimal levels.

Soil nitrogen is measured in the laboratory and corrected for differences in bulk soil
density between the laboratory and the field. The soil concentrations of other nutrients
are estimated in a similar fashion. The amount of nutrient supplied to the crop is
calculated from both soil and fertilizer forms of the nutrient. So, for a nutrient X we

have

Xvupply = Xvoil + Xbroad &Xl + Xband E_>X2-



Here X;,; is the amount of X present in the soil before fertilizer application, while Xp,044

and Xp,,q refer to the amount of fertiliser X applied to the soil in kg/ha in broadcast and
banded applications respectively. The parameters &y; and &y, respectively denote the

efficiency of supplying X in broadcast or banded fertilizer form compared to X,

All nutrient response curves rise from 0 when X, <X . to a maximum of 1 when
Xsupply =2 X, - It 1s convenient to plot the non-constant part of the supply curves on the
unit square, so we introduce the dimensionless nutrient supply index, which is 0 when

X in 18 supplied and 1 when X, is supplied. Considering one nutrient at a time, the
effect of nutrient supply index x on scaled yield (i.e. yield as a fraction of the maximum

yield) is modelled using the family of curves

q=g,(x)=1+yx"—yx"".
Note that g (0)=0, g,(1)=1 and that g, increases smoothly over the unit interval.

The positive shape parameter y governs where most of the growth takes place, near 0 for

small y and near 1 for large vy.

In PARJIB then, the three parameters X X,, and y, define the nutrient response

min ? opt
curve for nutrient X ( where X = N, P, K, or Mg). Soil pH stress is treated in a similar
fashion to nutrient response but using a different curve. We will not be considering pH

stress in this paper.

A nutrient response curve applies directly only when all other nutrients are not limiting

yield. In other situations scaled yield is calculated by the “copula-like” function

q., =max(0,1—\/(1—q,v)2+(1—qP)2+(1—qK)2+(l—qu)2]



The plant population multiplier H is defined by

H=1-n log(i)
href

where n=n; when h < h,,sand =1, when h > h,.r. The quantity 4 is the observed plant
population density in plants/hectare and 4. is a fixed reference population density
taken, for maize, to be 90468 (the industry average). Parameters 77; and 77, are plant
population coefficients for populations less than or greater than the standard population,

respectively.

An equivalent multiplier for stress due to inadequate rainfall or irrigation is given by

ﬁ(Dmax - DlimC)
E

W=1 - when Dmax > DlimC,

and =1 otherwise. Here C is the soil’s available water capacity, D, is the maximum
soil water deficit that a crop experiences during growth, Dy, is the soil water deficit
beyond which the crop experiences water stress, £ is the daily fractional loss in growth
under water stress, and E is the total evaporation by the crop for the period of growth
(Reid, 2002). The quantity D, is calculated from weather observations (solar
radiation, temperature, rainfall). Wherever possible C is taken from published
independent measurements of water retention by the soil, but in this case at some sites it
was estimated indirectly from assessments of soil texture. Soil chemical properties were
assessed using the New Zealand standard methods given by Cornforth (1980), except
for soil available N which was measured using the anaerobic incubation technique of
Keeney & Bremner (1966). Note that exchangeable cation concentrations are given as

milliequivalents per 100g of dry soil, which is the New Zealand standard unit.



Tables 1 and 2 give a comprehensive summary of all model parameters and input
variables. In Table 2, D.M. stands for “dry matter” and the numerical estimates are for

the maize data discussed in Section 4.

TABLE 1

Variables used as inputs in the model.

Description Units Variable
Soil available N kg/ha N
Fertiliser N (broadcast applications) kg/ha Niroad
Fertiliser N (banded applications) kg/ha Npana
Soil P (extractable) pg/ml P
Fertiliser P (broadcast applications) kg /ha Phroad
Fertiliser P (banded applications) kg /ha Prona
Soil exchangeable K meq/100g K
Fertiliser K (broadcast applications) kg /ha Kiroad
Fertiliser K (banded applications) kg/ha Kpuna
Soil exchangeable Mg meq/100g M
Fertiliser Mg (broadcast applications) kg /ha Myyroud
Fertiliser Mg (banded applications) kg /ha Mpana
Soil pH no units pH
Soil density in the field g/ml Dreld
Soil density in laboratory chemical tests g/ml Diab
Available water capacity of the soil mm C
Maximum soil water deficit mm D,yax
Total evapotranspiration mm E
Plant population plants’ha  H
Potential yield at standard population kg/plant Ve
Actual yield in t/ha t/ha Y



TABLE 2

Model parameters and Reid’s fitted estimates (Reid et al., 2002).

Description Units Parameter  Estimate
Min. N supply per unit Y ..« to achieve a positive yield kg N/t D.M. Noin 0.885
N supply per unit Y« needed to achieve max. yield kg NtDM. N,y 16.78
N response coefficient no units W 0.551
Efficiency of broadcast N fertilizer compared to Ny no units Evi 0.327
Efficiency of banded N fertilizer compared to Ny Nno units Evo 0.613
Min. P supply per unit Y« to achieve a positive yield kgPADM. P,y 0.709
P supply per unit Y« needed to achieve max. yield kgPADM. Py, 1.068
P response coefficient no units 7p 0.217
Efficiency of broadcast P fertilizer compared to Py no units Epy 1
Efficiency of banded P fertilizer compared to Py no units Epa 1°
Min. K supply per unit Y.« to achieve a positive yield kg KADM.  K,n 2.93
K supply per unit Y, needed to achieve max. yield kg KADM. K,y 81.79
K response coefficient no units 7% 0.272
Efficiency of broadcast K fertilizer compared to K no units Exi 1
Efficiency of banded K fertilizer compared to K no units &k 0.01°
Min. Mg supply per unit Y.« to achieve a positive yield kg Mg/t DM. M,;, 0.193°
Mg supply per unit Y ,,.x needed to achieve max. yield kg Mg/t DM. M,,, 0.607°
Mg response coefficient no units I 0.123°
Efficiency of broadcast Mg fertilizer compared to Mgy,;;  no units Evir 1°
Efficiency of banded Mg fertilizer compared to Mg no units v 1°
Critical value of soil pH no units PpH.i 5¢
Slope of scaled yield on soil pH no units Apti 0.018
Fractional reduction in daily growth under water stress no units B 0.89
Scaled soil water deficit at which water stress begins no units D 0.538
Plant population coefficient for population densities < no units n 0.379
standard value
Plant population coefficient for population densities > no units m; 0.633

standard value

? Values imprecise due to weak response of yield to P fertilizer in the range of data available for fitting.

® Value imprecise due to small number of experimental sites where K was banded.

¢ Values could not be estimated with accuracy.

D. M. = dry matter.
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2.3 ‘Simple model’ derivation for one nutrient

One useful approach when fitting complex nonlinear models is to work with a
simplified version of the model at first, and subsequently build the model up. Given
that its structure is heavily based on the concept of scaling, PARJIB is particularly
suited to this approach, as large components of the model can be left out or simplified.
Here we used a simplified version of the model, achieved by reducing the terms used to

define qpy:

CInut = QN.

Hence, the PARJIB model was reduced to one nutrient (nitrogen) and nine parameters.

Note that this is equivalent to assuming that the rest of the nutrients are at optimal
supply, and the soil pH is above the threshold. The parameters remaining in the model
are 777, 172, Dym, B Ent, N2 Niwin, Nope and py. It is important to note that there are some
biological restrictions on the parameters which are not built into the model; in particular

all of them need to be positive to be interpretable.

More explicitly, the structure of this ‘simple model” may be gleaned from the model

function in the R code listed in the Appendix.

3. Adequacy of the original fitting method

The PARJIB model of Reid (2002) was fitted by Reid et al. (2002) to a dataset that
collated information from three separate studies of maize crops grown in New Zealand
in the three year span from 1996 to 1999. Reid et al. (2002) used a genetic algorithm

for this fitting. The resulting parameter estimates are given in Table 2.
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3.1 Genetic algorithms - background

Genetic algorithms (GAs) are search algorithms that are based on concepts of natural
selection and genetics (Holland, 1975). Their transition schemes are probabilistic, and
they do not require the model function to be differentiable in the parameters, nor do they
need any prior information about the model parameters. This makes them a very

convenient nonlinear optimisation tool for fitting models such as PARJIB.

In practice, genetic algorithms have been demonstrated to outperform derivative-based
methods in applications with non-differentiable or multi-modal objective functions
(Goldberg, 1989). When a function to be optimised is not globally concave, it may
have multiple local optima, saddle points, boundary solutions or discontinuous jumps.
In these cases, methods of optimisation that depend on derivative information will
encounter difficulties unless starting from near-optimal initial values — if the method is
able to find any optimum at all, it is unlikely that it will converge to a global optimum.
Genetic algorithms are generally more robust to these difficulties. Provided the
parameter set that defines the global optimum is within the domains over which the GA
is allowed to search, GAs can be more effective at finding the neighbourhood of a
global optimum than gradient methods. On the downside, however, GAs can be quite
slow to move from a near-optimal point to the exact optimum point (Sekhon & Mebane,

1998).

3.1.1 How good was the fit obtained by GA?

The genetic algorithm implemented by Reid et al. (2002) was able to obtain parameter

estimates that were in accordance with their judgement based on prior knowledge.

12



However, a drawback of GAs is that they do not provide any measure of confidence for
individual parameter estimates. Chatterjee, Laudato & Lynch (1996) suggested using
the bootstrap to estimate standard errors once the genetic algorithm has obtained the
parameter estimates of a model. This approach is not pursued here, as it would have
been too time-consuming in our application. Instead, the focus was placed on a more
detailed exploration of the residual sum of squares surface near the parameter estimates;
the measures of confidence for individual parameters in PARJIB are obtained through

gradient information and likelihood methods.

Analytic derivatives of the sum of squares function were derived in order to identify if
Reid's parameter estimates are located at an exact optimum value. The derivatives were
not equal to zero with respect to all the parameters, indicating that a local optimum has
not been reached. Note that the only assurance of the global nature of this optimum
comes from the GA itself, as the algorithm has carried out an exhaustive search for such
an optimum. In order to improve on these estimates, we have combined Reid’s genetic
algorithm results with a derivative based method. Reid’s results were set as initial
parameter estimates, and the model was then fitted using a standard derivative based
method. Hence, while the genetic algorithm may have obtained estimates in the
neighbourhood of an optimum, the gradient methods are used to expedite the final
convergence, closing in on the optimum point itself. Once the parameter estimates at an
optimum are found, standard errors for these parameters are estimated using local

approximation and profile likelihood methods.
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4. Alternative fitting methods: using simulated data

4.1 Approach

Firstly an attempt was made to fit the model using conventional nonlinear regression in
the statistical package R. By default, R uses the Gauss-Newton algorithm which does
not work for datasets where the columns of the pseudodesign matrix are almost linearly
dependent, as is the case here. Even if the model is successfully fitted, highly correlated
parameters will be very poorly estimated, so it is a good idea to keep one member of a

highly correlated pair constant.

The structure of the correlation matrix of the parameter estimates can be investigated by
fitting the model to a large simulated dataset. It is much easier to fit a model to
simulated data, since it is possible to choose the sample size and make the simulated
dataset more balanced and less multicollinear than the original data. In addition, because
the ‘true values’ of all the parameters are known, it is possible to leave sets of
parameters out of the estimation by starting with them constant at their true values and
progressively re-introducing them to the model. Furthermore, it is numerically easier to

work with a model that actually generated the data to which it is being fitted.

Reid fitted the model to a maize dataset, which was composed of three different sources
of measurements of experimental and commercial crops of maize grown in the North
Island of New Zealand between 1996 and 1999 (Reid et al., 2002). The dataset contains
observations from twelve sites, which differ substantially in observed yield and
associated regressor variables related to weather, cultivar, soil properties, plant density
and fertilizer applications. Altogether there are 84 observations in the dataset, which is

rather few for fitting such a highly parameterized nonlinear model as PARJIB.
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Simulated datasets were generated so that they mimicked the real data as much as

possible. The histograms of the variables in the maize dataset indicated that Ny, pfieia,

Db > C, Onax, E, h, and Y are roughly normally distributed. These variables were thus
simulated by drawing random samples from normal distributions. Means and standard
deviations for each variable were set equal to the estimates of these parameters obtained

from the maize dataset. The sample size could be set at any value in the simulations.

The variables Ny oqq and Npq,s Were simulated in the following way; with probability
0.2 Npana Was taken as zero and Np,.q,q Was drawn from Uniform (95.3, 576.5), otherwise
Nproaa Was taken as zero and Np,,g was drawn from Uniform (122, 250). This mimicked

the observed joint distribution of Np,,s and Np,ug in the maize data.

The ‘observed yield’ was generated by the model with the parameters set equal to the
estimates obtained by Reid from the genetic algorithm fitting (Reid et al., 2002). To
this ‘observed yield’ we added independent error terms distributed as Normal (0, c?),

where 6° was at the disposal of the simulator.

Using this method, the ‘simple model’ was fitted to a series of simulated datasets with
varying sample sizes and error standard deviations. Using the Gauss-Newton algorithm,
the smallest dataset to which the model was successfully fitted had 300 observations
(nsim = 300) and a small error standard deviation (o = 0.1). The ‘complete model’ was
fitted with a larger dataset (n5;, = 50000) and a very small residual standard deviation (o

=0.001).

The role of these simulated datasets in this application is to explore a surrogate for the
actual log-likelihood surface in order to identify highly correlated parameters. The

simulations are based on marginal distributions and, as such, they underestimate the
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collinearity of the real data, hence fitting the model to them may not yield enough
correlated parameters to enable us to fit reduced parameter models to the real data. An
alternative way of obtaining simulated datasets would be to take a large sample of
observations from the maize dataset and 'jitter' the components of the resampled

observations, hence retaining the multivariate structure of the data.

4.2 Results

When fitting the simple model we found problems estimating the shape parameter yy,
and N, , the minimum value of ‘nitrogen supply’ required to produce a positive yield.
The correlation matrix in Table 3 indicates that these parameters have estimates which
are highly correlated with each other and are thus very poorly estimated. This
relationship is illustrated in more detail in Figure 1. Here we plot the contours for the

minimized concentrated sum of squares surface in the space of the parameters y, and

Nuin . The plot shows a steep valley, along the floor of which the surface changes little.

The best values of y, and N,;, are found along the line of the bottom of the valley,

showing the strong negative linear relationship between the estimates of y,, and N,

Similar patterns of results were obtained in fitting the ‘complete model’. As there are 26
parameters fitted in this run, we do not display the resulting correlation matrix of the
parameter estimates, however its general structure may be simply described. Firstly note
that the parameters break into five groups, with X .. X .7,,{,, and ¢, being

associated with nutrient X (X = N, P, K, and Mg), and the remaining 6 parameters

B, Dy sy, pH,,,, and 4, forming another group. The matrix is approximately block-
diagonal with no correlations between parameter estimates for parameters from different

16



groups exceeding 0.3. Within the remaining parameters only the correlations between

B and D, , between 7, and 7, , and between pH

crit

im > and 4, exceeded 0.3 and only
the last of these exceeded 0.8. In the whole correlation matrix the only pairs of

parameters with correlation exceeding 0.8 were: yy and Ny, &y and &yz, yp and Py,

Eprand Py, Epr and Py, Epp and Epz, yx and Koy, 74 and Mgy , and Ay and pH.q .
TABLE 3

Correlation matrix of the estimates obtained from one run of fitting the ‘simple model’ to a

simulated dataset.

N Nuin - Nope v Ene B Dim  my

Ny 0.99

Ny 047 -0.46

Ey 002 -0.02 -0.02

Ev 0.00 -0.01 -0.02 0.70

p -0.02 002 0.00 -036 -0.03

Dy, 001 -001 001 038 002 -025

n, 0.08 -0.04 0.76 -0.02 -0.02 0.02 0.00

n, 002 001 084 -0.02 -0.01 0.02 -0.01 0.83
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Figure 1. Contour plot of the residual sum of squares surface against y, and N,,, in the ‘simple

model’.

5. Alternative fitting methods: using field data
5.1 Fitting the model with the Levenberg-Marquardt algorithm

The ‘simple model’ was fitted using the Levenberg-Marquardt algorithm, a
modification to the Gauss Newton increment that involves inflating the diagonal of the
XX matrix in order to transform it to a better-conditioned full rank matrix (Bates &
Watts, 1988, p. 81). At the time this was done the Levenberg-Marquardt method was
not implemented in R, so code was written for it. The R function written requires the
analytically derived derivatives of the fitted values function with respect to all the
parameters in the model to be supplied. (The Levenberg-Marquardt algorithm is now
available in R through the package minpack, which provides an interface to the

MINPACK library of Fortran subroutines for nonlinear optimization.)

The model was fitted to the maize yield dataset with the initial values set at Reid’s

estimates from the genetic algorithm (Reid et al., 2002). The residual sum of squares
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(RSS) obtained from this fitting was 122.7847 (on 9 degrees of freedom) which was a
reduction from RSS = 206.9336 obtained from Reid’s estimates. The derivatives of the

residual sum of squares function with respect to all the model parameters were
evaluated for the maize dataset and the parameter estimates (é ). These gradient

calculations indicated that the algorithm had reached a local optimum, since oS/ 6éj

was very close to zero for all nine parameters (j=1, 2,...9).

As with the simulated data, we found difficulties due to the Ny, parameter. The
estimate obtained for N,;, was a large negative value (-762.8265) which given the
biological interpretation of the parameter, did not make sense. For the Levenberg-
Marquardt algorithm to take into account biological constraints on the parameters when
attempting to optimise the fit, the constraints need to be built into the model. To enforce
a constraint to positive values the model was re-parameterised; instead of N, a new
parameter (Nsyi,) was introduced such that Nsminzz Npin. The model was refitted and the
estimate for Ny, was approximately equal to zero (-5.51¢"°). The results of this fit
imply that any supplied nitrogen will cause a response in yield in the conditions of the
experiment, which biologically, may not be very likely. In fact, parameters being
estimated at biologically implausible values are likely to be a symptom of the lack of fit
to data of some of the functional forms assumed in the model. In this case, the
estimation involves extrapolation beyond the conditions measured in the experiment, as
the maize dataset does not contain observations with the supply of nitrogen so low to

make the observed yield equal to zero.

In Figure 2 the fitted response curve of scaled yield on nitrogen supply is plotted for the
'simple model' with N,,;, held constant at three selected values. The regression is quite

noisy indicating that yield was influenced by other variables besides Ny, The sub-
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model ignores the effect of other important nutrients, such as potassium, on the yield.
Parameter N,;, was set constant at values 0, 0.8852 and 5.5. The ‘simple model’ was
fitted at each fixed value of N,;, and response curves of scaled yield on the supply of

nitrogen were plotted along with residual plots for each fit.

The plots in Figure 2 show how the response curve changes shape for different fixed
values of Nyin; as Nyin gets smaller, the curve gets flatter. The fit improves for smaller
values of N,;,; for N,,;, fixed at 0, 0.8852 and 5.5, the RSS is calculated as 123.76,
123.85 and 124.92 respectively. However, the changes in the response curves are only
very slight for this range of N,;, values, and the plots of residuals on fitted values are
almost the same for all three fits. This would indicate that the maize dataset does not
contain a lot of information on N,,;,. Consequently, we fixed the parameter N,,;, at zero
and treated it as a constant. The parameter estimates and their standard errors, obtained
from the expected information matrix, are given in Table 4. The correlation matrix of
this fit is given in Table 5. As in previous fits, the Levenberg-Marquardt algorithm was

used.

Removing from the model one of the parameters, N, in a highly correlated pair
greatly reduced the estimated variance of the other parameter yy. In this application we
have a relatively small amount of trial data compared to the complexity of the model
and, as a result, the estimated standard errors are fairly large. This problem is further
exacerbated by the fact that not all the observations are independent; the maize dataset
is composed of measurements from twelve different sites, and any correlation of
observations within sites would also have had an effect on standard errors. Three

options suggest themselves for dealing with this problem: do more experimentation and
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collect more information about the parameters; add more knowledge external to the

trials about any of the parameters; or further reduce the size of the model being fitted.

In general, the problems of correlated estimates and poor precision of estimation in
certain directions are common for nonlinear models. The problems are usually caused
by the X(@)'X(6) matrix being singular, or nearly so. Another problem that often
occurs in a nonlinear setting is that of parameter unidentifiability, which is also
signalled by ‘ill-conditioning’ of the X(6)'X(6) matrix. However, the difficulties
associated with unidentifiability may stem from the structure of the model and the
method of parameterization rather than unfortunate experimental design (Seber & Wild,
1989, p. 126). The so-called ‘structural relationships’ in the model that cause the
identifiability problems appear often in PARJIB. One common way of dealing with this
problem is to impose identifiability constraints that identify which solution is required
(Seber & Wild, 1989, p. 102). In this application it is recommended to collect more
information about the ‘approximately’ unidentifiable parameters in the model, either by
theoretical argument or additional experimentation. For example, further study could be

specifically directed at measuring efficiencies of fertilizer forms.
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Figure 2. Illustration of the effect that different (7, , fixed N,) pairs had on the

response curve of scaled yield on nitrogen supply (simple model).
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TABLE 4

Estimates of the eight parameters in the ‘simple model .

Parameter ~ Estimate (é ) Std error ag/aéj 95% Wald CI 95% Likelihood CI

Nopt 16.248 3.95 2E-06 (8.391,24.106)  (10.411,27.767)
TN 0.679 0.26 1E-05 (0.157, 1.201) (0.315,2.157)
Ent 0.218 0.10 -3E-05 (0.012, 0.423) (0.076, )
30 0.255 0.10 -2E-05 (0.058, 0.452) (0.111, 0.543)
B 0.600 0.11 1E-04 (0.377, 0.823) (0.377, 0.826)
Diinm 0.222 0.12 -1E-04  (-0.012, 0.455) (-0.125, 0.413)
i 0.612 0.12 -2E-05 (0.371, 0.853) (0.377, 0.859)
M 0.650 0.08 5E-05 (0.485, 0.815) (0.462, 0.798)
TABLE 5

Parameter correlation matrix of the 'simple model' fitted to the maize data.

Nopi v ém e B Dimmy
w  -09
Eu 037 027
v 062 -044 032
g 036 -0.19 -0.13 0.39
Dy, 052 -032 -0.13 039 0.86
n; -0.12 0.10 -0.02 -0.02 0.23 -0.09
n, -024 0.18 -0.01 -0.21 -0.63 -0.35 -0.39
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5.2 Profile likelihood methods

Linear approximation intervals obtained from the information matrix are likely to be
misleading for models with either high intrinsic or parameter-effects nonlinearity. An
additional disadvantage of the linear approximation methods is that the validity of the
approximation over the region of interest is not known (Bates & Watts, 1988). In
general, the estimation situation will be highly nonlinear for most nonlinear models with
many parameters and relatively few observations. These models may exhibit near linear
behaviour for very large sample sizes and small residual variance (Ratkowsky, 1983, p.
183), but in practice such datasets are often beyond the resources of the experimenter.
In order to obtain more accurate summaries of inferential results for the parameter
estimates in PARJIB, we employed profile likelihood methods. Such methods are

described in more detail by Bates & Watts (1988, section 6.1.2).

The approach for multi-parameter models is to evaluate the (one-dimensional) profile
likelihood function by varying a parameter of interest (say 0;) over fixed values,
optimising the objective function over the other parameters. The profile ¢ function is

given by

9

. A/S(0)-5(0
o) = sign(4 - e,»%

where éj is the model estimate of ¢, S(6,) is the residual sum of squares based on

optimising all parameters except the fixed 6, and S(é) is the residual sum of squares

at 0. A profile plot of the parameter 6, is a plot of ©(6) against a range of values for the

parameter. A (100-a.)% marginal likelihood interval for 6 is defined as the set of all 6,
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for which -t(n-p; a/2) < 1(0;) < t(n-p; a/2), where n is the number of observations and

p 1s the number of parameters.

In addition to providing likelihood intervals for individual parameters, profile plots can
serve as a general way of assessing validity of the linear approximation over the domain
of interest; if the estimation situation is linear, the plot of ©(&) on & will be a straight
line, but any deviations from straightness indicate that the linear approximation might

be misleading in that direction.

The R function profile() can evaluate the profile 7 function for parameters in a nonlinear
model fitted using the nls package. When the ‘simple model” was fitted to a simulated
dataset (with sample size = 300 and o = 0.1) the resultant profile functions were almost
linear. The resulting profile plots are given in Figure 3. The plots for parameters yy and
Nmin look slightly skewed and the estimated confidence intervals are somewhat
asymmetric. For the rest of the parameters the surface seems relatively linear, so the
linear approximation confidence intervals are adequate. Hence, for a large sample with

small residual variance, the PARJIB model has near-linear behaviour.
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Figure 3. Profile plots for the ‘simple model’ fitted to a simulated dataset. Marked are 80%,
90%, 95%, and 99% confidence intervals.

A new profile function was written in order to work out profiles for the ‘simple model’
fitted to the maize dataset using the Levenberg-Marquardt algorithm. The new function
works out the t-statistic equivalent t(6) on a user-selected grid of values around the
least square estimates. The profile plots for the ‘simple model’ fitted to the maize
dataset are given in Figure 4 (in this fit N,,, is set equal to 0 kg N/ha.) The 95%, 90% and

80% likelihood confidence intervals are marked on these profile plots. Note that for
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some parameters the curves do not reach 95% or 90% confidence interval horizontal

lines, meaning that the corresponding confidence interval is one sided.

T
T
0.1 02 03 0.4 05 0.6 03 04 05 0.6 07 0.8 09 02 00 02 04
Enz B Diim
T T
04 05 06 07 08 0.9
M1 N2

Figure 4. Profile plots for the ‘simple model’ fitted to the maize data. The 95%, 90% and 80%
likelihood confidence intervals are marked with dashed lines. Vertical dotted lines mark 95%

linear approximation confidence intervals.
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Since n = 84 and p = 8, the numbers £ 1.9917, £1.6652 and +1.2928 are the critical

values for t(g) bounding the 95%, 90% and 80% likelihood confidence intervals
respectively. The linear interpolation method was used to obtain the parameter values 6;

for which -t(n-p;a/2) < ©(8) < t(n-p;0/2). The results are given in Table 4.

The profile plot of &n; is strongly curved and tends to an asymptote, indicating
nonlinearity. The likelihood interval is skewed and does not close for 90%. Since the
nonlinearity assumption is violated, it can be concluded that the standard errors given in
Table 4 do not accurately summarise the uncertainty in this parameter. For parameter
Diim, the curve will reach the lower 90% confidence interval horizontal line only when
Dy;, is negative, which is outside the biological constraints for this parameter. The
profile plots of parameters Dy, Nop, yv and &y, are somewhat nonlinear and the
corresponding likelihood confidence intervals are skewed, hence they differ from the
linear approximation confidence intervals (see Table 4). In the region of the 95%
likelihood confidence intervals, the surface seems relatively linear with respect to the
parameters [, 7; and 7;. For these parameters the likelihood intervals are almost
identical to the linear approximation confidence intervals and the standard errors are

adequate as a summary of the uncertainty of the parameter estimates.

Profile plots provide likelihood intervals for each parameter and reveal how nonlinear
each parameter is, but they do not offer any information on how the parameters interact.
This information can be extracted from the contour plots of profile log-likelihoods of
pairs of parameters presented in Figure 5 and the correlation matrix in Table 5. For

example, the third contour plot in the sixth row of Figure 5 shows that the parameters
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Dy, and f are strongly related in the sense that specifying the value of either shrinks the

plausible range of values of the other.

6. Conclusions

Nonlinear semi-mechanistic models have the advantage of enhanced interpretability
when compared to purely descriptive multiple regression models. However when they
incorporate large numbers of parameters, they may prove very difficult to fit with
standard nonlinear regression software. Genetic algorithms may be able to find
solutions that appear to be reasonable, but the resultant parameter estimates come
without standard errors. Attempts to use nonlinear regression with starting values
supplied by a genetic algorithm may fail because the pseudo-design matrix is
numerically less than full rank when evaluated at those starting values. In practice, it
can be too costly to obtain enough experimental data to adequately test the model at the
mechanistic level, and this kind of failure may be common when the size of the dataset

is not large.

This case study suggests a method for using standard nonlinear regression software to
fit these models despite such obstacles. The method involves constructing a large
artificial dataset whose predictor variables mimic those of the original dataset in terms
of their marginal distributions and whose response variable values are generated from
the model with only a small amount of random error. The true parameter values used to
generate the simulated dataset may be taken as the values found using the genetic
algorithm applied to the original data. The model may then be fitted to the simulated

data starting from the true parameter values. If the artificial dataset is large enough and
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the random error in the response variable is small enough, the fitting of the model is

unlikely to be troublesome.

Standard nonlinear regression output includes a matrix of correlations between
parameter estimates. From this matrix we may identify pairs of parameters that are
highly correlated and which may lead to difficulties in fitting the model to the original
data. We suggest fixing one variable from each of the most highly correlated pairs and
estimating only the remaining parameters using the original data. If this fit is obtained,
attempts may be made to incorporate further parameters into the optimization. In this
application, due to a high correlation with the shape parameter (), we removed the
Npin term from the model. This is a difficult parameter to measure experimentally, and
the model fitting process strongly suggests further experimental study could be
dedicated to determining the correct level at which the parameter could be set (see
below). Alternatively, effort could be directed to identifying a mechanistically satisfying
formulation of the model that did not require such minimum terms for nutrients to be

separated from the curve shape parameters.

This work illustrates the value for the scientist in exploring the correlation structure in
mechanistic or semi-mechanistic models. The process can show what parts of the model
are poorly determined or validated by the data. This might then lead to various
solutions. As a first resort, parameter values might be fixed at values determined from
outside the data, that is, from prior subject-area knowledge. Alternatively, it may be
possible to conduct further experimentation targeted at understanding a particular sub-

process governed by a poorly understood parameter.
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For example the minimum N, P, K and Mg levels for successful Maize growth could be
investigated in a further series of experiments measuring the presence or absence of
growth when one of these four nutrients is at or near a stressfully low level, the other

nutrients being in adequate supply.

Finally the information on correlation structure might be used to reappraise the
structure of the model itself, especially if the experimental evidence is not strong
enough to allow estimation of a parameter free of assumptions about the value of others.
Thus statistical modelling and analysis can complement mechanistic studies, making
more explicit what is known and what is not known about the processes being modelled

and thereby guiding further research.
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Appendix

The R code for fitting the ‘simple model’ to simulated data follows.

library(nls)

# initial parameter assignments

Nmin <- 0.8852
Nopt <- 16.78
gN <- 0.5511

E.nl <- 0.3271
E.n2 <- 0.6132
beta <- 0.8902
delta <- 0.5378
etal <- 0.3791
eta2 <- 0.6332
PopStd <- 90468

# define model function

Y.model <- function(gN, Nmin, Nopt, delta, beta, etal, eta2, E.nl, E.n2)

{

Ymax<- 1-ifelse(Popn<=PopStd, etal, eta2)*log(Popn/PopStd)
Ymax <- Ymax*PotYield3*Popn/1000

diff <- Dmax -delta*AWC

Ymax <- Ymax*ifelse(Dmax<=delta*AWC, 1, 1 - beta*diff/SumEp)
Nsupply<-Nsoi 1*Bdfield/Bdlab + Nfert._broad*E.nl + Nfert_band*E.n2
Nstar <- (Nsupply- Nmin*Ymax) / (Nopt*Ymax - Nmin*Ymax)
Nstar<-pmax ( O,Nstar)

Ystar<-ifelse(Nstar<l, (1 + gN*(1 - Nstar))* Nstar*(1+gN ), 1)
Ystar<-pmax ( 0, Ystar)

Y.model <- Ystar*Ymax

Y .model

}

# simulate experimental data for predictors
#set._seed(71201)

nsim <- 300

Popn <- rnorm(nsim,PopStd,0.1*PopStd)
Dmax <- rnorm(nsim,140.68,47.45)

AWC <- rnorm(nsim,186.86,47.41)

SumEp <- rnorm(nsim,318.54,32.53)
PotYield3 <- rnorm(nsim,0.16180,0.01167)
Nsoil <- rnorm(nsim,94.07,34.06)
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Bdfield <- rnorm(nsim,1.0590,0.1420)
Bdlab <- rnorm(nsim,0.7876,0.1169)
Nfert.broad <- runif(nsim,95.3,576.5)
Nfert.band <- runif(nsim,122,250)
broad <- rbinom(nsim,1,0.2)
Nfert.broad <- Nfert.broad*broad
Nfert.band <- Nfert.band*(1 - broad)

error <- rnorm(nsim,0,1)

scale <- 0.1

# generate response variable from model

Y <- Y.model(gN, Nmin, Nopt, delta, beta, etal, eta2, E.nl, E.n2)

Y <- Y + scale*error

# attempt to fit starting from true parameters
simparj.st <- c(gN, Nmin, Nopt, delta, beta, etal, eta2, E.nl, E.n2)

names(simparj.st) <- c("gN", "Nmin®, “Nopt", "delta”, "beta", “etal”,
"eta2’, “E.nl’, “E.n2” )

simparj.fm <- nls(Y ~ Y.model(gN, Nmin, Nopt, delta, beta, etal, eta2, E.nl,
E.n2), start = simparj.st, trace =T)

summary(simparj .fm)
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Comment on
Semi-Mechanistic Modelling in Nonlinear Regression: A Case Study

by A.H. Welsh
Centre for Mathematics and its Applications, The Australian National University,
Canberra ACT 0200

Mechanistic modelling is very widely used in science, often without reference
to Statistics or even as an alternative in opposition to it. This paper combines
both approaches by developing a particular mechanistic model and then treat-
ing it statistically. It is timely because there is increasing interest in applying
statistical methods to fit and use mechanistic models; it is stimulating because
it highlights issues which arise in bringing Mechanistic Modelling and Statistics
together and provides a good focus for thought and discussion on how these
approaches might interact

The main statistical contribution in this paper is the explicit recommendation
that it is useful to identify singularities and near singularities in the X (0)7 X (0)
matrix in a nonlinear model (i.e. the nonlinear model equivalent of mulitcol-
inearity) and the proposal of a method for doing so through detecting ”highly
correlated parameters”. The simulation method can be viewed as a parametric
bootstrap where some features may be determined by data but others are not.
For example, in the paper, the values of explanatory variables and the model
parameters used are informed by data but the variety of sample sizes and the
intentionally small standard deviations (say, o = 0.1, 0.01 or 0.001) of the in-
dependent and identically distributed Gaussian errors are not. Simulating very
large samples with small errors is intended to allow the definitive identification of
problems which persist even under ideal conditions: varying the settings should
show how rapidly things become more difficult in realistic settings.

In the paper, the p explanatory variables are generated independently from
marginal distributions Fi,..., F, suggested by a set of data and the value of 6
used is the parameter estimate obtained by fitting the model to these data by
a genetic algorithm. The first choice is discussed briefly in the paper but the
second may also be controversial: If the Gauss-Newton algorithm fails because of
lack of identifiability, then other algorithms may produce numbers which are not
meaningful and exploring the model at or near this point in the parameter space
(and indeed other analyses based on this point) will also be devoid of meaning.
It may well be better to try to move around the parameter space in a sensible
way such as by an appropriate Markov Chain Monte Carlo algorithm than to use
a fixed point. Importantly, both of these choices can be varied to taste so should
not detract from the basic idea which may prove very useful.

The authors point out that singularities and near singularities in the X (9)7 X ()
matrix may be due to unfortunate sets of data or to structural relationships be-
tween variables. They recommend treating near singularities by collecting more



information either by theoretical argument or additional experimentation. In ei-
ther case this seems to come down to fixing the value of a parameter so that it
is no longer estimated from the current data. This is a pragmatic approach but
it can introduce biases, essentially because of a generalized version of the fallacy
of averages (nonlinear functions of means are not the same as means of nonlinear
functions). Whether this effect matters or not can be evaluated by assessing fit.

It is unfortunate that the paper does not emphasise the assessment of fit,
predictive ability etc. as a primary concept. The authors mention a need to ”ad-
equately test the model at the mechanistic level” and imply that (statistically)
fit is measured by an information matrix or standard errors. I don’t under-
stand the first statement and feel that the assessment of fit (like model-fitting
or estimation) is intrinsically statistical. In addition to evaluating the proposed
mean function, an absolutely critical aspect of the model is the assumption of
independent, additive, homoscedastic errors which are tacked on to the model
more or less as an afterthought. A more complete discussion should consider
the use of diagnostics and other sophisticated (statistical) evaluations of fit, pre-
dictive ability etc. Promoting these assessments makes explicit the scientifically
vital connection between models and data and puts into context the advantages
of mechanistic modelling: What is the value of enhanced interpretability if the
model does not fit? The fact that mechanistic models can be used for extrap-
olation into extreme circumstances does not mean that they should be so used,
particularly without any assessment of fit, and, even when some assessment of fit
has been made, extrapolation beyond regions where fit has been assessed remains
just as problematic as in empirical modelling.

This paper describes the current distinction between empirical and mechanis-
tic models eloquently and accurately. It reduces the distinction by introducing
statistical methods to fit the model and we can reduce it further in our evaluations
of the model. However, both of these tend to come after the modelling exercise
is complete, at a stage when the model seems to be regarded as subject to only
minor adjustment. Mechanistic modelling could benefit from far greater atten-
tion to data throughout the modelling process. This would encourage focus on
fundamental issues such as whether the explanatory variables can be observed,
the identification of sources of error and variability in the observation process
(which should be incorporated into the model), whether any data are available
(particularly important if the model is dynamic and needs to be fitted to historical
data), whether there are relationships between explanatory variables, and conse-
quent lack of identifiability of parameters and so on. It would lead to a clearer
understanding of what are variables (observables), errors or latent variables and
parameters (unobservables) and make possible the adoption of the sensible statis-
tical convention of distinguishing in notation between these quantities. It would
place the model on a firmer basis and make it more likely to fit, it would improve
the process and the outcome. And it might help to reinforce the statistical insight
that even after doing all we can, the model may still be wrong.



Discussion—Semi-Mechanistic Modelling in Nonlinear Regression: A Case Study

K.B. Newman

1 Domijan, Jorgensen, and Reid (DJR) present approaches to detecting and remedying parameter
> identifiability issues in realistic but very complex nonlinear models. The problem of estimating pa-
3 rameters for even the “simple” model based on a single nutrient can be daunting. The model struc-
4 ture is described in pieces in the article, and the full complexity of the model can be better appre-
s ciated by seeing it written as a single function. Let 8 = (Yn, Nimin, Nopts Diim., 5,11, 1m2, EN1, Ene) de-
s note the unknown parameters, ¢ = h,..s be a fixed value, and x= (h, Dpq.,C, E, ?,Bdfield,Bdlab,Nsoil,

7 Nproad,Npand) denote the covariates. The simple nitrogen-based model for yield, y, is as follows.

8 f(ea 7% X) = YmaxQnut = (371()00HW) Anut
9
10 where
h
1 H = 1—[Ih<n,;m + Insh,. n2)log .
ref
D — Dy,
12 W = min (17 1— 5( max lsz)>
FE
13 Qnut = (1 + ,YN)N'YN _ ,YNNl-‘r'YN
14 with

Bdgiciq
Nisoir BCJ;;; + §N1Nbroad + £N2Nband — NminYmaz

NoptYma:c - NminYmax

15 N = min |1,max | 0,

16 And this is the simple model!

17 Several questions come to mind upon seeing such a complicated model: (1) Why such a complex
18 model? (2) Are all the parameters identifiable, and if so, which ones are well identified?; (3) If

19 some parameters are unidentifable or weakly identifiable, what is a remedy?

» 1  Why such a complex model?

21 Scientists want to understand the mechanicisms underlying natural phenomena, to identify the
2 causal factors, and to explain how particular inputs, say x, combine and interact to produce a par-
23 ticular output, y. Mathematical models of the general form y = f(x, 6) are a means of quantifying

24 the relationship between the imputs and the output. There are two problems, one to determine the
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nature of the function f and the other to specify, or estimate, the parameters 6. Statistics can play

an important part in the attempt to solve both problems and efforts like DJR’s are important.

One can imagine a continuum where at one end are black box models and at the other are
fully mechanistic models. Black box models have been defined as models “which try to give an
efficient description of the input-output behavior of a system without relying on hypotheses about
how the system works internally” (Brun, Reichert, and Kiinsch 2001; Beck 1987), while fully
mechanistic models attempt to explain exactly, or with a relatively high degree of realism, how the
inputs interact and combine to yield the output. Empirical linear models, such as multiple linear
regression and generalized linear models, often lie somewhat nearer to the black box end of the
continuum in that they are often models of convenience, whereby parameter estimation and fitting
can be relatively mechanical and easy. At the same time, transformations of y and x (e.g., Box-
Cox and Box-Tidwell transformations (Myers 1990, Chapter 7)) and other remedies can be used to
“shoehorn” somewhat realistic nonlinear models into a linear model structure. The PARJIB crop
response model, labeled a semi-mechanistic model, is of course closer to the fully mechanistic end
of the continuum, having a combination of mathematically convenient components (as in the linear
model for total nitrogen supply, Nsyppiy) and more realistic, mechanistic parts (as in calculation of

the water stress multiplier, ).

If the parameters of a semi- or fully-mechanistic model can be estimated and if the resulting
model more accurately and precisely predicts y for a given x than an empirical linear model, then
such mechanistic models are generally preferable because of their greater explanatory and predictive
power. In this paper, DJR focus on parameter estimation, e.g., using a genetic algorithm to come up
with an initial estimate of #, which is then used as an initial value for a more stringent optimization
routine, and determining which parameters can be well estimated. The second if, the predictive
ability of the resulting model, is not explored in this paper, however previous work (Reid, et
al. 2002) reports that 66-73% of observed yield variation was accounted for in a cross-validation
analysis of real crop data. Incidentally, it would be interesting to repeat this analysis using the the

Levenberg-Marquardt estimates.

While mechanistic models can be scientifically attractive, black box models, in particular algo-
rithmic models (Breiman 2001) or statistical learning methods (Hastie, Tibshirani, and Friedman
2001), do have potential explanatory and predictive capabilities, and a direct comparison with

such complex semi-mechanistic models could be informative. Algorithmic models include decision
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trees (e.g., CART), neural nets, generalized additive models, and multivariate adaptive regression
splines (MARS). With algorithmic modeling algorithms are used to “find” the functional form,
f, and model validation is measured by predictive accuracy. The resulting functional forms are
not necessarily simple to interpret. However, as argued by Breiman (2001), information can be
gained about the relative importance of input variables by using a combination of cross-validation
and random permuting of a single covariate in the test sets. Permuted covariates which have the
largest prediction errors in the test set can be interpreted as being the more important or influential

covariates.

2 Parameter identifiability?

There are at least three kinds of identifiability, or conversely unidentifiability: theoretical, practical,
and weak. Parameters are theoretically unidentifiable if they cannot be estimated for any data set.
For example, if z; “d N(E+6,02),i=1,...,n, £+ 0 is identifiable, but not ¢ and 6 separately
(Lehman 1983, p 335). Parameters are practically unidentifiable if they cannot be estimated for
a given data set, but could be estimated with another data set. For example, in multiple linear
regression with two predictors, where E[Y x| = By + 121+ (2z2, /1 and [ are practically unidenti-
fiable when |rz, »,|=1, but they are theoretically unidentifiable only if this perfect correlation exists
for any possible sample. Weak identifiability is perhaps less well-defined, but one could say it refers
to a parameter that is theoretically identifiable, and practically identifiable for a particular data
set, but relatively minor changes in the data can lead to considerable changes in the parameter

estimate and thus the variance of the estimate is large.

2.1 Covariate structure.

It is worth emphasizing the effect of the structure of the inputs or the experimental layout, x, on
identifiability. In the case of linear regression models, orthogonal experiment designs yield uncor-
related estimated regression coefficients. In the case of nonlinear regression models, experiment
designs that are optimal in some sense, e.g., D-optimal, where the generalized variance of the pa-
rameter estimates is minimized, depend upon the covariate structure and the value of 6 (Atkinson
1996), thus a priori estimates of the parameters are needed. The complexity of the PARJIB model

appears to be far beyond those considered for optimal designs in most papers. An additional direc-
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tion of research would be to explore this literature with regard to the effect of covariate structure on
parameter estimation for the PARJIB model and other complex crop response models. The design
problem is also interesting in that some of the covariates are beyond the control of the experi-
menter (e.g., the covariates involved in the water stress expression, W), and design considerations
will thus need to focus on those that are manipulable, such as the choice of nutrient levels. Design

considerations could also guide simulations used to assess identifiability problems.

DJR’s simulated covariate data were generated assuming independence between the covariates
(excepting Nproaqd and Npgnq). They recognize that the removal of dependence between covariates
will have some effect on the degree of dependence amongst parameter estimates, likely reducing
the dependency, and they mention jittering a resampling of the observations as a remedy. Using
a multivariate normal approximation is another alternative with continuous input variables. De-
pending on the particular model and data, it could indeed be important to work with simulated

data that nearly matches the observed data in terms of means, variances, and covariances.

2.2 Detecting and quantifying identifiability problems

For simple nonlinear models or those with few parameters, determining whether or not all the
parameters are theoretically identifiable can sometimes be done relatively easily. With more com-
plex models with many parameters, such as PARJIB, it is generally not easy, and the failure of an

optimization routine to converge could be practical unidentifiability not theoretical.

With the PARJIB model and the observed data set, there is neither theoretical nor practical
unidentifiability given that least squares estimates are, after some work, calculated. But there are
weak identifiability problems which DJR clearly identify by means of standard errors and contour
plots of the profile log-likelihoods of pairs of parameters. As a check on the results, I used their
R code for the simple model to repeatedly generate samples of observations and responses and
calculate least squares estimates of the parameters. Extreme between sample variation in some of
the parameter estimates was indeed borne out, but the estimates were on average accurate. My
simulations did reveal some slight differences with those shown in Table 2, however, in that the
correlations ry,,, vy and 7y, N,.;, had the same magnitude as those shown but opposite signs,

.8+, T'Nopr,yny—-0.61 and T Nopt, N

min

=0.59. Also I consistently got a moderate positive 73 p,,, , e.g.,

0.73, in contrast to the value of -0.25.
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As an aside, the program AD Model Builder (Otter Research Ltd., Sidney, BC, Canada), which
uses automatic differentiation for optimization calculations, proved to be considerably more stable
than R’s nls function for finding the least squares estimates. For roughly 7% of the simulations,
nls, failed to converge even when initial values equalled the true values; this never happened for
AD Model Builder. Also, for a large percentage of simulations, AD Model Builder was able to
converge using initial values not equal to the true values (the initial value for all parameters was

0.5 except for N,y which started at 15), and R’s nls never did.

While such simulations, calculations of variance-covariance matrices, and profile likelihood con-
tour plots are useful, a potential shortcoming of is that attention is largely focused on studying
pairwise relationships between parameter estimates while it could be the case that higher order
dependencies exist. A method described by Brun, Reichert, and Kiinsch (2001) overcomes this
shortcoming. There are similarities with diagnostics for multicollinearity in linear models and the

method is sketched briefly here. The estimated covariance matrix is

SSE

SR o1
pu— 1
Var 0] V'V (1)
where
df (9)
A do’ lo—g (2)

is an n by p matrix of derivatives evaluated at 6, the least squares estimate of 6. In the case
of linear regression, where X is the design matrix, the (estimated) covariance matrix of the least
squares estimates is proportional to (X’X)~!. Near linear dependencies between the columns of X
lead to one or more large values on the diagonal of (X'X)™!, i.e., large variance inflation factors
(Myers 1990, pp 126-127), hence instability in the estimates. Similarly, near linear dependencies in

V translate into large variances for some of the parameter estimates.

The matrix V, labeled the sensitivity matrix by Brun, et al. (2001), measures the sensitivity of
y (=~ f(0,%)) to small changes in 6 near f. A dimension-free measure of the sensitivity is the scaled

sensitivity matrix, S, where the ¢, jth element is

A .
sij = vyt i=l..,m j=1...p (3)
(3

The term Af; is an a priori measure of the range of §; and sc; is a scale factor proportional to the
physical dimension of the ith observation. The degree of linear independence between the parameter

estimates is then assessed via the smallest eigenvalue for the normalized scaled sensitivity matrix,
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S, where the jth column is

§ = 1o (4)
In particular the collinearity index for any subset K of k£ parameters, denoted 7y, is defined by

1
YK = —=
VAR

where )\ is the smallest eigenvalue in the submatrix S k- Critical values of vx indicative of linear

()

dependence are between 5 and 20; i.e., if 7vx < 5, then linear dependence is not a serious problem.

The normalized scaled sensitivity matrix can be calculated for various subsets of the parameters
and when a subset leads to a linearly dependent, unidentifiability is present. Weak identifiability
is characterized by the degree of linear dependence. Gadkar, Gunawan, and Doyle (2005), using a
very similar approach, identify practically unidentifiable parameters as those with infinitely large

confidence intervals, i.e., infinitely large variances based on equation (1).

Brun et al. (2001) provide additional measures based on S to screen important parameters,
but here I will just use their collinearity index for the simple model. To calculate the sensitivity
matrix, V, a finite difference approximation (Ridder 1982), as implemented by Press et al. (1992),
was used to estimate the derivatives. It was evaluated at the least squares estimates of 6 based
on a simulated data set (with a sample size of 300). The normalized scaled sensitivity matrix
(equation 4) was next calculated; due to cancellations the terms A#; need not be calculated and
because the simulated values were of essentially the same magnitude the scale factors sc; were
set equal to 1. Brun et al. (2001) advise that vk be calculated for subsets K out of the total
number of parameters and plot vx against subset size. Since the subset should contain at least
two parameters, that means calculating (g) + (2) +...+ (3) = 502 vx’s. Knowing a posteriori that
Nmin was the most likely problem, just a few cases were examined. To begin, vx for all 9 variables
was calculated; it equalled 10.5, indicative of dependencies (using the 5-20 scale for critical values).
Excluding N,,in, the collinearity index based on the remaining eight parameters was yx=4.4, which

is below the threshold value of 5.

This method can also be used to assess identifiability issues prior to trying to fit a nonlinear

model by substituting an a priori estimate of 6 for 6 into the sensitivity matrix calculation.
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3 Remedies

Once identifiability problems have been found, DJR discuss several solutions, including (1) fixing
the weakly identifiable parameters at values based on prior subject-area knowledge; (2) conducting
further experimentation aimed at better understanding the processes; (3) modifying the model
structure if there are not enough data to estimate parameters without making assumptions about

some of the (weakly identifiable) parameters. These are all pragmatic, achievable remedies.

For the first solution of fixing parameter values, one might also carry out simulations using
fixed parameter values different from the chosen values to look for bias in the estimates of the other
parameters. For example, with the simple model, 100 simulations with n=300 were carried out
using Ng,»=0.8852, but for least squares estimation N,,;, was fixed at 0. The average values of
the parameter estimates for the remaining 8 parameters appeared to be unbiased. This first solu-
tion could also be tackled somewhat differently by putting the model into a Bayesian framework
and using relatively narrow priors on the weakly identifiable parameters to at least allow for some
uncertainty in the parameters. Related to the second solution of conducting further experimenta-
tion, one could also try to find experiment designs for the manipulable variables that are in some
sense optimal for estimating parameters of primary interest. Lastly, regarding the third solution,
as was mentioned previously algorithmic models, e.g., MARS, might be an alternative or a means

of providing guidance for restructuring the model.
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Commentary on Domijan, Jorgensen and Reid,
Semi-mechanistic modelling in nonlinear regression: A

case study

Martyn Plummer

International Agency for Research on Cancer

The contrast between the “empirical” and “mechanistic” approaches to statistical mod-
elling has a long history. Breslow (2003) reviewed this history in his presidential address to
the XXI International Biometric Conference, noting that one of the earliest statisticians to
make the distinction was Ronald Ross, a pioneer of infectious disease epidemiology. Ross
(1916) used the terms a posteriori and a priori to distinguish the path of reasoning from
observations to causes or vice versa. The success of Ross’s mechanistic or a prior: model
for the spread of Malaria has, however, not frequently been replicated in other areas of
biometry. Empirical model building has become the standard approach.

In the case of the crop-response model considered by Domijan, Jorgensen and Reid
(2006), the best criterion for judging a model would appear to be the quality of its pre-
dictions of crop yield. The attraction of a mechanistic, or semi-mechanistic model in this
case is that its predictions might extrapolate better outside of the field testing conditions,
when compared to an empirical model based on a mathematically convenient, but oth-
erwise arbitrary, dose-response curve. The disadvantage of moving outside the realm of
empirical modelling is that we lose the use of standard modelling tools. This includes not
only software for fitting the models, but also the ability to fit the problem into an existing

conceptual framework that allows us to think about and criticise the model.



One of the key concepts of model criticism is parsimony. Statisticians are not just averse
to highly parameterised models out of “professional skepticism” but from an understanding
that over-parameterised models have poor reproducibility and, in particular, give worse
predictions than appropriately parsimonious models. I hope that nobody would seriously
attempt to fit a linear regression model with 26 parameters to a set of only 84 observations.
I would expect, instead, that a statistician would either search for a subset of the best
predictors, or use a technique such as ridge regression to attenuate the impact of having
highly correlated parameters in the model. No such techniques are available for a complex,
non-linear model based on a priori reasoning, and Domijan, Jorgensen and Reid (2006)
have had to develop new techniques for simplifying the model, while retaining its essentially
mechanistic character.

I would like to point out some ways in which the same problem can be addressed in
a Bayesian framework. A Bayesian hierarchical model can be constructed as a directed
acyclic graph (DAG), in which the nodes represent the model variables and the edges repre-
sent the causal relationships between them (Pearl 2000). The popular WinBUGS software
(Spiegelhalter et al, 2004) provides a language for describing such models and has, for exam-
ple, been adapted to problems in population pharmacokinetics/pharmacodynamics (Lunn
et al 2002) for which mechanistic reasoning plays an important role in model building,.

An important difference between the Bayesian and frequentist paradigms is the need
to specify a distribution that encapsulates the prior information about the parameters. In
practice, most people use weakly informative or “reference” priors in order to minimize
the sensitivity of the conclusions to the prior. However, for a Bayesian purist, the prior
distribution is an intrinsic part of the specification of the model. Arguably, if the model
discussed by Domijan, Jorgensen and Reid (2006) were analyzed in the Bayesian paradigm,
it would require an informative prior distribution on each parameter: one that had been
carefully elicited from expert opinion. The authors note that some of the parameters in
the model must be bounded to be biologically meaningful. It is only a small step from this
to asking what ranges of values are biologically plausible and using this a priori knowledge

to improve the predictions from the model.



Most modern Bayesian analyses use Markov Chain Monte Carlo (MCMC) techniques,
which generate a sequence of correlated samples from the posterior distribution. In prin-
ciple, this sequence provides all of the information about the parameters, and no further
simulations are required to explore the joint posterior distribution. Hence, for example,
the correlation between two parameters can be examined by looking at the corresponding
correlations between simulated parameter values in the MCMC output. Furthermore, the
posterior distribution of a parameter can be estimated from the sampled values using den-
sity estimation, and compared with the prior to see how much has been learned from the
data.

The conceptual simplicity of the Bayesian approach is no panacea, however. Numerical
problems in maximizing the likelihood do not disappear when MCMC techniques are used,
but generally manifest themselves as poor “mixing” of the Markov Chain. When this
occurs, even a long run of MCMC output may not be a representative sample from the
posterior distribution. This may especially occur when the posterior distribution is multi-
model, as is the case in mixture models, and special techniques such as simulated tempering
may be required (Celeux, Hurn and Robert, 2000). Since the starting point of the paper
by Domijan, Jorgensen and Reid (2006) is the difficulty of numerically maximising the
likelihood function, no guarantee can be made that the numerical aspects of the problem
could be improved by a Bayesian approach. However, numerical problems may well be
improved by the use of informative priors, and successful application of MCMC methods

would allow model criticism without requiring further methodological innovations.
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Discussion of

“Semi-mechanistic modelling in nonlinear regression: A case study”

The fitting of nonlinear models, especially models that are derived from some
simplified description of reality, is something that is dear to my statistical heart. It
has certainly been interesting to see the approach described by the work under dis-
cussion (hereafter DJR), and the simulations demonstrated will undoubtedly provide
some general intuition about the high-dimensional shape of the likelihood. However,
I am concerned that this approach has some undesirable features that will limit its
practicability and require it be be used with extreme caution lest it should mislead.
[ am also perplexed by DJR’s lack of use of established statistical protocols.

It was unclear to me why the fundamental paradigms of statistical practice (e.g.,
falsification, parsimony) were not employed by DJR. An example of model devel-
opment via falsification is given by a couple of PhD students (based at the Leigh
Marine Laboratory, University of Auckland) who recently obtained strong empirical
evidence that the existing (semi-mechanistic) model of fertilization in marine inver-
tebrates was inadequate. This model (Vogel et al., 1982) predicted that fertilization
rates would increase towards 100% as the concentration of egg and sperm became
sufficiently high. However, the PhD students had data that showed strong evidence
of a decline in fertilization rate at extreme gamete concentrations (Franke, Babcock
& Styan, 2002). This prompted a more complex model to be developed (Millar and
Anderson, 2003), again on semi-mechanistic grounds. The students are currently
comparing the simpler model to the more complex model, via confrontation with
data, to see if the simpler model can be falsified as a general model of fertilization
in marine invertebrates.

I never got the sense that the PARJIB model, or any subset of it, was truly
confronted by the data. DJR’s examination of correlation structure and likelihood
surfaces is an examination of the likelihood in the neighbourhood of its optimum,
but this is only a small part of the art of model fitting. I felt that the exposition fell
short of presenting clear guidance, due to straying from the usual statistical path,
and it was not clear to me that DJR achieved the fit of a parsimonious mechanistic
model to these data. It is our statistical responsibility to inform the zealous client
that best doesn’t mean biggest.

The modelling objectives of DJR were unclear to me. In the Introduction, in
the context of finding least-squares solutions to nonlinear models, DJR say “Nev-
ertheless, the quality of such solutions need to be evaluated by calculation of an
information matriz and exploration of the likelihood surface in the neighbourhood of

the solution.” This suggested to me that, rather than seeking a parsimonious model



(by mimimizing AIC, say) the objective was to fit as complex a model as possible,
up to some arbitrary (unspecified) point of being over-parameterized. Indeed, in
Section 5.1, DJR write “Removing from the model one of the parameters, Npin, in a
highly correlated pair greatly reduced the estimated variance of the other parameter,
IN-

A number of other issues arise from DJR not using a statistical framework for
model fitting.

e The simple model assumed that nutrients P, K and Mg, were all at optimal
supply. Is this model reasonable?

e There is no explicit notion of competing models or nested models. In conse-
quence, | felt that advise such as “We suggest fixing one variable from each of

”

the most highly correlated pairs...” would be rather nebulous in practice. In
the PARJIB example, N,,;, was set to zero, but what does one do in general?
For example, when fitting size-at-age curves to fish, the growth-rate parame-
ter and maximum-size parameter typically have very high correlation, but it

doesn’t make sense to set either to zero, or to any particular fixed value.

e | feel that whether or not to set N,,;, to zero should be decided on the basis

of model fit and parsimony.

e Looking at the bottom-right plot in Figure 5, it appears that a reduced model
which set 7; equal to 7, would incur a small reduction in log-likelihood. It
looks like this reduction is less than unity, in which case the reduced model
would have a lower AIC than the model presented.

I also had concerns about the simulation approach proposed by DJR. As noted
by DJR, the simulated covariates did not include correlation structure between the
covariates. This seems to me a fatal flaw - it would give entirely misleading con-
clusions in the case of multiple linear regression with multi-collinear explanatory
variables.

Eye-balling correlation matrices may not be enough to (in general) detect com-
plex multiple correlations. Moreover, correlation matrices are parameterization de-
pendent. In the size-at-age example I mentioned above, the high correlation between
the growth-rate and maximum-size parameters can be avoided by using an appro-
priate re-parameterization (Schnute, 1981). So, one parameterization would suggest
that a parameter needs to be fixed (somehow), but the other parameterization would
not. In contrast, use of model selection via AIC will not depend on the parameteri-

zation.
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Invited Comment on ANZJS A031010:
K. Domijan, M. Jorgensen, and J. Reid -

“Semi-mechanistic modelling in non-linear regression: a case study”

The paper raises an underlying but central issue concerning the place of statistics in
applied research, as well as detailing more technical, statistical matters. The
underlying question needs proper debate because with increasing sophistication of
statistical models and technique, applied research for teams of researchers from
different disciplines increasingly involves formal and strongly delineated
responsibilities. The core philosophical question is what role statistics has to play in
such situations beyond solving purely technical problems in fitting pre-determined
and pre-specified models.

Some of the core philosophical and operational issues can be summarised as follows:

1. If highly parameterised models are not intended to be substantially modified by
statistical analysis, because their structure is decided by subject matter considerations,
what is the role of Statistics?

2. Given this strong constraint on model amendment via statistical methods, what is the
logical basis for refutation of any such model in a Popperian sense (Popper, 1992)? Is
this still a statistical matter? If so, how? And if not, on what basis are scientists in the
substantive discipline to make decisions to change models, or choose between them,
seemingly without the benefit of data analysis and statistical tests to trim and supplement
models?

3. Highly parameterised models containing submodels used to define variables to be
included in the final model, raise a further level of complexity, at least statistically. How
are submodels to be tested (and hence modified) in this context? How are we to establish
a sound foundation for inference?

4. The statistical technicalities of fitting over-parameterised models are important, but so is
the proper application of Ockham’s razor to remove redundancy. Multi-collinearity is a
particular concern, especially where as here the data set is small, or limited in range, or
structured so there is no variation at all for at least some variables used in the model.
How are these technicalities to be dealt with in a way that does not reduce the fitting and
interpretation of such models to an arcane art? Once the new methodology becomes
more complex, how can (statistical and non-statistical) scientists check mechanistic and
semi-mechanistic models via the modelling process, particularly where data sets are
small and/or clustered (even if it proves possible that this refutation and ‘amendment’
process can be part of the methodology in principle)?

What is clear is that although these preliminary issues, like most philosophical ones,
will not be settled quickly, their answers are critical to evaluating the usefulness of
this case study. Given the underlying philosophical issues remain to be settled,
caution is required. Publication of this case study on semi-mechanistic models should
be seen as the opening of a debate and certainly should not be seen by the wider
scientific community as an endorsement (by the statistical community) of the explicit
agricultural model used in the paper.



Given these preliminaries, what follows is necessarily more a set of observations and
guestions than answers.

The authors’ contention that linear models are often descriptive, while non-linear
models are usually not (because they are more likely to arise from subject matter
considerations), seems to put to one side the important role of linear models in much
of experimental design. In any event, in the usual nomenclature the linear and
nonlinear part is the dependent variable, and non-linear models are often fitted by a
sequence of linear model approximations (eg generalized least squares). From this
perspective at least, the prediction structure in both types of models is identical.

The case study data used consist of 84 data points from at 12 sites, so that for some
variables such as weather, cultivar, soil properties (eg N. P, K, Mg, pH) there would
seem to be only 12 different values. The model fitted contains 26 parameters (see
Table 2). To make fitting possible "assumed or empirically estimated functional
forms" are used. If assumed, how can this be justified statistically, and if fitted
empirically how many degrees of freedom are available? When a model is fitted to
values that vary substantially between but not within sites (of which 12 are mentioned
over the 1996-1999 period), there is usually much greater variation between sites than
within sites. This has substantial effects on standard errors (via example effective
sample sizes due to correlation of observations within sites). Is this problem is
inherent in semi-mechanistic models in general, and how can it be incorporated into
model fitting?

Sections 2.2 outlines the PARJIB model, but in a way that is completely uncritical
from a statistical point of view. Use of genetic algorithms, gradient methods, profile
likelihoods, linear approximations, bootstrap and setting of collinear parameters to
arbitrary values are all technical matters likely to be beyond the province of the
scientists who develop semi-mechanistic models. How are these technical issues to be
approached in a way that does not overshadow the substantive agricultural question
which is the basis of the model, and how is feedback best provided from statistician to
scientist in such circumstances on what is the real biological essence?

The simulated datasets used to calculate standard errors do not fully specify the
problem (eg using marginal distributions and profile likelihoods). How can the
authors be certain that their simulation, since only partially specified in a statistical
sense, reflects the actual (multivariate) structure in the actual data? To what extent are
the profile methods useful, given they are essentially one dimensional in the context
of a complicated non-linear model? And what allowance has been made in the
standard errors for the range of possible (simulation) models, given the estimated
standard errors are conditional on the model being correct?

In what sense are the model modifications to ensure parameters fall in plausible
ranges anything more than ad hoc adjustments to the underlying model? Is there any
explicit methodology available by which semi-mechanistic models can or should be
formally modified, and does this meet acceptable statistical criteria?

The idea of general applicability of mechanistic and semi-mechanistic models is
intuitively appealing, given the same model can be applied to different datasets. In



practice however there are complications, eg How are parameters to be estimated in
models which contain interaction effects, one component of which is fixed at a
constant in each particular dataset? Are parameter estimates to be 'borrowed' from
other datasets in such circumstances, for example, (and on what formal statistical
basis) or are effects to be set to arbitrary values (eg zero) to avoid this problem. Given
such complications, how can a model be said to be a 'general’ semi-mechanistic model
in practice?

It is clear from the graphs and the variation in the data that the structure of the model
has a considerable influence on the fitted curves. The considerable variation about the
fitted model must surely remain a concern given the model has an essentially non-
statistical basis, and seems somewhat immune to statistical criticism. Given that semi-
mechanistic models are usually over-parameterised, what information is 'left over'
from the fit to apply formal statistical tests?

In conclusion, there are a range of questions this paper leaves and must leave
unanswered, but the authors are to be thanked for raising and answering some of
them. Despite uncertainty both in the statistical underpinnings of semi-mechanistic
models and the expected role of any statistician in teams of researchers looking at
such complex models remaining open questions, the authors have done statisticians a
service in bring these issues more explicitly to our attention.
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Replies to comments on “Semi-mechanistic modelling in nonlinear
regression: a case study”

We are grateful for the well-considered and thought-provoking contributions of the reviewers. Rather than
reply to each single point made by each reviewer, we have chosen to group together their comments under
generic headings and discuss those.

1 Purpose of the case study

The case study has prompted thought on a wide variety of issues that confront statisticians and biological
scientists. We could not hope to address all of those, and the first parsimonious principle we invoked in the
paper was to define its purpose.

It is worth repeating that purpose here. The paper sets out “..a case study of fitting a semi-mechanistic
biological model. It is not intended to argue for or against the validity and usefulness of that model. We
discuss some of the practical and philosophical issues that confront the statistician in fitting such models and
the biologist in using the statistician’s findings to appraise the soundness of the original model.”

In places, Millar in particular has assumed that our purpose was to develop and defend a semi-mechanistic
model. That is not correct.

2 Collaboration between mathematical modellers and statisticians

In this and similar cases, the main question that causes a mathematical modeller to seek help from a
statistician boils down to "how reliable is this model?" As Plummer and Welsh comment, at the level of
overall model performance this question can be answered by examining how well the model’s yield
simulations and predictions match the experimental values. Reid et al. (2002) had already done that for the
initial model fit (by genetic algorithm). Naturally, when sufficient data are available, the fitting of a model
provides an opportunity for examining some of the functional forms used in the model. In this case study, the
initial question asked of the statistician was to assess how reliable are the individual parameter values from
that earlier process of fitting by genetic algorithm (or later alternatives to it). It is when undertaking
parameter estimation at this level that we must confront the “core philosophical and operation issues”
referred to by Haslett and others.

In building and testing empirical models, we suggest the statistician’s role is paramount. In developing and
applying mechanistic and semi-mechanistic models, we submit that the statistician’s role should be more
interactive and complementary with that of the scientist.

This case study covers a part but not all of the scientific process that seeks to develop and apply mechanistic
and semi-mechanistic models in the biological sciences. The paper concentrates mostly on the role of the
statistician in the fitting and testing part of the process — that is a critical role, but not necessarily the most
important throughout the process as a whole.

The process is advanced considerably by the nature of the hypothesis testing that goes into the statistician’s
analysis of model performance. That testing is as much part of the scientific process as gathering the
experimental data itself. The process of scientific judgement that sets up the semi-mechanistic models in the
first place could often do better if statisticians were involved very early on, but there are often valid and
important scientific and behavioural reasons why that might not occur. We argue that the statistician's input
at any stage should be positively sought by the scientists. The scientists must be prepared for their pride to be
dented and work schedules affected as their models are overhauled and perhaps rejected as inconsistent with
the observations or unjustifiably complex. In turn, the statisticians must be prepared to accept that even if a
much simpler model gives a statistically more acceptable fit to the available data there may be good reasons
for persisting with a model structure that fits accepted theory of how a system works. Examples of the latter
include:
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More or better quality data could be expected soon, or by publishing the model the scientist hopes to
solicit previously unavailable data;

Adoption of a simpler, more empirical model can introduce other complications — not the least being the
implicit or explicit recommendation to abandon scientific knowledge that may be amply supported by
other experiments and which is important elsewhere in the research project;

Recognition that the available data is inadequate to properly test a theoretical model, especially one based
on current perceived wisdom, is an important incentive for better experimental science;

The attachment that scientists may have to the mechanistic elements of their models, even in the face of
less than resounding statistical endorsement, centres on the philosophical principle of distinguishing
description from explanation. Empirical models (based solely on statistically derived relationships)
describe datasets. Mechanistic and semi-mechanistic models seek to ascribe causality to relationships
observed in nature. Their developers are attracted to the promise of quantifiable causal relationships that
explain observations (ascribe causality) and give confidence that the model has relevance beyond just
describing the dataset used for fitting.

It should be clear from our response above that we do not consider it acceptable that, by the time of the
statisticians input, the model is considered subject to only minor adjustment.

3 Why was the subject model so complex?

Questions and comments to this effect were raised by all of the reviewers. This paper describes the process
from the initial involvement of the statisticians after the initial model was derived from a mix of mechanistic
knowledge and empirical experience based on a wide range of previously published experiments.

Haslett and Millar ask why more statistical testing was not done with a view toward simplifying the model.
This is a process that the statistical analysis has indicated should be a priority in the ongoing scientific
process. Even so, the following points may be noted.

1.

The model is based on individual response curves for N, P, K, or Mg. There is no serious doubt
amongst crop agronomists that these elements are related to crop yield. It is open to further
investigation whether the forms adopted by PARJIB are the best to model these response curves.

It is also open to doubt whether the function
q,, = max (0, 1- \/(1 _ )2 +(1-¢, )2 +(1-g, )2 + (1 ~ G )2 j used to combine the individual

nutrient curves into a multi-nutrient function is the most appropriate. There is no more suitable equation
in the crop physiology literature, but this case study indicates a search for alternatives would be very
helpful. Ideally this function should be replaced by a nonparametric form, perhaps constrained to be
monotonic in each argument. However this would raise the effective number of parameters in the model
(which is already troublesomely large for the amount of data that experimenters can hope to amass).

The maize data was from an aggregation of experiments, not all of which were necessarily designed to
measure response to all four nutrients. It is notoriously difficult to reliably locate experiments that will
show substantial responses to applications of some fertilizers (in NZ, background soil levels of nutrients
such as Mg can be in or close to the flat portion of the yield vs nutrient supply curve). If stress due to a
particular nutrient does not vary enough in the data, it will not be possible to obtain reliable estimates of
the parameters in its response curve. Thus we can be confident that all four nutrients play a role in
predicting maize yield, but not confident that we can estimate the response parameters for each nutrient.
We chose to concentrate on the response to Nitrogen alone in our "simple" model. If a formal test
showed that the "full" model was not significantly better than the simple we would not conclude that P,
K, and Mg were unimportant for maize yield; only that variations in stresses for these nutrients were not
important in the data analysed. Were formal tests felt to be of interest, notwithstanding these comments,
then a score test - see, for example, Rayner (1997) - has the advantage of only requiring quantities local
to the reduced maximum likelihood estimator. It does not require the successful fitting of the full model
which is difficult to achieve when the number of parameters is large in relation to the data. As there are
16 models to consider corresponding to the choice of the subset of {N, P, K, Mg } used, it seems in
principle that model selection, for example using AIC as suggested by Millar, may be a more
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appropriate methodology than hypothesis testing. However it seems very hard to fit more than a few of
these 16 models. As noted by Millar, the reduced model with 77, =77, seems attractive with the maize
data, but with other crops this has been found not to be so.

In this case study, the a priori reasoning that lead to the complex model has been challenged further by the
statistical analysis. In the case study, some discussion centred around the correlation structure of the
parameter estimates, and showed that for each nutrient, two parameters in particular are highly correlated and
cannot be estimated independently with the sorts of field data that we can reasonably expect to obtain. As a
result, difficulties of fitting the parameter X,,;, (where X may be N, P, K or Mg) with real world data are
unlikely to go away, and model formulations without these parameters are currently being investigated.
Furthermore, the difficulties experienced in fitting the terms for the “broken stick™ style response of scaled
yield to soil pH and water deficit have prompted moves to simplify the model using continuous,
differentiable, ramp functions. These are not ad hoc model adjustments, but reflect considered
mechanistically-based responses to statistical challenges.

We are rather concerned at Millar’s implication that the objective was to fit as complex a model as possible.
As our above replies make clear that is absolutely incorrect. Maybe this notion arose from a
misunderstanding of the role of the “simplified model” in our case study. The use of simplified models like
this is to aid the initial search for better methods for fitting and analysis. If an approach is unwieldy and
works poorly with the simplified model then it certainly should take a low priority for use on the “full”
model that the biometrician is presented with by the scientist.

4 \What bases were there for refutation of the model?

Comments by Millar and Haslett on this matter link to the above discussion about the statistician’s role in
collaborations with mathematical modellers. Millar in particular doubts that "the PARJIB model, or any
subset of it, was truly confronted by the data." A way in which such a confrontation can occur is to have a
parameter estimated at a value that is inconsistent with its mechanistic meaning. A confrontation of this kind
almost occurred in the paper: the parameter V,,;,, was estimated to have a negative value (-762.8265). This is
inconsistent with the meaning of N,,;, as the smallest rate of supplied Nitrogen at which positive yield is
observed. The hypothesis N,;,,= 0 may be tested using either a likelihood ratio test or a score test. A
likelihood ratio test gives F = 0.595 and a p-value of 0.44 when referred to the F(1,75) distribution. A score

test gives a chi-squared statistic of 0.535 and a p-value of 0.46 when referred to the ;(12 distribution. Thus
here the data does have the chance to refute the mechanistic interpretation of this parameter but fails to do so.

We may take this a little further by inverting the likelihood ratio test to construct a one-sided confidence
interval for N,,;,. By this means we obtained that N,,;, < 6.6 with 98% confidence, though encountering
numerical difficulties when attempting to raise this bound to obtain higher confidence. Such results do have
the potential to cast doubt on mechanistic models if the bounds seem unreasonable to subject-area scientists.

Actual supplied rates of Nitrogen are well above zero, so the region in which the curve fails to model growth
is not found in the data. Nevertheless the reason for this phenomenon merits further attention. This is typical
of the way in which mechanistic models are challenged by the data. An interesting example is mentioned by
Richards (1959) concerning Von Bertalanffy's growth model which was mechanistically derived by Von
Bertalanffy leading to constraints on a "shape" parameter. Richards demonstrated that for many real animal
growth datasets the constraints were violated. He recommended dropping the constraints, leading to a family
of growth curves as empirical models but whose mechanistic status was now dubious.

Popper's falsifiability criterion requires that for a statement to be a scientific one it must, in principle, be
capable of falsification. Statistics is often seen as the guardian of the scientific method and Haslett asks how
it can uphold this role without, in this case, questioning the PARJIB model. Now it is not hard to decisively
reject a statistical model with few parameters given a very large data set purportedly generated by the model.
But this is much more difficult when considering a highly parameterized model with a modest amount of
data.
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In fact the ultimate test for complex models like PARJIB is whether they work for their intended purpose. In
the case of PARJIB this will be whether the model simulates or predicts yield well (see Section 2 above) and
if it is found to be useful in making recommendations on fertilizer application rates for agricultural crops.
Brun et al. (2001) point out, speaking of "large environmental simulation models which are thought to
summarize current scientific knowledge in a mathematical language", that "In many case studies, these
models are (successfully) applied without questioning the model structure.” Indeed it is often the case that no
statistical advice is sought or given in either the development or application of such models. We do not see
this situation as desirable but, if it is to be changed, there is a need for flexibility and understanding between
statisticians and modellers. Overly rigid attitudes could well be counterproductive.

In other words we must accept that science is not necessarily built up paper by paper with each new fact
confirmed against data by statistical gatekeepers. Sometimes it is necessary to work with a model or theory
over time and many sets of data to see whether it stands or falls.

5 A better way to fit the model?

Plummer recommends the adoption of a Bayesian framework for investigations of this kind. Newman
suggests that this might present a method of handling weak unidentifiability that would be preferable to
outright fixing of parameters.

We began this work faced with a complex model whose parameters had been estimated from a modest set of
data using a computer-intensive "genetic algorithm". Our aim was to attempt to fit at least a submodel to the
data using classical nonlinear regression so that some inferences could be made about the parameters. It soon
became clear that it was difficult to make any progress towards fitting anything without making use of
background information about such matters as the relative importance of the nutrients and sensible ranges of
values for the parameters of interest. It is also noteworthy that we found the Levenberg-Marquardt algorithm,
a close cousin of Ridge Regression, to be a useful tool in arriving at least-squares fits of several of the
models considered. As Lindley and Smith (1972, section 5.3) show for linear models, Bayesian formulations
can lead to estimators of the same form as Ridge Regression estimators.

As Plummer notes, mechanistic models adapt well to Bayesian methods because there are usually good
intuitions available about parameters in them which can be translated into priors. Welsh also mentions
MCMC methods as an alternative to Genetic Algorithms, but Plummer points out that they by no means
abolish all numerical difficulties. Prior distributions, however, will help with the parameter practical
identifiability problem in a manner similar to the way in which Ridge Regression tames multicollinearity. It
may also be noted that the method followed in this paper, of generating simulated data closely following the
model, may be of use in tandem with MCMC model fitting as a means of exploring just how good the data
need to be before MCMC output becomes trustworthy. Reversible jump MCMC (Green, 1995) would be a
potential way of selecting between submodels of PARJIB with differing sets of nutrients included.

We also note that the objection of unfalsifiability brought against mechanistic models can be brought against
Bayesian prior distributions. We suspect that the answer to this objection may be the same in both cases:
falsifiability is there, but not necessarily with the present set of data. It may be necessary to seek further
evidence.

6 Testing of sub models and use of a priori information

Science proceeds by building on previous results as well as by challenging them. This case study raises a few
issues about the former process. At some point we are obliged to use previous models or results as a priori
information instead of expanding the model-fitting process to include all constants or parameters involved.
For example, it seems absurd to estimate m when fitting a model that involves it. However, in this case study,
should we have subjected the sub-model for potential yield to the same scrutiny as the nutrient response
model PARIJIB itself? (We chose to trust the peer review process that led to publication of the potential yield
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sub-model.) Between these extremes, mechanistic and semi-mechanistic models often use fixed parameter
values taken from other research results.

Haslett notes that there are underlying philosophical and statistical issues associated with such “borrowing”
of parameter values from other datasets and using them as fixed values. Newman and Welsh raise the
question of the bias introduced in other parameters by fixing the values of a set of parameters. Newman
points out that this can be can be investigated through simulation. Whether this is worth doing depends on
whether the parameters are being estimated for their own sake or whether it is the predictions from the model
that are important. If the focus is on the latter, then the effect of fixing parameters on the fit of the model
could be investigated using score tests.

To some statisticians it might seem to go against the grain to give a parameter a fixed value. However
statisticians commonly do equivalent things with very little angst. We may choose a logit or a probit link in a
binomial generalized linear model; we may choose an additive error term to be normally distributed rather
than, for example, having the shape of a Student-t with 4 degrees of freedom; we may choose a growth curve
to be of Gompertz or logistic form rather than estimate the shape parameter of the Richards family of curves
which contains both as members. The Box-Cox versus Bickel-Doksum controversy on the estimation of a
transformation parameter makes interesting reading here (Bickel & Doksum, 1981; Box & Cox, 1982). Box
and Cox defend, successfully we believe, their recommendation that inferences be made conditionally on the
transformation used without attempting to account for the uncertainty in the transformation parameter.

Welsh queries the expression "to adequately test the model at the mechanistic level". What was meant was to
obtain sufficiently precise estimates of the model parameters to make possible meaningful comparisons with
the subject-area literature.

7 Fitting using simulated datasets

The initial motive for the use of simulated data in this paper was simply to fit at least some of the model
parameters using standard nonlinear regression algorithms. The hope was that by generating a very large set
of data closely following the model but otherwise similar to the maize data, we would create a situation that
could be handled by the Gauss-Newton algorithm. Inspection of the parameter correlation matrix of this fit to
the simulated data might then suggest a subset of the full parameter set whose correlations were not too close
to = 1 and more generally for which the corresponding submatrix was not too close to singularity. With luck
the same set of parameters would be estimable by Gauss-Newton starting from an initial estimate and with
remaining parameters held constant at their initial values. (In the paper, the initial parameter values were the
ones obtained from a Genetic Algorithm.) Welsh gives a good summary of our approach. Newman points out
that near-rank-deficiency in the parameter variance-covariance matrix need not be due to highly correlated
pairs of parameter estimates. This is, of course, true, but these pairs are what one would first look for. If a fit
to the real data could then be achieved by holding one member of some of these pairs constant, there would
be no motivation to look for higher-order linear dependencies between the parameter estimates from the
simulated data.

Matching the covariance structure of maize data is not essential for the purpose above. Generating covariates
independently is likely to lead to a simulated data set that understates the parameter correlations when the
model is fitted to it. But such a simulated data set will be easier to fit using Gauss-Newton, and it will have
done its job if it then leads to the identification of a parameter subset that can be fitted with the maize data.

However, there is another reason why we might want to replicate the covariance structure of the covariates.
If we generate a large set of simulated data that matches the covariate covariances of the maize data and
closely follows the model, we might then construct a scaled sensitivity matrix, as defined by equation (6) of
Brun et al. (2001), on the basis of the parameter variance-covariance matrix of a Gauss-Newton fit to the
simulated data. We could then employ the methodology described in section 4 of Brun et al. (2001) for
identification of influential parameters and parameter subsets with good collinearity properties. We could
build up such a simulated data set by jittering the covariate vectors of the original observations, or with the
help of a Cholesky factorization of the maize covariate variance-covariance matrix. We are pleased that
Newman has drawn attention to the methodology of Brun et al. (2001) which we feel has great value for
partially mechanistic statistical modelling.
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Matching the covariance structure of the data would also be important if we were submitting simulated data
to MCMC estimation as suggested in section 5 of this response.

8 Miscellaneous

We were unable to reproduce Newman's problem with the signs of some coefficients in the parameter
estimate correlation matrix with the simulated data. Although not reported in this paper, Domijan (2002,
Chapter 6) fitted several variants of the PARJIB model using AD Model Builder. It was necessary to modify
some of the model equations to ensure that the fitted values were differentiable functions of the parameters.
Compared to the Levenberg-Marquardt algorithm the results were good: both algorithms reached the same
parameter estimates but AD Model Builder did so much more rapidly.

In one respect our models have not been complex enough: Welsh notes our arbitrary assumption of
independent additive homoscedastic error terms, and Haslett notes that the observations at a particular site
will be correlated for many reasons. We were indeed guilty of this oversimplification. Our fitted models,
however, can be starting points for the fitting of more realistic models. For example we can introduce
random site effects to the model. The table below compares the parameter estimates and their standard errors
from the fixed effects model reported on in Table 4 with the estimates from the mixed model with random
site effects. The mixed model was fitted using an EM algorithm with the site effects treated as missing data.

TABLE 6
Estimates of the eight parameters in the ‘simple model’ with random site effect.

Estimate (é ) Estimate (é ) with

Parameter Std error
random site effect
Nopt 16.248 3.95 16.238
TN 0.679 0.26 0.595
Eni 0.218 0.10 0.192
Enz 0.255 0.10 0.543
B 0.600 0.11 0.713
Diim 0.222 0.12 0.362
uf 0.612 0.12 0.244
2 0.650 0.08 0.679

It is also possible to consider models in which some parameters vary randomly over sites although for some
parameters this may conflict with their mechanistic understanding. When contemplating these classes of
models, a Bayesian approach would seem increasingly attractive.

9 Ongoing value of the statistical insights

Finally, the reviewers’ comments on the case study have stimulated us to consider further the ongoing role of
the statistician in model development. As mentioned above (Section 2) the statistician’s role does not end
with the first fitting and appraisal of model performance. It needs to be emphasised that the statistical
criticisms of model structure and fit of the available data should be used when designing future experiments
to gather the extra data needed for model improvement.
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